
Efficient Synthetic Traffic Models for Large, Complex SoCs
Jieming Yin* Onur Kayiran* Matthew Poremba*

jieming.yin@amd.com onur.kayiran@amd.com matthew.poremba@amd.com

Natalie Enright Jerger*† Gabriel H. Loh*

enright@ece.utoronto.ca gabriel.loh@amd.com

*Advanced Micro Devices, Inc. †University of Toronto

ABSTRACT
The interconnect or network on chip (NoC) is an increas-
ingly important component in processors. As systems scale
up in size and functionality, the ability to efficiently model
larger and more complex NoCs becomes increasingly impor-
tant to the design and evaluation of such systems. Recent
work proposed the “SynFull” methodology that performs
statistical analysis of a workload’s NoC traffic to create com-
pact traffic generators based on Markov models. While the
models generate synthetic traffic, the traffic is statistically
similar to the original trace and can be used for fast NoC
simulation. However, the original SynFull work only eval-
uated multi-core CPU scenarios with a very simple cache
coherence protocol (MESI). We find the original SynFull
methodology to be insufficient when modeling the NoC of
a more complex system on a chip (SoC). We identify and
analyze the shortcomings of SynFull in the context of a SoC
consisting of a heterogeneous architecture (CPU and GPU),
a more complex cache hierarchy including support for full
coherence between CPU, GPU, and shared caches, and het-
erogeneous workloads. We introduce new techniques to ad-
dress these shortcomings. Furthermore, the original SynFull
methodology can only model a NoC with N nodes when the
original application analysis is performed on an identically-
sized N-node system, but one typically wants to model larger
future systems. Therefore, we introduce new techniques
to enable SynFull-like analysis to be extrapolated to model
such larger systems. Finally, we present a novel synthetic
memory reference model to replace SynFull’s fixed latency
model; this allows more realistic evaluation of the memory
subsystem and its interaction with the NoC. The result is
a robust NoC simulation methodology that works for large,
heterogeneous SoC architectures.

1. INTRODUCTION
Modern computer systems have evolved from rela-

tively simple microprocessors to complex systems-on-chips
(SoCs). Current systems already integrate CPUs, GPUs,
networks on chips (NoCs), memory controllers [1, 2], and
more. Looking forward, system sizes in terms of CPU cores
and/or GPU compute units are likely to continue to scale
to support increasingly complex processing for immersive
virtual reality applications [3], “Big Data” and “Big Com-
pute” [4], and more. In particular, recent industry papers
point toward future exascale high-performance computing
systems making use of heterogeneous compute nodes with
extensive GPU capabilities [5, 6]. As future SoCs scale in
both functional diversity (inclusion of GPUs or other accel-
erators) and size (number of CPU/GPU compute resources),
the SoC’s NoC and memory systems become increasingly

critical components in determining the overall performance
of the SoC.

To design effective NoC and memory systems for large
heterogeneous systems, computer architects need tools to
model the behavior and predict the performance of differ-
ent candidate designs. However, conventional simulation
tools driven by system emulation are too slow, and simula-
tions driven by simple synthetic traffic patterns (e.g., uni-
form random injections), while fast, may not capture im-
portant application-dependent behaviors. One recently pro-
posed methodology “SynFull” takes a first step toward pro-
viding the “best of both” [7]. SynFull takes traffic traces
from detailed cycle-level simulation of application execu-
tions, and then analyzes these to create stochastic (i.e., syn-
thetic) Markov model-based traffic generators that are sta-
tistically similar to the original applications in terms of
representation of different program phases, distributions of
message sources and destinations, per-node injection rates,
etc. As a result, SynFull enables the efficient NoC simu-
lation using fast synthetic models while still capturing crit-
ical application-dependent and time-varying behaviors ab-
sent from conventional simplistic synthetic traffic patterns.

For large heterogeneous SoCs, however, the current Syn-
Full methodology is lacking in several dimensions. Syn-
Full only considers multi-core CPU systems. However, with
the proliferation accelerated processing units (APUs) with
both CPUs and integrated GPUs, along with the growth in
general-purpose GPU (GPGPU) computing, evaluations of
future NoCs need to account for the differences that APUs
and GPGPU applications introduce. Whereas SynFull con-
sidered a multi-core CPU with a simple MESI cache co-
herence protocol, modern APUs that support shared virtual
memory between CPU and GPU components [8] use signif-
icantly more complex coherence protocols with many more
states and message types. GPGPU applications, especially
due to the presence of very distinct CPU and GPU phases,
can cause the SynFull approach to generate NoC traffic with
significant application-scale deviations. We propose a vari-
ety of extensions to SynFull to address these and other issues
to provide a robust methodology capable of modeling NoC
behaviors for GPGPU applications on APUs.

Especially in the context of large future systems, a key
limitation of SynFull is that the trace collection and analysis
performed on an N-node system can only create synthetic
traffic generators for other N-node systems. If one needs to
evaluate a system with M�N nodes, then one must recollect
and reanalyze traces from an M-node system. However, for
large M, running a full simulation may take an intractably
long time (or impractically large memory capacity); hav-
ing enough applications that can meaningfully scale up to

978-1-4673-9211-2/16/$31.00 c©2016 IEEE

an M-node system poses another challenge. We introduce
a methodology by which we can generate an “extrapolated
trace” that is similar to a trace collected from an M-node
system, which in turn can be fed to our version of SynFull
to generate synthetic traffic models for the larger system of
interest under both strong and weak scaling scenarios.

Finally, the original SynFull methodology focused only
on the NoC and employed a simple constant-latency mem-
ory model. However, memory performance is dependent
on a wide variety of factors related to the arrival time of
requests, the distribution of requests among channels and
banks, and myriad DRAM timing parameters. In the spirit
of SynFull’s synthetic modeling approach for the NoC, we
introduce application-dependent synthetic memory models
that capture critical memory-related behaviors such as bank
conflicts/row-buffer locality and non-uniform distributions
of requests among channels and banks.

Through all of these extensions and enhancements to the
original SynFull, we arrive at an overall NoC and memory
modeling methodology that can handle the full combination
of heterogeneous systems, large scalable systems, and real-
istic memory systems. While we present results for a spe-
cific implementation based on the gem5 simulator [9], the
methodology is general and the computer architecture re-
search community can use this for NoC and memory studies
of large APUs on other simulator platforms.
2. THE SYNFULL METHODOLOGY

SynFull [7] generates synthetic traffic that resembles the
traffic of a homogeneous multi-core CPU with coherent
caches. The first step is to find only a few phases of the
execution that can accurately represent the network traffic
of the whole execution. This is accomplished by using hi-
erarchical clustering (at the macro and micro level) on an
application trace that records all network injections. The
trace is divided into macrophases each with a fixed duration
(macrophase length). Using a clustering algorithm, these
macrophases are grouped into clusters. Different features of
the traffic can be used for clustering, such as node injection
rates or source-destination flows. The median macrophase
for each cluster is selected as the representative macrophase.
Similarly within each macrophase, clustering is performed
at the micro-level to bin each microphase (each phase is mi-
crophase length long) into a cluster. Microphases are de-
signed to better capture the variations in traffic behaviors
within individual macrophases. SynFull generates a syn-
thetic traffic model for each cluster, and executes them at the
granularity of both micro and macrophases. Transition prob-
abilities calculated by analyzing the application trace govern
the transitions between phases.

SynFull groups network traffic into initiating messages
(e.g., a read or a write request) and reactive messages that
are triggered by initiating messages. Reactive messages con-
sist of forward requests, invalidate requests, and responses.
The synthetic traffic model defines the behavior of initiat-
ing messages, forward requests, and invalidations for each
cluster. For each initiating message type, three probability
distributions govern its behavior. The first distribution gen-
erates a source node for a packet. Similarly, the second dis-
tribution generates a destination node. The third distribution
generates the number of packets that will be injected during a

CPU Cluster

Core

L1D L1I

CPU LLC
Complex

GPU Cluster

APU Directories/Memory Controllers

Compute
Units

L1D L1I

GPU L2

Memory

(a) Baseline system.

GPU L2

CU/L1D

APU Dir

CU/L1D CU/L1D

GPU L1IGPU L2

CU/L1D

GPU L2

CU/L1D

APU Dir

CU/L1D CU/L1D

GPU L1IGPU L2

CU/L1D

GPU L2

CU/L1D

APU Dir

CU/L1D CU/L1D

GPU L1IGPU L2

CU/L1D

GPU L2

CU/L1D

APU Dir

CU/L1D CU/L1D

GPU L1IGPU L2

CU/L1D

CU/L1D

GPU L1I

CU/L1D

GPU L1I

CU/L1D

GPU L1I

CU/L1D

GPU L1I

GPU L2

CU/L1D

GPU L2

CU/L1D

GPU L2

CU/L1D

GPU L2

CU/L1D

GPU L2

CU/L1D

GPU L2

CU/L1D

GPU L2

CU/L1D

GPU L2

CU/L1D

CU/L1D

APU Dir

CU/L1D

APU Dir

CU/L1D

APU Dir

CU/L1D

APU Dir

CPU/L1 CPU LLC

(b) Baseline topology.

