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Abstract— Our characterization of a suite of commercial
and scientific workloads on a 16-core cache-coherent chip
multiprocessor (CMP) shows that overall system perfor-
mance is sensitive to on-chip communication latency, and
can degrade by 20% or more due to long interconnect la-
tencies. On the other hand, communication bandwidth de-
mand is low. These results prompt us to explore circuit-
switched networks. Circuit-switched networks can signifi-
cantly lower the communication latency between processor
cores, when compared to packet-switched networks, since
once circuits are set up, communication latency approaches
pure interconnect delay. However, if circuits are not fre-
quently reused, the long setup time can hurt overall per-
formance, as is demonstrated by the poor performance of
traditional circuit-switched networks – all applications saw
a slowdown rather than a speedup with a traditional circuit-
switched network.

To combat this problem, we propose hybrid circuit switch-
ing (HCS), a network design which removes the circuit
setup time overhead by intermingling packet-switched flits
with circuit-switched flits. Additionally, we co-design a
prediction-based coherence protocol that leverages the exis-
tence of circuits to optimize pair-wise sharing between cores.
The protocol allows pair-wise sharers to communicate di-
rectly with each other via circuits and drives up circuit reuse.
Circuit-switched coherence provides up to 23% savings in
network latency which leads to an overall system perfor-
mance improvement of up to 15%. In short, we show HCS
delivering the latency benefits of circuit switching, while sus-
taining the throughput benefits of packet switching, in a de-
sign realizable with low area and power overhead.

I. Introduction

As per-chip device counts continue to increase, many-core
chip multiprocessors are becoming a reality. Shared buses
and simple rings do not provide the scalability needed to
meet the communication demands of these future many-
core architectures, while full crossbars are impractical. To
date, designers have assumed packet-switched on-chip net-
works as the communication fabric for many-core chips
[11, 23]. While packet switching provides efficient use of
link bandwidth by interleaving packets on a single link, it
adds higher router latency overhead. Alternatively, circuit-
switching trades off poorer link utilization with much lower
latency, as data need not go through routing and arbitra-
tion once circuits are set up.

For the suite of commercial and scientific workloads eval-
uated, the network latency of a 4x4 multi-core design can
have a high impact on performance (Figure 1) while the
bandwidth demands placed on the network are relatively
low (Workload details can be found in Table V). Figure 1
illustrates the change in overall system performance as the
per-hop delay1 is increased from 1 to 11 processor cycles.
When a new packet is placed on a link, the number of con-
current packets traversing that link is measured (including
the new packet)2. The average is very close to 1, illustrat-
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1This comprises router pipeline delay and contention.
2This measurement corresponds to a frequently-used metric for eval-

uating topologies, channel load [6].
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Fig. 1. Effect of interconnect Latency

ing very low link contention given our simulation configu-
ration (See Table IV). Wide on-chip network channels are
significantly underutilized for these workloads while over-
all system performance is sensitive to interconnect latency.
An uncontended 5-cycle per-hop router delay in a packet-
switched network can lead to 10% degradation in overall
system performance. As the per-hop delay increases, ei-
ther due to deeper router pipelines or network contention,
overall system performance can degrade by 20% or more.
Looking forward, as applications exhibit more fine grained
parallelism and more true sharing, this sensitivity to inter-
connect latency will become even more pronounced. This
latency sensitivity coupled with low link utilization moti-
vates our exploration of circuit-switched fabrics for CMPs.

Our investigations show that traditional circuit-switched
networks do not perform well, as circuits are not reused
sufficiently to amortize circuit setup delay. As seen in
Figure 2, every application saw a slowdown when using
traditional circuit-switched networks versus an optimized
packet-switched interconnect for a 16 in-order core CMP
(for machine configuration details see Table IV).
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Fig. 2. Performance of Traditional Circuit Switching

This observation motivates a network with a hybrid
router design that supports both circuit and packet switch-
ing with very fast circuit reconfiguration (setup/teardown).
Our results show our hybrid circuit-switched network with
up to 23% reduction in network latency over an aggressive
packet-switched fabric, leading to up to 7% improvement
in overall system performance due solely to interconnect



design. In Section IV, we will demonstrate that while our
initial exploration of circuit-switching has been predicated
on the low network loads in our applications, our final de-
sign works well for high traffic loads as well, demonstrating
the effectiveness of our design where packet-switched flits
can steal bandwidth when circuits are unused.