Figure 1: Baseline APU system.

micro phase. Forward messages are defined by a probability
that a given message type will be forwarded, and a distribu-
tion of its possible destinations. Invalidations are similar to
forward messages, but they are sent to multiple destinations
that are generated by a different distribution. Responses are
deterministic as defined by the cache coherence protocol,
and therefore Synfull does not need to provide a synthetic
model for them (although the underlying NoC simulator still
generates these responses).

In the next sections, we keep much of the original SynFull
terminology and share its hierarchical approach of macro
and micro phases and initiating and reactive messages. How-
ever, we make drastic changes to many of the underly-
ing details to yield a new approach that is more accurate
for large-scale heterogeneous SoCs and GPGPU workloads.
Throughout the rest of the paper we refer to the original Syn-
Full methodology simply as SynFull and our new methodol-
ogy as APU-SynFull.

3. CHALLENGES OF A SYNFULL APU
In this section, we first present our baseline accelerated

processing unit (APU) architecture, and then we enumerate
the challenges associated with applying the SynFull method-
ology to APUs.

3.1 Baseline System
Fig. 1a shows an overview of our baseline APU system.

The system contains both a CPU and a GPU cluster. The
CPU cluster consists of CPU cores, private L1 caches, and a
last-level-cache (LLC) complex. CPU caches are write-back
and are kept coherent through a read-for-ownership MOESI
directory protocol; the LLC keeps track of all the cache
blocks in the CPU cluster with shadow tags. The GPU clus-
ter consists of compute units (CUs), private L1 data caches,
L1 instruction caches shared by every 4 CUs, and a banked
unified L2 cache. GPU caches are write-through and write-
no-allocate. L1 caches in the GPU are kept coherent by writ-
ing through dirty data and invalidating the caches at kernel
launch. The CPU and GPU have a unified memory address
space. The APU directories are responsible for keeping the
CPU LLC and the GPU L2 cache coherent. All memory
requests generated by the CUs access the APU directories
to stay coherent with the CPU LLC. APU directories are
connected to the memory controllers for off-chip memory
accesses. The CPU and GPU clusters each have their own
coherence protocols, and a system-level protocol (SLP) en-
ables coherent communication between these clusters.

The topology of our baseline system is shown in Fig. 1b.
The GPU cluster has 32 CUs that are connected by a 4×8
mesh. APU directories are placed along the left and right
edges, and 8 GPU L1 instruction caches are located in the

2

center of the mesh. The GPU cluster contains 16 address-
interleaved L2 cache banks. The mesh is augmented with
two additional nodes for the CPU cluster. One node is con-
nected to the CPU L1 cache, and the other is connected to
the CPU LLC. The topology shown in Fig. 1b is used as
a working example, but the methodologies proposed in this
paper are not tied to this specific layout.

3.2 The Need for an Enhanced SynFull
In this section, we describe the limitations of the original

SynFull methodology when applied to complex SoCs con-
sisting of coherent CPU and GPUs.

3.2.1 Cache Coherence Protocol(s):
One of the challenges in simulating an APU using SynFull

is the incorporation of a complex cache coherence protocol.
While the SynFull methodology uses a MESI-like protocol,
our baseline APU has CPU and GPU coherence protocols
plus the global SLP. Compared to MESI’s four stable co-
herence states, the combination of CPU, GPU, and SLP re-
sults in 18 stable states. SynFull uses four initiating message
types while the initiating messages in our APU cannot eas-
ily be grouped into less than ten categories. For example,
write requests from CPU and GPU are classified in different
categories because CPU caches are write-back while GPU
caches are write-through. In total, SynFull uses ten message
types, whereas there are more than 80 message types for our
APU. Although not all of the message types are modeled
since we group them into fewer types where possible, the
grouping must be able to abstract away most of the com-
plexity inside the protocol while still being able to represent
critical communication behaviors.

Another important challenge is to model the depth of a
complex protocol. Protocol depth is defined as the longest
chain of dependent messages generated by a single initiating
request. It is dependent on the complexity of the protocol
and the total number of levels in the memory hierarchy. In
MESI, an initiating request usually results in two or three
additional network messages before the coherence transac-
tion is completed. For our APU, an initiating request might
result in more than ten network messages during the entire
transaction. Additionally, SynFull assumes a simple one-to-
one mapping between requests and responses, which does
not hold in our APU.

3.2.2 APU Workload Phase Behavior:
APU workloads have significantly different behaviors

than CPU workloads. Current APU workloads typically con-
sist of multiple phases, where in each phase either the CPU
or the GPU cores are active.1 The network traffic during a
GPU phase is much higher than during a CPU phase. Fig. 2a
shows the number of initiating messages generated by the
BFS application over time. The big spike corresponds to
the GPU execution where the network traffic is much higher
compared to all the other phases where the GPU is idle. If
the APU application offloads only a single kernel for GPU
computation, as in this simple example, then there is likely
to be a single spike in the network traffic similar to Fig. 2a.

1Future task-based APU applications may exhibit more concurrent execution of tasks
across both CPU and GPU resources that would change the observation that phases
predominantly exercise only the CPU or only the GPU.

0 100M 200M 300M
Cycles

N
u

m
b

er
 o

f
in

it
ia

ti
n

g
m

es
sa

ge
s

p
e

r
1

0
K

 c
yc

le
s

0

 5

0
0

0

1
0

0
0

0

(a) The number of initiat-
ing messages over time.

CPU
phase

GPU
phase

0.9983 0.0017

0.3333

0.6667

(b) Macro-level transition probabilities.

Figure 2: Phase behavior of BFS.

Time

C
P

U
 p

h
as

e
G

P
U

 p
h

as
e

(a) 300M cycles.
TimeC

P
U

 p
h

as
e

G
P

U
 p

h
as

e

(b) 3B cycles.

Figure 3: Challenges of probability-based transitions

0 2M 4M 6M 8M
Cycles

N
u

m
b

er
 o

f
in

it
ia

ti
n

g
m

es
sa

ge
s

p
er

 1
0

K
 c

yc
le

s
0

 5

0
0

0

1

0
0

0
0

 1

5
0

0
0

(a) The number of initiat-
ing messages in Hotspot
over time.

0.6

0.8

1

1.2

250K 625K 750KN
o

rm
al

iz
ed

 P
ac

ke
t

In
je

ct
io

n
s

Macro-phase length

GPU_READ GPU_WRITE

(b) Normalized packet injection rate per
message type w.r.t. to the baseline,
across different macrophase lengths.

Figure 4: Sensitivity to macrophase length.

Such phase behavior might lead to problems in SynFull.
SynFull uses a probability-based transition model between
macro phases. In cases where we observe a single spike, a
small error in the ratio between the number of executed CPU
and GPU phases might result in significant errors in the gen-
erated network traffic. This is exemplified by BFS in Fig. 2b
which shows the transition probabilities between CPU and
GPU phases.

A methodology that uses this probability-based transition
model is also heavily dependent on the simulation length. If
we simulate 300M cycles, as shown in Fig. 3a, the steady-
state condition is reached after the first executed GPU phase
causing the simulation to finish. In this scenario, the ratio
between the executed CPU and GPU phases is very simi-
lar to that of the real execution, but the GPU spike comes
at the end, although this is not how the real application be-
haves. This also requires a priori knowledge of the number
of cycles to be simulated. If we run the simulation for 3B cy-
cles (Fig. 3b), the spikes come at random times, and some-
times back to back; back-to-back traffic spikes may over-
whelm the NoC, causing high latencies due to congestion
that is not present in the real application. If the simulation is
capped around 2B cycles, the ratio of GPU phases to CPU
phases would be much higher than in real execution. Fi-
nally, if the simulation is limited to 150M cycles, the GPU
phase is never observed. These results demonstrate that the
probability-based transition model does not always emulate
real application behavior, or could otherwise require very
long simulation times to achieve Markov steady state.

3

3.2.3 Sensitivity to Macrophase Length:
While the original SynFull did not report a strong sensitiv-

ity of the methodology to the macrophase length for multi-
core CPU applications, we found that this does not appear to
hold for APU workloads. To demonstrate this, we execute
the Hotspot benchmark using different macrophase lengths
(microphase length is kept constant), as shown in Fig. 4a.
Unlike BFS (Fig. 2a), Hotspot has a periodic injection pat-
tern of approximately 1M cycles. Fig. 4b shows that choos-
ing a macro-resolution of 250K cycles, which is very close
to a quarter of the period between peaks, leads to a close
match of the number of initiating messages per unit time
compared to the original cycle-level simulation. However in
such applications, choosing a poor macrophase length can
result in the representative cluster misestimating the number
of injected messages. For example, a macrophase length of
625K cycles results in most of the macrophases being mis-
aligned with respect to the underlying traffic periodicity, re-
sulting in approximately 8% fewer message injections. It
is interesting to note that the macrophase length need not
be perfectly chosen; Fig. 4b also shows an example where
the macrophase length is 750K cycles. In this case, the
macrophases line up with the underlying traffic patterns once
every four macrophases; while the error is slightly greater
than the 250K-cycle case, it is still relatively low. These re-
sults demonstrate when applications exhibit regular periodic
behaviors, simulations will be more accurate if the period is
carefully determined.

3.2.4 Capturing Bursts:
Section 3.2.3 showed that choosing a good macro-

resolution is necessary to provide an accurate representation
of the underlying traffic patterns; however, this alone is in-
sufficient to achieve accurate latency results because it does
not adequately capture the fine-grained bursty behavior of
GPU applications.

Temporal bursts: A SIMD compute unit executing a sin-
gle vector-load instruction can generate up to 64 memory
requests in a very short amount of time.2 Fig. 5a shows the
inter-arrival time of GPU read requests in the Hotspot bench-
mark. Most messages are injected very close in time, which
results in a very bursty injection pattern. However, SynFull
injects messages into the network at uniform intervals within
a microphase. At typical microphase lengths of a few hun-
dred cycles, this causes the bursts to be spread out too much
and no longer captures the effects of executing the GPU’s
vector memory operations.

Spatial bursts: The traffic generated by the GPU in an
interval of few hundred cycles (microphase granularity) is
rarely spread out across all source and destination nodes.
While a few source-destination pairs experience high traffic,
others do not inject/receive any messages in the same inter-
val (but do so in another interval). Fig. 5b and Fig. 5c show
the spatial burstiness of GPU read requests within 500K-
cycle and 250-cycle sampling windows, respectively. For
the large sampling window of 500K cycles, GPU L1 cache
nodes have similar probabilities for injecting requests, re-
sulting in an evenly distributed network traffic pattern. How-

264 is a typical wavefront length. The actual number of requests per burst is typically
less than the maximum possible due to request coalescing, branch divergence, etc.

0

2000

4000

6000

0 8
1

6
2

4
3

2
4

0
4

8
5

6
6

4
7

2
8

0
8

8
9

6
1

0
4

1
1

2
1

2
0

1
2

8
1

3
6

1
4

4

Fr
e

q
u

e
n

cy

Inter-arrival Time
(a) Frequency of different inter-arrival times of GPU read requests in
Hotspot during its GPU phase.

GPU L1Cache nodesIn
je

c
ti

o
n

 P
ro

b
a

b
il

it
y

0
.0

0
0

0
.0

1
5

0
.0

3
0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

(b) Node injection probability with
500K-cycle sampling window.

GPU L1Cache nodesIn
je

c
ti

o
n

 P
ro

b
a

b
il

it
y

0
.0

0
0
.0

6
0
.1

2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

(c) Node injection probability with
250-cycle sampling window.

Figure 5: Temporal and spatial burstiness of Hotspot.

0

10

20

30

40

50

Baseline 500K_500 500K_1K 500K_2K

A
vg

. l
at

e
n

cy
 (

cy
cl

e
s)

Configurations

(a) Average latency for the base-
line and different microphase
lengths.

0%

20%

40%

60%

80%

100%

Baseline 500K_500 500K_1K 500K_2K

M
e

ss
ag

e
 D

is
tr

ib
u

ti
o

n

Configurations

CPU_READ GPU_READ GPU_WRITE

(b) Distribution of initiating mes-
sages for the baseline and differ-
ent microphase lengths.

Figure 6: Effect of the default SynFull injection model on simulation
accuracy in Hotspot.

ever, during an interval of 250 cycles, less than half of the
L1 cache nodes inject traffic; and we further observe that
this traffic actually flows to less than half of the L2 cache
nodes. In contrast to the case with larger sampling granular-
ity where traffic is evenly distributed, parts of the intercon-
nection network exhibit transient congestion caused by traf-
fic bursts. Because SynFull considers the injection probabil-
ity and traffic flow at a very large macrophase granularity, it
is likely to generate uniform network traffic in a microphase
if the source nodes have similar injection probabilities.

Fig. 6 demonstrates how the inability to capture bursts
affects the estimated latency in Hotspot. We set the
macrophase length to 500K cycles, and compare the NoC
behavior with microphase lengths of 500, 1000, and 2000
cycles against the baseline of full cycle-level simulation.
Fig. 6a shows that for all chosen microphase lengths, the
average NoC message latency is about 21-22 cycles while
full cycle-level simulation exhibits much higher average la-
tency. This happens despite the fact that for this benchmark
SynFull actually does a good job of capturing the distribu-
tion of initiating message injections, as shown in Fig. 6b.
These results show that the default SynFull injection model
is not able to capture the bursty (both temporal and spatial)
behavior of GPU workloads.

3.2.5 Scaling:
Computer architecture researchers are focused on devel-

oping and evaluating innovations for future systems. Given
the scaling trends of CPU multi-/many-cores and aggressive
GPU/APU architectures, future systems are likely to con-
tinue to increase in core counts. Evaluating these new de-
signs requires tools that scale with the proposed systems.
SynFull requires a model file that is generated from a trace
file collected during a full cycle-level simulation. For Syn-

4

20%

40%

60%

80%

0 2500 5000 7500 10000

Memory Phase

A
v
e

ra
g

e
 L

a
te

n
c
y
 E

rr
o

r

Figure 7: Average latency error of fixed-latency memory in CoMD
compared to gem5 built-in model. Each phase on the x-axis repre-
sents a fixed number of memory requests.

Full to simulate larger systems, these trace files must first be
generated from cycle-level simulations of correspondingly
larger system. This is problematic for two key reasons. First,
cycle-level simulation of the large system may not be practi-
cal due to excessively long simulation times, or if the system
is large enough the memory requirements of the simulation
may well exceed the host computer’s resources. Second, be-
cause such large systems do not yet exist, many CPU and
GPU applications have not yet been written/re-optimized in
such a way so that they can scale to make use of the addi-
tional compute resources. So even if the cycle-level simu-
lator could handle a much larger system, there may not be
enough interesting workloads to run.

3.2.6 Memory:
Memory latency is a key contributor to overall perfor-

mance especially during periods of high-burst traffic and di-
rectory misses. SynFull uses a fixed-latency memory model,
with the latency chosen to generally represent the typi-
cal/expected latency of a single memory request (e.g., read).
The memory latency is simply added to the latency of a di-
rectory response. This type of model does not capture the
dynamic behavior of memory performance that results from
DRAM timing parameters, bank conflicts, row buffer local-
ity, etc. These factors lead to individual memory request la-
tencies deviating from the mean. We compared the average
memory latency between a fixed-latency memory controller
and a cycle-accurate model across several applications using
average percentage error in memory latency over a mem-
ory phase. One memory phase represents a fixed number
of memory requests rather than time, which allows for bet-
ter visualization of GPU kernel execution. Fig. 7 shows an
example of the error in memory latency over several mem-
ory phases in CoMD, which executes multiple GPU kernels.
The average error is 55.4% with no error less than 22.0%
and as high as 77.5%. We show the average, minimum, and
maximum error over all memory phases for nine benchmarks
in Table 1. We see that the fixed-latency memory model per-
forms poorly across a range of APU workloads, with an av-
erage error of 54.2% across all nine benchmarks.

SynFull abstracts away memory addresses to keep the
model simple to focus on cache coherence protocol behav-
ior. To model memory latency more accurately, we must
have a model for generating the address of each memory
request. Knowing the address enables the modeling of im-
portant DRAM behaviors such as bank conflicts that affect
the latency of individual requests.

4. OUR NEW METHODOLOGY
In this section, we describe our new methodology to ad-

dress the challenges identified in Section 3.2.

Average Minimum Maximum
bitonic 50.4% 30.6% 68.6%

dct 49.2% 18.9% 68.6%
histogram 57.0% 26.6% 68.6%
matrixmul 65.1% 35.7% 69.0%

spmv 63.8% 48.6% 68.6%
comd 55.4% 22.0% 77.5%
bfs 32.8% 19.2% 68.5%

hotspot 59.1% 29.0% 86.4%
nw 55.4% 8.61% 87.1%

Table 1: Summary of average, minimum, and maximum percentage
error when using a fixed latency memory controller.