As systems become more tightly coupled in multi-core
architectures, co-design of system components becomes in-
creasingly important. In particular, coupling the design of
the on-chip network with the design of the coherence pro-
tocol can result in a symbiotic relationship providing supe-
rior performance. Our workloads exhibit frequent pair-wise
sharing between cores. Prior work has also shown that
processor sharing exhibits temporal locality and is often
limited to a small subset of processors (e.g. [3, 7]). Design-
ing a router architecture to take advantage of such sharing
patterns can out-perform even a highly optimized packet-
switched router.

Figure 3 illustrates the percentage of on-chip misses that
can be satisfied by cores that recently shared data with the
requester. The numbers on the x-axis indicate the number
of sharers maintained in a most recently shared list and
the corresponding percentage of on-chip misses that can be
captured. For example, with the commercial workloads, the
two most recent sharers have a cumulative 65% chance of
sourcing data for the next miss. Such application behavior
inspires a prediction-based coherence protocol that further
drives up the reuse of circuits in our hybrid network and
improves overall performance. The protocol predicts the
likely sharer for each memory request so the requester can
go straight to the sharer for data, via a fast-path circuit,
rather than experiencing an indirection to the home di-
rectory node. Our simulations show this improves overall
system performance by up to 15%. 
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Fig. 3. On-chip misses satisfied by recent sharer(s)

The key contributions of this work are
• Characterizing real-world scientific and commercial work-
loads on a CMP and showing that on-chip network latency
in our configuration is more critical to overall system per-
formance than network bandwidth.
• Proposing a novel router architecture that removes circuit
setup delay by interleaving circuit-switched and packet-
switched flits on the same physical channels (Section II).
• Co-designing the coherence protocol with the network to
further take advantage of low latency circuit-switched paths
(Section III).

II. Hybrid Circuit-Switched Network

The key design goal of our hybrid circuit-switched net-
work is to avoid the circuit setup delay of traditional circuit-
switching. As shown in Figure 4, our design consists of two
separate mesh networks: the main data network and a tiny
setup network.

The main data network supports two types of traffic:
circuit-switched (CS) and packet-switched (PS). In the data
network, there are C separate physical channels, one for
each circuit. To allow for a fair comparison, each of these
C channels have 1/C the bandwidth of the baseline packet-
switched network in our evaluations. A baseline packet-
switched network has a channel width of D data bits along
with a logV virtual channel ID. Flits on the data network of
our hybrid circuit-switched network are D/C wide, plus the
virtual channel ID for the packet-switched flits (logV ) and
an additional bit to designate flit type (circuit- or packet-
switched). A single setup network is shared by all C cir-
cuits.

We compare our design against a baseline packet-
switched router shown in Figure 5a and b. Under low loads,
the router pipeline is a single cycle (Figure 5a), achieved
through aggressive speculation and bypassing. If the input
queue is empty and no other virtual channels are request-
ing the same output channel, the incoming flit can bypass
the first two stages and proceed directly to switch traver-
sal. This optimization effectively reduces the pipeline la-
tency to a single stage but only for very low loads (for
additional detail see [16]). With the presence of contention
due to higher loads, the packet-switched baseline degrades
to a three cycle pipeline (Figure 5b). To lower delay, we
assume lookahead routing, thus removing the routing com-
putation from the critical path; lookahead routing occurs
in the first stage with the buffer write (BW). In the second
stage, speculative virtual channel and switch allocation is
performed; if speculation fails, virtual channel or switch al-
location will be performed again in the next cycle. This
single-cycle pipeline is based on an Intel design of a 4-stage
pipeline [17], which found it not possible to fit the BW into
the VA/SA stage and still maintain an aggressive clock of
16FO4s. Each input contains 4 virtual channels with 4
packet buffers each.