4.1 Modeling Complex Coherence Protocols
The first challenge of evaluating an APU using SynFull is

to model the more complex coherence protocols in APUs.
We address this by classifying different types of initiating
messages that trigger similar reactive flows into the same
category. For example, a cache generates different types
of coherence messages based on a cache line’s state, the
ones that are bound to the same destination(s) with the same
message size can be collapsed into a single message type
to reduce the complexity of the coherence model. In total,
we model 53 message types after grouping the 86 message
types, which is still substantially more than in the original
SynFull.

GPU L1 GPU L2 DIR. CPU LLC CPU

1 2 3 4

567

8

10

9

write inv

write

inv inv

Figure 8: Protocol depth for a GPU write request.

The second challenge is tracking packet dependencies and
modeling the protocol depth. SynFull assumes a simple one-
to-one mapping between requests and responses, where a
read request generates a forward request if data is cached
on chip, and a write request generates invalidations if data is
shared by multiple readers. In an APU with a combination
of coherence protocols, a single initiating request can poten-
tially result in multiple forward/invalidation requests. Fur-
thermore, the generation of forward and invalidation packets
in SynFull is based on forward and invalidation probabili-
ties, while in a multi-level memory hierarchy, the probabil-
ity at each level is independent of the others. Therefore, to
model the transaction chain correctly, we introduce new for-
ward/invalidation request types for each level of the memory
hierarchy, considering their potentially distinctive behaviors.
Consider the following example in which a write request ini-
tiates from a GPU core, while the CPU L1 cache has a copy
of the same cache line. As shown in Fig. 8, the dashed ar-
row 1 is the initiating GPU write request. Because GPU
caches are write-through, two requests are generated: an in-
validation request 2 , and later on a write request with data
8 . The invalidation request is required because the GPU
L2 and CPU caches are kept coherent. After receiving the
invalidation, the APU directory notices that the CPU has a
copy of the data. Therefore, the directory forwards this in-
validation to the CPU LLC 3 , and the CPU LLC forwards
the invalidation to CPU L1 cache 4 . Notice that the coher-
ence transaction 3 is directly caused by 2 (but not caused

5

by 1), while transaction 4 is directly caused by 3 (but not
caused by 2). Therefore a forwarding probability for each
individual step is required; and messages in 2 and 3 are
classified into different message types. Once the acknowl-
edgments, denoted by 5 , 6 , and 7 , are received by the cor-
responding controllers, the GPU L2 is allowed to update the
memory with data 8 . It is worth pointing out that the gener-
ation of write packet 8 is dependent on both 1 and 7 , which
breaks the one-to-one request-response mapping assumption
in SynFull. Such dependencies must be tracked properly so
as to correctly model a complex APU protocol. Finally, the
memory update acknowledgements are sent back from di-
rectory to GPU L2 9 , and from GPU L2 to GPU L1 10 .

In summary, the differences between our model and the
SynFull approach lie in the following aspects. First, we
model a chain of transactions by introducing new packet
classifications. Second, we introduce the necessary depen-
dency tracking logic to handle the one-to-many and many-
to-one mappings between requests and responses.

4.2 Deterministic Macrophase Replay
The probability-based macro-level transition model can

lead to inaccuracies as described in Section 3.2.2. To ensure
that the high-level behavior of our simulation is consistent
with the workload behavior, we introduce a deterministic
macrophase replay methodology. This approach records the
sequence of cluster IDs of each macrophase. Note that this is
a very lightweight approach that stores a single number for
every n cycles (n is the length of a macrophase), whereas a
true trace-based approach would collect information on ev-
ery network injection. We still use probability-based tran-
sitions between microphases. The only potential downside
of this approach is the increase in simulation time in sit-
uations where the probability-based approach quickly con-
verges on its Markov steady state behavior. For this reason,
we reduce the simulation time by reducing the number of ex-
ecuted microphases. To achieve this, for each macrophase,
the minimum number of microphases that needs to be ex-
ecuted to reach steady state is calculated within an error
margin (we use 2%). The finalized number of microphases
per macrophase is determined by selecting the largest num-
bers calculated from the previous step. For example, in a
scenario where macrophase and microphase resolutions are
5M and 250 (the ratio is 20000), if our scripts determine
that macrophases 1 and 2 should execute at least 2000 and
4000 microphases to reach steady state, respectively, we can
obtain a simulation speedup close to 5× by executing only
4000 microphases per macrophase, instead of 20000.

4.3 Spectral Analysis for Interval Selection
To automate the process of finding a good macrophase

length, we make use of Fourier transform-based frequency-
domain analysis. Our approach consists of five main steps.
First, the application network trace is processed to generate
the injection rate of initiating messages over time, as shown
in Fig. 9a. Second, we convert this time-domain information
to the frequency domain via a Fast Fourier Transform (FFT).
Third, we remove the offset component, and then trim the
second half of the FFT result (because the FFT always pro-
duces a symmetric/mirrored result). Fourth, as the generated
FFT series consist of complex numbers, we calculate the ab-

solute values of these numbers. Fig. 9b shows the absolute
value of the first 2500 frequency components for CoMD.
The final step is to calculate the period of injection rate using
this information. In Fig. 9b, the component with the high-
est absolute value is the fourth component. This component
represents a period of 450M cycles; this is in line with the
period that can be observed in Fig. 9a. If this period is too
large to be efficient for hierarchical clustering, it can be di-
vided into smaller periods that still align with the periodicity
of the overall trace. As shown in Section 3.2.3, Hotspot is
another application that shows a periodic injection rate be-
havior. Our FFT approach is able to automatically determine
the period to be 1120K cycles.

0 500 1000 1500
Cycles (Millions)

(a) The number of initiating mes-
sages in CoMD over time.

0 500 1000 1500 2000 2500

0
5
0
0
0
0
0

1
5
0
0
0
0
0

2
5
0
0
0
0
0

Frequency component

P
o
w

e
r

(b) FFT coefficients vs. fre-
quency components.

Figure 9: Spectral analysis of CoMD.

4.4 Bursty Injection Model
Because SynFull has limitations in capturing bursty net-

work behavior during GPU execution, we propose a new in-
jection model that generates bursts similar to the real work-
load.

Capturing temporal bursts: SynFull uniformly injects
messages into the network during each micro cluster. The
amount of traffic is calculated based on a distribution of node
injection rate, defined as the number of messages injected
in a microphase. In addition to this distribution, we intro-
duce two more distributions. The first one is a distribution of
inter-arrival times between two consecutive bursts of initiat-
ing message injections. The second distribution collects the
number of initiating messages generated in the same cycle.
Note that the probability distribution functions of the inter-
arrivals and bursts directly observed from the trace (i.e., not
a mathematical function like an exponential). However, gen-
erating traffic based on these two independent distributions
might result in unrealistic traffic patterns. Therefore, we col-
lect the joint distribution of inter-arrival times and bursts.
We generate a random inter-arrival time and burst pair from
this joint distribution. First, based on the generated inter-
arrival time, our injection model determines when a burst
occurs. Then, based on the generated burst, the model de-
termines how many initiating messages are injected at once.
We continue generating initiating messages until the injec-
tion amount is reached, which is calculated by SynFull based
on the injection rate distribution. This approach allows the
number of generated messages per microphase to be simi-
lar to the real workload behavior, while capturing the bursty
behaviors in the temporal dimension.

Capturing spatial bursts: To limit the number of inject-
ing nodes and the source-destination pairs, for each micro

6

cluster and initiating message type, we collect the distribu-
tion of the number of unique nodes that inject traffic into the
network in a microphase, and the number of unique source-
destination pairs that observe traffic. Based on these distri-
butions, the traffic generator generates a limit on the number
of source nodes as well as the source-destination pairs for
each microphase. Using these limits and the distributions
that SynFull uses to generate source and destination nodes,
APU-SynFull generates a set of source nodes and a set of
source-destination pairs that can generate and receive traffic
in that microphase. This mechanism allows the generated
messages per microphase to have a spatially bursty behav-
ior, similar to what is observed in real executions.

4.5 Trace Extrapolation
A key challenge to simulating large, heterogeneous SoCs

is to take statistical traffic data from a smaller system to ac-
curately evaluate a larger system. We first focus on strong
scaling scenarios where an application’s problem size is
fixed and a larger system is used to find a solution faster.
We will later revisit weak scaling where the problem size
increases with the compute resources. To model larger sys-
tems, we introduce a novel trace extrapolation methodology.
Trace extrapolation is the process of taking traces collected
on smaller systems and projecting the traces to a paramet-
rically different system. The goal is to ensure that the ex-
trapolated trace is representative of the NoC communication
behavior of the target system. Trace extrapolation faces the
following challenges. First, parallel programs exhibit nonde-
terminism. A parallel program in general has a large number
of possible execution paths, resulting in different commu-
nication patterns. Even if the execution path is determin-
istic when the same input set is given, depending on how
computation is allocated and scheduled, on-chip traffic pat-
terns vary for different systems. Second, runtime informa-
tion is not available during trace extrapolation. For example,
a cache miss generates a request or a directory miss causes
a broadcast. However, neither cache miss nor directory miss
information is available without a real simulation. There-
fore, it is challenging to predict the timing and flow of on-
chip communication in trace extrapolation.

In this subsection, we present a methodology to generate
synthetic traces for a larger system by extrapolating commu-
nication behavior from application traces collected on a se-
ries of smaller systems. The proposed mechanism considers
three behavior characterizations: 1) injection flow, which in-
dicates where a message originates from and is destined to;
2) execution time, which indicates how long a kernel exe-
cutes until completion; and 3) injection rate, which refers to
the number of messages generated in an interval.

Injection flow extrapolation: Extrapolation of injection
flow involves projecting the source and destination nodes for
each injection individually. To achieve this goal, we must
know the injection distribution of all source nodes, as well as
the receiving distribution of all destination nodes. Such dis-
tributions inform the probability of which individual nodes
inject/receive messages. Assuming injection and receiving
processes are independent of each other, a series of injec-
tion flows can be constructed based on the probability. Both
injection and receiving distributions can be obtained in the
three steps described below.

Step 1: Group the network nodes into a source cluster
and a destination cluster. For example, consider GPU L1
cache miss events: all GPU L1 caches are grouped into one
source cluster, while all GPU L2 caches fall into a destina-
tion cluster. Other nodes such as CPU caches and directory
nodes, are not considered for this particular event. Simi-
larly, for GPU L2 cache miss events, only GPU L2 cache
nodes and directory nodes are considered for grouping. In
general, communication taking place between different lev-
els of the memory hierarchy can be extrapolated separately,
which simplifies the projection process.

Step 2: Calculate the distribution across all nodes within
each cluster. Specifically, the injection probability of each
node is calculated in the source cluster, and the receiving
probability is calculated for nodes in the destination cluster.
Fig 10a shows the injection distribution of GPU L1 caches
in a 32-CU system (sorted by injection rate), with the x-axis
being a collection of GPU L1 cache nodes and the y-axis
being the injection probability. A linear regression is applied
to the distribution curve (regression trend line shown). The
statistics collected from this step are the slope and intercept
of the fitted line.

Step 3: Project distributions for the target system. Given a
series of slope and intercept values for smaller systems, we
apply another curve fitting to project the slope and intercept
for the target system. Then a distribution can be constructed
accordingly. Fig 10b and Fig 10c demonstrate the curve fit-
ting process for slope and intercept. The projected distribu-
tion result is shown in Fig 10d. Four data points collected
from 8-CU, 16-CU, 32-CU, and 64-CU systems are used to
project the distribution of the target 128-CU system.

To form an injection flow, we probabilistically select a
node from the source cluster and a node from the destina-
tion cluster following the projected distribution.

Execution time extrapolation: Given the amount of traf-
fic injection, execution time impacts the overall network uti-
lization, which in turn affects the network performance. The
execution time of an application may or may not scale as the
system size grows. The scaling factor is dependent on the
parallelism of the application, as well as the hardware ar-
chitecture. When extrapolating execution time, we assume
all hardware resources scale proportionally (i.e., the com-
pute unit to storage bandwidth ratio remains the same as
the system scales). Our methodology is applicable to non-
proportional scaling cases, but we have not yet evaluated
these scenarios.

Similar to the approach described in Step 3 of the injec-
tion flow extrapolation, we project execution time for the
target system by curve fitting. A single GPGPU application
exhibits multiple phases; some of the phases correspond to
CPU execution while some of them correspond to different
kernels. We differentiate these phases and extrapolate the
execution time for each phase individually. The purpose is
to separate scalable phases from non-scalable ones. During
extrapolation, different scaling factors are applied to differ-
ent phases, resulting in reasonable accuracy for overall exe-
cution time extrapolation.

Injection rate extrapolation: The spatial distribution of
on-chip communication is determined by injection flow ex-
trapolation, while the injection rate extrapolation is respon-

7

0.02

0.025

0.03

0.035

0.04

0 4 8 12 16 20 24 28 32

In
je

ct
io

n
 P

ro
b

ab
ili

ty

GPU L1Cache nodes

(a) Injection distribution.

0

0.0001

0.0002

0.0003

0.0004

0 20 40 60 80

Sl
o

p
e

Number of GPU L1Caches

(b) Slope curve fitting.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 20 40 60 80

In
te

rc
e

p
t

Number of GPU L1Caches

(c) Intercept curve fitting.

0.005

0.006

0.007

0.008

0.009

0.01

0 50 100 150

In
je

ct
io

n
 P

ro
b

ab
ili

ty

Gpu L1Cache nodes

Simulated
Projected

(d) Projection result.

Figure 10: Injection flow extrapolation process.

sible for deciding the temporal distribution of the traffic in-
jection. To extrapolate the injection rate, we use a prob-
abilistic approach in our model. Each CPU/GPU phase is
further divided into 1000-cycle epochs. Injection rate for
the entire phase is assumed to follow a Weibull distribution.
However, within each epoch, traffic has a constant injection
rate λ . Given the probabilistic (Weibull) distribution and the
amount of packets injected for each phase, the traffic injec-
tion amount for each epoch is calculated individually. Here
we apply the same curve fitting approach described above
to extrapolate the parameters for the Weibull distribution.
Compared to a deterministic approach where the injection
rate is constant throughout the entire phase, this probabilis-
tic approach is capable of capturing traffic burstiness.

Weak scaling: The strong scaling scenarios are some-
what more difficult because the amount of work per compute
resource tends to decrease, which affects cache, network,
and memory behaviors. With weak scaling, the work-per-
compute resource remains constant, and so individual com-
pute units in a larger system tend to continue to behave like
the compute units from smaller systems. When extrapolat-
ing the injection rate in weak scaling, we make use of the
same injection flow methodology described above to gener-
ate the proper distribution of sources and destinations for the
larger system. However, for injection rates, we simply select
a smaller-sized system as a baseline and preserve the same
injection rate (per source) in the extrapolated system.

4.6 Memory
Using synthetic addresses, we want to capture memory

characteristics during a SynFull phase without the need for a
full address trace. Our address generation approach decom-
poses address traces into memory phases with a fixed num-
ber of requests and analyzes those phases to produce syn-
thetic addresses with similar memory request behavior. We
observe that utilizing a bank access distribution (i.e., number
of accesses to each unique bank), request ordering, and row-
buffer hit rate information on a per-phase basis can provide
accurate modeling of synthetic access counts, row-buffer hit
rates, and memory latencies. Exactly generating the same
absolute addresses is not necessary so long as the result is
that the final DRAM bank access distributions, row-buffer
hit rates, and overall memory latencies are similar to what
would otherwise be observed with a full cycle-level simula-
tion. The general process of creating this synthetic model is
shown in Fig. 11.

An input trace is first binned into bank and channel pairs
based on, for example, a typical memory address decoder or
bank/channel interleaving function. The number of accesses
to each destination are counted to generate a bank access
distribution. We also consider the ordering of addresses by
generating a stochastic matrix representing the probability

In
p

u
t

Distribution

Transition Matrix

Hit Rate Statistics

Sy
n

th
et

ic

M
o

d
el

FFT

C
lu

st
er

in
g

Figure 11: Overview of generation of synthetic model from address
trace.

of transitioning from one bank to another. This aims to cap-
ture bank conflicts more accurately by capturing bursts of
requests to the same bank or lack thereof. Using this tran-
sition probability, we generate “resequenced” bank accesses
containing a number of requests to each bank corresponding
to the bank access distribution. At this point we can generate
an intermediate trace by combining the new sequence and
hit rates together. The previous row address is used when a
row-buffer hit should occur while a random row address is
selected otherwise. Addresses are encoded by reversing the
binning function to create a synthetic address from the row
addresses and bank/channel pairs.

In order to reduce the phase count and provide the abil-
ity to extrapolate traces, clustering is used similar to original
SynFull. To cluster phases together, we compare the sim-
ilarity of bank access distributions, transition probabilities,
and row-buffer hit rates after completing the steps above.
For this, we return to a spectral analysis approach and use
a clustering algorithm to group similar phases. Applying an
FFT to the bank access distribution allows us to decompose
aggregated memory requests into more simplistic periodic
functions. From this point, we can choose a fixed number of
frequencies for the periodic functions that reduce the error
on the bank distribution to represent the phase. This allows
for significant reduction in the number of dimensions when
clustering phases and greatly simplifies the process.