A. Setup Network

Similar to a traditional circuit-switched network, the
setup network handles the construction and reconfiguration
of circuits and stores the switch configuration for active cir-
cuits. However, a packet in our hybrid network does not
wait for an acknowledgment that a circuit has been success-
fully constructed; therefore, data can be piggy-backed im-
mediately behind the circuit setup request. At the injection
port, one of the C circuit planes is chosen for the circuit un-
der construction; if there are no unused circuit planes, the
LRU circuit will be reconfigured as packet-switched whilst
the new circuit request will take over the old circuit. Incom-
ing circuit-switched (CS) flits intended for the old (reconfig-
ured) circuit will henceforth be tagged as packet-switched
flits and will remain packet-switched until their destination.
A control flit on the setup network will signal the source
of the old circuit, that it must either stop sending CS flits
or must re-establish the circuit to prevent buffer overflow
caused by too many CS flits arriving at a reconfigured node.
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Fig. 4. Proposed router micro-architecture
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Fig. 5. Router Pipeline [BW: Buffer Write, VA: Virtual Channel
Allocation, SA: Switch Allocation, ST: Switch Traversal, LT: Link
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The routers in the setup network have three pipeline
stages, similar to that of our baseline packet-switched
router, except that there is no speculation or virtual chan-
nel allocation (VA). Virtual channels are unnecessary since
traffic on the setup network is low and wormhole is sufficient
with lower overhead. When a setup flit arrives, consisting of
the destination field (log N, where N is the number of nodes)
and the circuit number (log C, where C is the number of
physical circuits), it will first be written to an input buffer
(BW). Next, it will go through switch arbitration (SA),
with each port having a C:1 allocator. This is followed by
a circuit reservation on the data network which sets up the
data network switch at that hop to route incoming CS flits
correctly; successful switch arbitration determines the or-
dering of two setup requests for the same circuit resources.
The setup flit then traverses the crossbar (ST) and the link
(LT) towards the next router in the setup network. In the
current design, this network is only six bits wide.

The physical circuit plane is selected at the injection
router based on LRU information and the circuit number
(log C bits) is stored there for future CS flits injected at
that router. A circuit must remain in the same physical
circuit plane from source to destination so a log C identi-
fier is sufficient.

B. Circuit-switched pipeline on data network

The circuit-switched pipeline in our network is depicted
in Figure 5c. To allow circuit- and packet-switched flits to
intermingle throughout the network, we add an extra bit
field to each flit indicating if this flit is a circuit- or packet-
switched flit. When a flit enters the router pipeline, the
circuit field is checked (CFC). If the field is non-zero, this is
a CS flit and will proceed through the pipeline in Figure 5c,
bypassing directly to ST, which was already configured to
the appropriate output port when this circuit was originally
established. When enabled, the tagging (T) stage flips the
circuit bit for incoming data so that flits originally intended
for a circuit will now go into the packet buffers. The tagging
stage is enabled only when a reconfiguration is needed at
that router; this way, in future hops, since the tagging stage
is not enabled, the original CS flits will stay packet-switched
until they arrive at the destination.

This circuit-switched pipeline is nearly identical to the
highly optimized single-cycle packet-switched router in Fig-
ure 5a. Note, however, that circuit-switching is able
to achieve better performance than a single-cycle packet-
switched router under certain sharing characteristics: in
the packet-switched baseline, multiple incoming flits pre-
vent bypassing; with circuit-switching, these flits can oc-
cupy different circuit planes and proceed simultaneously
through the router in a single cycle.

The router architecture with 2 circuit planes is depicted
in Figure 4. If the circuit field is set to circuit-switched and
the reconfiguration signal has not been asserted from the
setup network, than the flit will take the direct path to the
crossbar. If the circuit field is set to packet-switched or the
circuit has been reconfigured, the flit will take the packet-
switched path and will be written into a buffer. Pseudo-
code for the operation of the hybrid router design can be
found in Table I.