5. EVALUATION

5.1 Simulation Methodology
We use an APU simulation platform consisting of

gem5 [9] and a modified version of the GPU model [10]
to collect traces for APU-SynFull model generation and to
compare the accuracy of our models against the baseline
full-cycle simulation. We use Garnet [11] to simulate the
network. We use 2-stage routers; and each router input port
has 4 virtual channels, with 8-flit deep buffers. Our base-
line system is shown in Fig. 1. We replace the CUs and
the CPU core with SynFull models to evaluate APU-SynFull
and SynFull. Our memory model utilizes the built-in gem5
model [12] modified with HBM timings [13]. There are 8
memory channels with 8 banks in each channel. We ignore
the impact of refresh to focus on reducing modeling error
considering all other timing parameters. We execute the ap-

8

Application Input size Application Input size
bitonic [14] 262144 comd [18] 16
dct [14] 2048 backprop [16, 17] 131072
histogram [14] 1024 bfs [16, 17] 65536
matrixmul [14] 512 hotspot [16, 17] 1024
spmv [15] 256 nw [16, 17] 2048 2048 10

Table 2: List of workloads.

plications listed in Table 2 from the AMD SDK [14], Open
Dwarfs [15], Rodinia [16, 17] and Proxyapps [18] suites.

We generate the traffic models using a modified version
of SynFull scripts. We use a microphase length of 250
for all applications. For non-periodic applications, we use
a macrophase length of 5M in order to keep the ratio be-
tween these resolutions high. A higher ratio increases ac-
curacy, and also provides more scope for increasing simula-
tion speed (see Section 4.2). However, it also causes clus-
tering to take very long, and becomes impractical. CoMD
and Hotspot use the automated macrophase length genera-
tion methodology (Section 4.3) and use macrophase lengths
of 7.03M and 560K, respectively.

We report three metrics to evaluate accuracy. We use av-
erage network latency for an overview of the traffic behav-
ior. We also compare the latency and initiating message type
distributions that APU-SynFull yields with those of the base-
line. Comparing the latency distributions is useful to deter-
mine if congestion is accurately modelled by APU-SynFull.
We use the Hellinger Distance defined in Equation 1 to cal-
culate the similarity between two distributions, where P and
Q are two discrete distributions (in our case, packet latency
distributions or the initiating message type distributions),
and pi and qi are the ith element of P and Q, respectively.

H(P,Q) =
1√
2

√√√√ k

∑
i=1

(
√

pi−
√

qi)2 (1)

5.2 APU-SynFull Results
In this section, we evaluate our APU-SynFull methodol-

ogy. Fig. 12a shows the ratio between the number of injected
messages for four different initiating message types for ma-
trixmul, with APU-SynFull and the baseline. Fig. 12b shows
the same for hotspot. APU-SynFull is successful in gener-
ating the initiating messages with a distribution close to that
of the baseline. The overall accuracy of initiating message
distributions for all applications are given in Fig. 14b.

0%

20%

40%

60%

80%

100%

APU-SynFull Baseline

D
is

tr
ib

u
ti

o
n

 o
f

in
it

ia
ti

n
g

m
e

ss
ag

e
s

CPU_READ GPU_READ

GPU_WRITE GPU_L2_EVICT

(a) The ratio of different initiating
messages in matrixmul.

0%

20%

40%

60%

80%

100%

APU-SynFull Baseline

D
is

tr
ib

u
ti

o
n

 o
f

in
it

ia
ti

n
g

m
e

ss
ag

e
s

CPU_READ GPU_READ GPU_WRITE

(b) The ratio of different initiating
messages in hotspot.

Figure 12: Accuracy of generated initiating messages.

Next, we describe the simulation accuracy of each bench-
mark in detail. Fig. 13 shows the error in average network
latency with SynFull and APU-SynFull. Fig. 14a shows
the Hellinger distance for SynFull and APU-SynFull latency
distributions compared to the baseline. Fig. 14b shows the

0%
10%
20%
30%
40%
50%
60%

P
e

rc
e

n
ta

ge
 e

rr
o

r
in

av

e
ra

ge
 n

e
tw

o
rk

la

te
n

cy

SynFull APU-SynFull

Figure 13: Percentage error in average network latency with respect
to the baseline.

0

0.1

0.2

0.3

0.4

0.5

0.6

H
e

lli
n

ge
r

d
is

ta
n

ce
 o

f
la

te
n

cy

d
is

tr
ib

u
ti

o
n

s

SynFull APU-SynFull

(a) Latency distributions.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

H
e

lli
n

ge
r

d
is

ta
n

ce
 o

f
in

it
ia

ti
n

g
m

e
ss

ag
e

 d
is

tr
ib

u
ti

o
n

s

SynFull APU-SynFull

(b) Initiating message distribu-
tions.

Figure 14: Hellinger distance for SynFull and APU-SynFull com-
pared to the baseline.

Hellinger distance for SynFull and APU-SynFull initiating
message distributions compared to the baseline. The lower
the distance, the more similar the distributions are.

• bitonic: bitonic is a very bursty application (it is the ap-
plication with the highest network latency in our suite), and
SynFull fails to generate traffic with high enough latency,
mainly due to its inability to capture the spatial bursts. The
average latency with APU-SynFull is very close to the base-
line. Moreover, the latency and the initiating message distri-
butions are close to the baseline as well.
• dct: Although the Hellinger distance of initiating message
distribution is low, the total number of generated GPU read
and write requests is lower compared to the baseline. This is
mainly due to clustering, and thus results in low latency dis-
tribution accuracy for both SynFull and APU-SynFull. How-
ever, APU-SynFull performs slightly better than SynFull due
to its better injection model.
• histogram: This is a short running application with a very
short GPU phase. Due to this, clustering is not very effec-
tive in representing all phases of the application, leading to
inaccurate initiating message distribution. This causes both
SynFull and APU-SynFull to have inaccurate latency distri-
butions. SynFull also yields lower latency than the baseline,
mainly due to the inaccurate number of simulated CPU and
GPU phases.
• matrixmul: SynFull yields low average latency due to its
uniform injection model. APU-SynFull captures the bursty
behavior for the GPU requests, both temporally and spa-
tially. However, in this application, many cache lines are
requested by multiple GPU cores simultaneously. Once such
a requested cache line reaches the GPU L2 cache, it is repli-
cated and sent to its requesters, causing a burst in the GPU
reply network. APU-SynFull is currently unable to emulate
this behavior, resulting in slightly lower latency for the GPU
reply network than that of the baseline. Latency and mes-
sage distributions are reasonably accurate.
• spmv: This application, similar to histogram, is short run-
ning with a very short GPU phase, causing clustering to be

9

ineffective in representing the whole execution. The ini-
tiating message and latency distributions are not accurate.
The significant improvement in average latency with APU-
SynFull over SynFull is attributed to its injection model.
• CoMD: This application uses our automated macrophase
generation methodology. SynFull suffers from very in-
accurate initiating message distribution because of its
probability-based transition model. Using the macrophase
replay method provides much better message distribution
and better latency, and APU-SynFull provides significantly
more accurate latency results.
• backprop: This is a bursty application, and SynFull fails
to generate representative network traffic. APU-SynFull
provides very accurate latency distribution and average la-
tency. Its initiating message distribution is less accurate due
to CPU requests. Because CPU requests have much lower
latency impact compared to GPU requests, this inaccuracy
in initiating message distribution does not impact overall la-
tency significantly.
• BFS: APU-SynFull is accurate in average network latency,
latency distribution, and the initiating message distribution,
and is more accurate than SynFull due to both its ability to
capture temporal bursts and the macrophase replay model.
• hotspot: This application uses our automated macrophase
generation methodology, and provides good initiating mes-
sage distribution. It demonstrates high spatial bursts, and
SynFull is unable to capture it, causing it to be very inac-
curate. APU-SynFull, due to its improved injection model,
provides better latency.
• nw: Due to the problem described in Section 3.2.2, the
probability-based transition model in SynFull fails to gen-
erate a GPU phase, and thus generates very low network
traffic. Although this is a low-traffic application, SynFull
latency is still far from that of the baseline. Overall, APU-
SynFull provides reasonable accuracy in terms of initiating
message and latency distributions.

These results demonstrate that the traffic generated by
APU-SynFull resembles the traffic of real APU workloads.
Moreover, average network latency is within 11% of the sys-
tem emulation, outperforming SynFull in terms of accuracy.

Fig. 15a shows the simulation speedup obtained by APU-
SynFull. Applications such as bitonic, matrixmul, CoMD
and hotspot obtain significant speedups. Short running ap-
plications such as histogram, spmv, and backprop do not
benefit significantly in terms of simulation speedup. In dct,
we determine that the ratio of macrophase length to mi-
crophase length should be high. This does not allow discard-
ing the execution of some microphases, limiting simulation
speedup. Overall, APU-SynFull reduces the simulation time
of ten applications by 4.5×, on average (geometric mean).

Fig. 15b shows the sensitivity of APU-SynFull to the
choice of macrophase and microphase lengths, using four
representative applications. We change the macrophase and
microphase lengths, while keeping the ratio between them
constant. We do so to ensure that all applications execute
enough microphases in a macrophase to reach the steady-
state condition. The legend shows the choice of macrophase
and microphase lengths, respectively. Although using the
joint distribution of inter-arrival times and injection bursts
reduces the sensitivity to phase lengths, augmenting the in-

0

10

20

30

40

50

Si
m

u
la

ti
o

n
 S

p
e

e
d

u
p

(a) Simulation speedup with
APU-SynFull.

0.6

0.8

1.0

1.2

1.4

bitonic bfs nw comd

Se
n

si
ti

vi
ty

 t
o

 p
h

as
e

le

n
gt

h
s

2M_100 5M_250 10M_500 15M_750

(b) Sensitivity of average network
latency to macrophase and mi-
crophase lengths.

Figure 15: Simulation speedup and phase length sensitivity.

jection model with the ability to capture spatial bursts in-
troduces a slight dependency to the choice of phase lengths.
The maximum observed discrepancy is 20%.

5.3 Scaling Results
In this section, we validate our scaling methodology with

a 128-core system in the context of strong scaling. We also
present a use case of NoC design space exploration with
weak scaling. Three representative applications are consid-
ered. Histogram is a short running application with a light-
weight kernel, where CPU and GPU traffic injection vol-
umes are comparable. Matrixmul, a highly parallel appli-
cation, whose performance scales well as core count grows.
BFS which is an application with bursty traffic injection dur-
ing kernel execution.

0%

20%

40%

60%

80%

100%
Sc

al
e

d

B
as

el
in

e

Sc
al

e
d

B
as

el
in

e

Sc
al

e
d

B
as

el
in

e

histogram matrixmul bfs

D
is

tr
ib

u
ti

o
n

 o
f

in
it

ia
ti

n
g

m
e

ss
ag

e
s

CPU_READ CPU_WRITE GPU_READ

GPU_WRITE GPU_L2_EVICT

(a) Initiating message distribu-
tion.

0

10

20

30

40

50

60

Sc
al

e
d

B
as

el
in

e

Sc
al

e
d

B
as

el
in

e

Sc
al

e
d

B
as

el
in

e

histogram matrixmul bfs

A
ve

ra
ge

 n
et

w
o

rk
 la

te
n

cy

(b) Average network latency.

Figure 16: Accuracy of strong scaling in 128-CU system.

For strong scaling validation, an extrapolated trace for a
128-CU system is generated based on our trace extrapola-
tion methodology. Then we generate a model file and use
it for APU-SynFull simulation (referred to as Scaled in this
evaluation). In comparison, we launch a full-cycle simula-
tion with the same configuration (referred to as Baseline).
Fig. 16a shows the initiating message distribution compar-
ison. In histogram, the scaled system generates more CPU
traffic than GPU traffic, which is also observed in the base-
line. In strong scaling, the amount of on-chip storage (i.e.,
L1 caches and L2 caches) increases as system size grows.
Therefore, a lower cache miss rate is expected in a larger
system for matrixmul. However, our trace extrapolation
methodology currently does not account for runtime infor-
mation such as cache miss rates, thus it ends up generat-
ing more requests than necessary. The cause of inaccuracy
in ratio is multifaceted: the algorithm, cache thrashing, ad-
dress mapping, and use of local memory can all simultane-
ously impact the generation of read/write requests. BFS has
an injection spike after kernel launch, but the scaling factor
of initiating messages is relatively constant compared to the
other two applications. The proposed scaling methodology
is able to project the traffic injections accurately. Average
network latency is compared in Fig. 16b. Packet latency is

10

0

20

40

60

histogram matrixmul bfs

A
ve

ra
ge

 n
et

w
o

rk

la
te

n
cy

16B_2VC 16B_4VC 32B_4VC

Figure 17: NoC exploration with weak scaling in 128-CU system.

related to network congestion. While network congestion
varies during runtime depending on both application phases
and on-chip hardware resources, our methodology is able to
reasonably mimic the congestion behavior. We believe bet-
ter accuracy can be achieved if detailed runtime information
is provided for trace extrapolation.

It is hard to validate weak scaling accuracy because find-
ing an application whose computation and storage complex-
ity scales by the same factor is difficult. In addition, current
applications may not scale well to large system sizes. Our
weak scaling approach provides a synthetic evaluation envi-
ronment that allows one to project how applications might
behave on future systems in the absence of applications that
are well-tuned for such large SoCs. Instead, we present how
weak scaling can be used for NoC design space exploration
in Fig. 17. In this experiment, we vary the channel width
(16-Byte/32-Byte) as well as the number of virtual channels
(2-VC/4-VC) using model files generated from extrapolated
weak scaling traces. Virtual channels impact the network
congestion while channel width affects the number of flits in
a data packet. From the results, we can tell that both matrix-
mul and BFS are sensitive to NoC bandwidth variation. By
further sweeping through the network parameters, we will
be able to find out a combination of parameters that satisfies
the design requirement. In summary, weak scaling enables
NoC design exploration for future applications.

5.4 Memory Results
Our memory results focus on reduction of average read,

write, and hit rate error over a fixed latency model. The base-
line for our results is the memory latency and row-buffer hit
rate from gem5’s built-in memory model when running in
cycle-level system emulation mode. Latency error and stan-
dard deviation across all applications is shown in Fig. 18.
Overall, the error in memory latency is reduced by about
37% compared to a fixed-latency model, which provides
a substantial improvement, although we readily admit that
there is more that can be done. The observed row-buffer hit
rates of our synthetic address models were also within 12%
of the cycle-level model. Sources of remaining error include
read/write interleaving in each phase, FFT component selec-
tion, and transition matrix clustering.

Interleaving of writes with reads typically resulted in the
largest latency error. Write times and addresses are highly
dependent on higher-level memory replacement policy, spe-
cial requests such as GPU read-modify-writes, and memory
controller optimizations such as write buffering. For exam-
ple, our memory system models separate read/write queues,
the rate at which the write queue fills will impact when the
queue is drained. In BFS this resulted in up to 10× increased
latency error during heavy write phases. By modeling a sim-

0%
10%
20%
30%
40%
50%
60%
70%
80%

Fixed Latency APU-SynFull

Figure 18: Memory latency error and deviation comparing fixed-
latency SynFull and APU-SynFull model to the baseline.

ple, single queue controller, latency error in BFS is reduce
to at most 50%.

In address generation, using a subset of FFT components
described in Section 4.6 is inherently lossy and results in
differences between input bank distribution and synthetic
model bank distribution. Clustering phases together based
on similar FFT components produces additional errors, as
the cluster center may be averaged to a different subset of
frequency components. However, across the entire applica-
tion run, we observed negligible difference in latency error
using all 64 FFT components compared to as little as 5-10
components when selected by largest magnitude.

Similar results were observed for the transition matrix,
which was introduced to model bank conflicts by ordering
synthetic addresses more similar to the input ordering com-
pared to random sampling. A small amount of information
can be used to replay addresses without much variation in
accuracy. For example, average transition probability can
be used to determine if a distribution of addresses are se-
quential or random. We found in most cases the transition
matrix does not provide enough benefit to justify increasing
the complexity of clustering.

The introduction of address generation provides the abil-
ity to utilize existing memory models within the APU-
SynFull framework. These results show that synthetic ap-
proaches are promising and fixed-latency memory models
should not be used.