C. Packet-switched pipeline on data network

If the circuit field is zero, this is a packet-switched flit and
will be buffered, proceeding through the packet-switched
pipeline shown in Figure 5d. The allocator of the packet-
switched pipeline is designed to enable packet-switched flits
to steal bandwidth from CS flits. The packet-switched flit
will perform speculative Virtual Channel Allocation and
Switch Allocation each subsequent cycle until it is able to
steal bandwidth through the switch. It receives a signal
from the input ports indicating the presence or absence of
incoming flits for the physical circuit C that the packet-
switched flit has been assigned to and is being stolen. If
there are no incoming flits for that circuit, the packet-
switched flit arbitrates for the switch. Once a packet-
switched flit wins passage through the crossbar, it then
traverses the output port and goes to the next hop. The
circuit field remains set to zero, so that this flit will continue
to be interpreted as a packet-switched flit and buffered ap-
propriately at the next hop. If a CS flit enters the router
while the packet-switched flit is traversing the switch, the
CS request will have to be latched until it can proceed along
its circuit at the next cycle. Only a latch is needed on the
circuit-switched path as a CS flit can be stalled at most one
cycle by a packet-switched flit traversing the crossbar. To
prevent the unlikely scenario where PS flits are starved, a
timeout is used to trigger the reconfiguration of the starved



TABLE I

Pseudo-code for Hybrid Router Design

Buffer Write Stage VA/SA Stage
if Virtual Channels are not empty then

PS flits are waiting to steal link if Input Virtual Channels are not empty then
Proceed to Speculative Virtual Channel & Switch Allocation Stage Perform Speculative Virtual Channel Allocation

if Input port not idle then Incoming flit And Switch Allocation
if flit type == Packet-Switched then Switch Traversal Stage

Write flit to input VC
else if flit type == Circuit-Switched then if Input Idle then

if Reconfigured Signal Asserted then if Waiting PS flit with successful VA/SA then
Write to Input VC Configure Switch for Stealing
Flip Circuit field to zero (this flit is now a Packet-Switched Flit) Traverse Switch

else Proceed directory to switch traversal Restore Circuit Configuration to Switch

plane from circuit-switched to packet-switched so starved
PS flits can make progress.

D. Discussion

D.1 Circuit Thrashing

If two different source/destination pairs try to establish
a circuit at the same time sharing a common link, these
requests will be serialized in the setup network. Effec-
tively, the first request through the setup router will only
hold the circuit for a single cycle making reuse impossi-
ble. The following cycle, the second request will reconfig-
ure the link and hold that circuit until a subsequent re-
quest wishes to claim the link. In the event that these
two source/destination pairs continue thrashing by trying
to establish a circuit over the same link, their latency will
degrade to the baseline packet-switched latency. Circuit
thrashing is less likely with more available circuit planes.

D.2 Circuit Fragments due to Reconfiguration

Our reconfiguration mechanism only reclaims the con-
tentious links for a new circuit. The remaining fragments
of the old circuit are left intact, thus leaving partial cir-
cuits in the network. In the scenario where a link in a
circuit has been reconfigured at a hop other the first hop,
the source of that circuit is unaware of the reconfiguration
and will keep sending circuit-switched flits on the circuit
fragment. These circuit-switched flits will be converted to
packet-switched flits at the reconfiguration site; this can
potentially cause a buffer back-pressure situation back to
the source node if there is not enough bandwidth available
for the packet-switched flits to steal and continue on to
their destination. As such, upon reconfiguration, we send
a notification flit on the setup network back to the source
of the circuit. The source of the circuit can then choose
to re-establish the circuit or send packet-switched flits. If
the policy is to always establish a circuit, the source will
re-establish its circuit; however, if the policy is to only es-
tablish circuits for a limited class of messages, the source
will send packet-switched flits until an appropriate message
triggers a setup. The trade-offs between these two policies
will be explored in Section IV-B.

D.3 Scalability

Given the same traffic load on a larger network, there
can potentially be higher circuit contention requiring more
circuits. Additional circuits will lead to higher serialization
delay. In large systems, circuit switching has the potential
for greater latency savings. As the hop count increases from

source to destination, the number of cycles saved will also
increase. To scale our proposed hybrid circuit-switched net-
work to very large networks, we suggest moving to a more
scalable topology. Enriched connectivity will not only lower
circuit contention and thrashing, but can potentially reduce
global cross-chip latency to just pure wire delay, as circuits
can be formed with mostly express links. Future many-core
workloads such as server consolidation are unlikely to re-
quire global communication [9]. This limited sharing will
reduce the need for large numbers of circuits and allow our
design to scale further. Unfortunately, our full system sim-
ulation infrastructure is currently limited to 16 cores, so we
cannot explore this aspect quantitatively.

E. Power and Area Overhead

Power and area are a first order design constraint when
dealing with on-chip networks. Using Orion and a 70nm
technology [25], a setup network router (including configu-
ration memory) consumes less than 2% of the overall router
power. An activity factor of 1 was used to provide a worst
case analysis. The configuration memory in the setup net-
work consists of 25 bits for each of the C circuits. For each
input port, 5 bits drive the select signal of the crossbar
to activate the correct output port. On the data network,
components of our router that increase power consumption
and area are C D/C-wide multiplexers that select from ei-
ther the circuit or the buffers, and tagging hardware to reset
the circuit bit in each flit.To reduce the area and power con-
sumed by the C D/C multiplexers, we add an additional
input to the 4:1 multiplexers in the baseline router that se-
lect between the VCs. Replacing 4:1 multiplexers with 5:1
multiplexers increases the power consumption of the router
less than 1%. Power can potentially be lowered further by
reducing the buffers and VCs in the hybrid router; how-
ever we chose to stick with the same configuration as the
packet-switched baseline for a consistent comparison.

The C D/C-wide crossbars in the hybrid router will oc-
cupy less area than the D-wide crossbar of the PS router
since the area grows quadratically with the width of the
crossbar ports (each crossbar has the same number of ports
as the baseline, i.e. 5). The setup network also consumes
additional area due to the addition of buffers, switch allo-
cator, and wiring. However, as the setup network is very
narrow, we do not expect significant area overhead.

In the data network, the buffers are distributed evenly
among the multiple circuit planes with the same total buffer
capacity the packet-switched baseline. Since the crossbar
ports are 1/2 and 1/4 as wide for 2 and 4 circuit planes
respectively, the area of each crossbar is reduced quadrati-



cally, giving our design extra area for the switch configura-
tion memory. The setup network, including configuration
memory and 4 buffers per input port consumes only 0.2%
of the baseline packet-switched router area. In short, we
do not impose any additional overhead over the baseline
packet-switched router and less than 3% increase in router
power.

III. Coherence Protocol

We couple our hybrid network with a directory coherence
protocol based on the Origin 2000 [18], but augmented with
a distributed directory cache that is stored along-side the
shared last level (L3) cache bank at each node.

While directory-based protocols are more scalable than
broadcast-based ones, a key performance disadvantage of
directory protocols is the indirection through the directory
that is required to request data from another processor.

Our protocol extensions streamline this process for load
and instruction misses by predicting pairs of processors that
frequently share data, and directly requesting data from one
cache to another, via a circuit-switched link, without first
consulting the directory. Sequential consistency is main-
tained by ordering all coherence events at the directory,
but latency is improved by overlapping the circuit-switched
data transfer with the directory access. Other proposals
that look at using prediction to accelerate the coherence
protocol are discussed in Section V.

A. Protocol modifications

To allow directory indirections to be streamlined, we
modified the directory protocol as follows:
• Allow a cache to send a request directly to another cache.
• Notify the directory that a sharer has been added with-
out having the directory forward the request to the owning
cache or initiate a memory request.
• Retry the request to the directory if the direct request
fails due to an incorrect prediction or a race condition.