6. RELATED WORK
Modeling and simulation. As discussed in Section 2, the
most closely related work to ours is SynFull [7]. gem5-
gpu [19] combines gem5 [9] and GPGPU-Sim [20] to
model a flexible and cache-coherent [21] APU-like sys-
tem. Macsim [22] simulates the network traffic of multi-
programmed CPU and GPU workloads, but does not model
a unified memory address space and cache coherence.
Multi2Sim [23] models both CPU and GPU cores but with
distinct memory hierarchies. Several network-on-chip sim-
ulators [24, 25, 26] provide timing and power analysis of
NoCs. Recent works that use DSLs provide both hard-
ware and software model generator tools for NoCs [27], and
CMPs [28]. Our work is the only work that provides a fast
simulation methodology for cache-coherent APUs, and en-
ables scalability studies for larger future systems. A broad
range of memory models have developed in the past for use
in simulation. Most work focuses on detailed cycle-level
models rather than fixed-latency of queuing model studies.
DRAMSim2 [29] and USIMM [30] are two popular simula-
tors. DrSim [31] extends DRAMSim2 to provide flexibility.
Later simulators such as gem5’s model [12], NVMain [32],

11

and Ramulator [33] aim to provide flexibility and extendibil-
ity for newer memories such as NVM and die-stacked mem-
ory, and standards such as HBM [13] and HMC.
Synthetic and statistical models. Prior works [34, 35] in-
vestigate generating synthetic workloads that represent ap-
plication behavior. Wunderlich et al. [36] propose method-
ologies that use statistical sampling to increase simulation
speed. Several works [37, 38] use synthetic traffic mod-
els in the context of NoC simulation methodologies. Eeck-
hout et al. [39] use statistical methods to generate statisti-
cally correct synthetic benchmark traces. Bighouse simu-
lator [40] uses stochastic modeling to simulate power, per-
formance and reliability of data centers. To our knowledge,
our work is the only statistical method that generates syn-
thetic application traffic for APUs. Workload cloning allows
synthetic workloads to be generated and released from pro-
prietary ones [41, 42, 43]. Specifically, work focusing on
replicating cache behavior in workload clones has been ex-
plored [42]; they analyze the cache statistics needed to accu-
rately capture memory access behavior. In our work, we take
a similar approach in identifying memory access character-
istics that are needed to synthetically generate a memory ad-
dress stream. Spatio-temporal memory cloning (STM) [43]
is a methodology to accurately generate clones of memory
access patterns. STM focuses on caches and TLB behavior
using a variety of stride patterns while we capture memory
behavior such as bank conflicts and row buffer hit rates.

7. CONCLUSIONS
In this work, we propose novel extensions to the Syn-

Full methodology to tackle challenges of large scale het-
erogeneous computing systems. With this new methodol-
ogy, computer architecture researchers can now explore NoC
and memory designs at scale without being bogged down by
otherwise slow or unscalable simulations. Overall, APU-
SynFull is a robust evaluation methodology targeting NoCs
and memory systems for future large scale heterogeneous
SoCs that will be of great value to the architecture commu-
nity looking forward.

Acknowledgment
AMD, the AMD Arrow logo, and combinations thereof are
trademarks of Advanced Micro Devices, Inc. Other product
names used in this publication are for identification purposes
only and may be trademarks of their respective companies.

8. REFERENCES
[1] G. Krishnan et al., “Energy Efficient Graphics and Multi-media in

28nm Carrizo APU,” in HotChips, 2015.
[2] P. Hammarlund et al., “Haswell: The Fourth-Generation Intel Core

Processor,” IEEE Micro, pp. 6–20, March–April 2014.
[3] D. Kanter, “Graphics Processing Requirements for Enabling

Immersive VR,” AMD White Paper, July 2015.
[4] C. Byun et al., “Driving Big Data With Big Compute,” in HPEC,

2012.
[5] M. J. Schulte et al., “Achieving Exascale Capabilities through

Heterogeneous Computing,” IEEE Micro, pp. 26–36, July–August
2015.

[6] O. Villa et al., “Scaling the Power Wall: A Path to Exascale,” in SC,
2014.

[7] M. Badr and N. Enright Jerger, “SynFull: Synthetic Traffic Models
Capturing a Full Range of Cache Coherence Behaviour,” in ISCA,
2014.

[8] G. Kyriazis, “Heterogeneous System Architecture: A Technical
Review,” AMD, August 2012.

[9] N. Binkert et al., “gem5: A Multiple-ISA Full System Simulator with
Detailed Memory Model,” vol. 39, June 2011.

[10] AMD Research, “The AMD gem5 APU Simulator: Modeling
Heterogeneous Systems in gem5,” in gem5 User Workshop, 2015.

[11] N. Agarwal et al., “GARNET: A Detailed On-chip Network Model
Inside a Full-system Simulator,” in ISPASS, 2009.

[12] A. Hansson et al., “Simulating DRAM Controllers for Future System
Architecture Exploration,” in ISPASS, 2014.

[13] JEDEC, “High Bandwidth Memory (HBM) DRAM,”
http://www.jedec.org/standards-documents/docs/jesd235.

[14] AMD Inc., “AMD SDK,” http://developer.amd.com/tools-and-sdks.
[15] K. Krommydas et al., “On the Characterization of OpenCL Dwarfs

on Fixed and Reconfigurable Platforms,” in ASAP, 2014.
[16] S. Che et al., “Rodinia: A Benchmark Suite for Heterogeneous

Computing,” in IISWC, 2009.
[17] ——, “A Characterization of the Rodinia Benchmark Suite with

Comparison to Contemporary CMP Workloads,” in IISWC, 2010.
[18] J. Mohd-Yusof, “CoMD Proxy Application,”

http://www.exmatex.org/comd.html.
[19] J. Power et al., “gem5-gpu: A Heterogeneous CPU-GPU Simulator,”

vol. 13, no. 1, Jan. 2014.
[20] A. Bakhoda et al., “Analyzing CUDA Workloads Using a Detailed

GPU Simulator,” in ISPASS, 2009.
[21] J. Power et al., “Heterogeneous System Coherence for Integrated

CPU-GPU systems,” in MICRO, 2013.
[22] HPArch, “MacSim Simulator,” http://code.google.com/p/macsim/.
[23] R. Ubal et al., “ Multi2Sim: A Simulation Framework for CPU-GPU

Computing ,” in PACT, 2012.
[24] A. B. Kahng et al., “ORION 2.0: A Fast and Accurate NoC Power

and Area Model for Early-stage Design Space Exploration,” in
DATE, 2009.

[25] C. Sun et al., “DSENT - a tool connecting emerging photonics with
electronics for opto-electronic networks-on-chip modeling,” in
NoCS, 2012.

[26] N. Jiang et al., “A Detailed and Flexible Cycle-Accurate
Network-on-Chip Simulator,” in ISPASS, 2013.

[27] F. Fatollahi-Fard et al., “OpenSoC Fabric: On-Chip Network
Generator: Using Chisel to Generate a Parameterizable On-Chip
Interconnect Fabric,” in NoCArc, 2014.

[28] D. Lockhart et al., “PyMTL: A Unified Framework for Vertically
Integrated Computer Architecture Research,” in MICRO, 2014.

[29] P. Rosenfeld et al., “DRAMSim2: A Cycle Accurate Memory
System Simulator,” vol. 10, no. 1, pp. 16–19, 2011.

[30] N. Chatterjee et al., “USIMM: the Utah SImulated Memory
Module,” University of Utah, TR UUCS-12-002, 2012.

[31] M. K. Jeong et al., “DrSim: A Platform for Flexible DRAM System
Research,” "http://lph.ece.utexas.edu/public/DrSim", 2012.

[32] M. Poremba et al., “NVMain 2.0: Architectural Simulator to Model
(Non-)Volatile Memory Systems,” CAL, vol. PP, no. 99, pp. 1–1,
2015.

[33] Y. Kim et al., “Ramulator: A Fast and Extensible DRAM Simulator,”
vol. PP, no. 99, pp. 1–1, 2015.

[34] K. Sreenivasan and A. Kleinman, “On the Construction of a
Representative Synthetic Workload,” Communications of the ACM,
vol. 17, no. 3, pp. 127–133, 1974.

[35] D. Ferrari, “On the Foundations of Artificial Workload Design,” in
SIGMETRICS, 1984.

[36] R. E. Wunderlich et al., “SMARTS: Accelerating Microarchitecture
Simulation Via Rigorous Statistical Sampling,” in ISCA, 2003.

[37] V. Soteriou et al., “A Statistical Traffic Model for On-chip
Interconnection Networks,” in MASCOTS, 2006.

[38] L. Tedesco et al., “Application Driven Traffic Modeling for NoCs,”
in SBCCI, 2006.

[39] L. Eeckhout et al., “Performance Analysis Through Synthetic Trace
Generation,” in ISPASS, 2000.

[40] D. Meisner et al., “BigHouse: A Simulation Infrastructure for Data
Center Systems,” in ISPASS, 2012.

[41] A. Joshi et al., “Cloning: A Technique for Disseminating Proprietary
Applications at Benchmarks,” in IISWC, 2006.

[42] G. Balakrishnan and Y. Solihin, “WEST: Cloning Data Cache
Behavior Using Stochastic Traces,” in HPCA, 2012.

[43] A. Awad and Y. Solihin, “STM: Cloning the Spatial and Temporal
Memory Access Behavior,” in HPCA, 2014.

12