The directory does not need to be aware of which circuit-
switched paths are active as long as it is notified to add a
new sharer to the sharing list for each cache line. The
protocol implementation is decoupled from changes to the
interconnection network. The above modifications coupled
with the fast circuit-switched paths for sharers create new
race conditions which have been identified and dealt with
in our simulation infrastructure (see Section III-C).

B. Sharing Prediction

Circuit-switched paths are set up on demand via a pre-
diction mechanism that predicts the frequency of sharing
between two processors. We implement an address-region-
based prediction mechanism. Each processor stores infor-
mation about sharers of an address region alongside its last
level cache. When data is sourced from another processor,
the predictor stores the identity of the sourcing processor
for the address region of the data. The next time a cache
access misses to an address in that region, we predict that
same processor will again source the data. Our region pre-
diction structure is similar to the regions used to determine
the necessity of broadcasts in [5], but is easier to maintain
since it is not required to be correct. At the time of the
prediction, if no circuit-switched path exists between the
requesting and sourcing processors, one is established. If

the predicted core cannot provide the cache line requested,
it responds to the requesting processor to indicate an incor-
rect prediction. The requesting core must then retry to the
directory. The latency of a mispredicted request is thus the
round trip latency from cache to cache on the interconnect
plus the indirection latency of the conventional directory re-
quest. The prediction array is then updated with the core
that actually sourced the data. An example of the protocol
and prediction mechanism is given in Table II.

TABLE II

Prediction and Protocol Walk-through Example

1. Processor 1 misses to Address A
First miss to A → No Prediction Available

2. Send Request to Directory
3. Directory forwards request to Processor 4
4. Processor 4 responds with data
5. Processor 1 receives data and stores Pred(Region A) = 4
6. Processor 1 misses to A+8 → Predicts Processor 4

Send request to Processor 4
Notify Directory

7. Processor 4 receives request
Prediction is correct → responds with data

8. Directory adds Processor 1 to sharing list
9. Proc. 1 receives data from Proc. 4 and ACK from directory

In the example in Table II, if Processor 1’s prediction is
incorrect, the directory will have already added Processor 1
to the sharing list due to the decoupling of the data request
from the ordering request. The directory protocol supports
silent evictions of shared lines, so having Processor 1 added
as a sharer will not result in any incorrect coherence ac-
tions; the sharing list must include all processors caching
that block but can contain additional processors at the ex-
pense of more invalidation messages should an upgrade oc-
cur. Processor 1 will retry its request to the directory once
Processor 4 has acknowledged its incorrect prediction.

C. Verification of Consistency

C.1 Protocol Invariants

Validation of correctness is an important yet difficult is-
sue when developing or modifying a coherence protocol. To
simplify verification, we built our modifications on top of an
existing protocol [18]. In both the baseline and the modi-
fied protocol, the directory serves at the sole ordering point
for requests. Our modifications decouple the data request
message from the ordering message. The data response
may be received prior to an acknowledgment from the di-
rectory that the request has been properly ordered, but
the requesting processor cannot consume the data without
that acknowledgment. To illuminate the protocol changes,
as well as demonstrate that ordering properties have been
preserved, we include pseudo-code for a read request in both
the baseline and modified protocols in Table III.

C.2 Simulation Verification

In addition to preserving the directory as the sole or-
dering point for all coherence requests, we verify that se-
quential consistency is maintained through our simulation
environment. Our simulation infrastructure includes tools
to verify sequential consistency and execution correctness.
This tool executes two side-by-side execution-driven full-
system simulations: the first simulation is the application
executing on a modified version of our integrated functional
and timing simulator, which produces a memory reference



TABLE III

Pseudo-code Comparison of Baseline Protocol to Prediction Protocol

Baseline Protocol - Read Request (RdReq) Prediction Protocol - Read Request (RdReq)
1. RdReq goes across network to 1a. RdReq goes across network to predicted sharer

home directory cache 1b. Directory update goes across network to home node
Directory Actions Decoupled Directory Actions (cont. from 1b)
2. Directory cache performs look up 2. Directory cache performs lookup
if Directory state is Unowned then if Directory state is Unowned then

initiate memory request Prediction is incorrect → initiate memory request
When memory request completes send data to requester When memory request completes send data to requester

if Directory state is Exclusive then if Directory state is Exclusive then
Transition to Busy if Prediction is correct then
Send intervention to owner Transition to Busy (wait for ack from predicted node)
Add requester to sharing list Send ACK to requester
Transition to Shared when cache response is received else Prediction is incorrect

Transition to Busy & send intervention to owner
Transition to Shared when cache response received
Add requester to sharing list

if Directory state is Shared then if Directory state is Shared then
Forward request to owner if Prediction is correct then
Add sharer to sharing list Add sharer to sharing list & send ACK to requester

if Prediction is incorrect then
Forward request to owner & send NACK to requester

if Directory state is Busy then Send NACK to requester if Directory state is Busy then Send NACK to requester
Cache Response to Directory request Decoupled Cache Actions (cont. from 1a)
3. Owning cache receives intervention 3. Owning cache receive predicted request

Send data to requester & transition to Owned if Prediction is correct then
Send ACK to directory Send Data to Requester

if Block is Exclusive or Modified then Send Ack to directory
else if Prediction is incorrect then Send NACK to Requester

Requesting Node Requesting Node
4. Receives Data from either Directory or Owning Cache 4. if Data received from Predicted Cache then

Transitions to Shared & forward data to L1 if Directory NACK received then
RdReq Complete Discard data (stall copy) & wait for valid response

else if Directory ACK received then
Forward Data to L1 & RdReq Complete

else if NACK received from Predicted Cache then
Re-initiate RdReq without prediction

stream that is used to drive the second simulation which
uses an unmodified, known-to-be-correct simple functional
simulator. This memory reference stream contains mono-
tonically increasing memory version numbers that are used
by the second simulator to reconstruct a sequentially consis-
tent order. If no sequentially consistent order can be found
then we know that our protocol modifications have violated
our consistency model and an error is flagged. Finally, all
updates to architected state performed by both simulators
are compared instruction by instruction, and any discrep-
ancies flag errors and aid in debugging the protocol. We
have simulated billions and billions of instructions on top of
this checking infrastructure without incurring errors. This
simulation time coupled with the preservation of ordering
through the directory, leads us to safely conclude that our
protocol modifications and our hybrid circuit-switched in-
terconnect are substantially correct.

IV. Simulation Results

We use a full system multiprocessor simulator [4] built
on SIMOS-PPC configured with 16 in-order cores on a 4x4
mesh CMP. Included in our simulation infrastructure is a
cycle-accurate network model including pipelined routers,
buffers, virtual channels and allocators. Hybrid Circuit-
Switched modifications such as circuit stealing are also
faithfully modeled. Our simulation parameters are given
in Table IV. Results are presented for the following com-
mercial workloads: TPC-H and TPC-W [24], SPECweb99
and SPECjbb2000 [22] and several Splash2 workloads [28].
Details for each workload are presented in Table V. We use
statistical simulation as described by [2].

TABLE IV

Simulation Parameters

Cores 16 in-order

Memory System

L1 I/D Caches (lat) 32 KB 2 way set assoc. (1 cycle)
Private L2 Caches 512 KB (8 MB total 4 way

set assoc. (6 cycles), 64 Byte lines
Shared L3 Cache 16 MB (1MB bank at each tile)

4 way set associate (12 cycles)
Memory Latency 100 cycles

Interconnect

Link Width Packet Switching 64 Bytes
Circuit Switching 64B/C (C=2,4)

Link Latency 1 cycle
Optimized PS 1-3 stages,
Router Baseline 4 Virtual Channels w/ 4 Buffers each
Setup Network Wormhole with 4 Buffers

A. Evaluation of Hybrid Circuit-Switched Network

One of the primary goals of this work is to reduce the
interconnect latency by removing the router overhead. Our
hybrid circuit-switched network can reduce interconnect la-
tency by as much as 23% as shown in Figure 6. We measure
the average interconnect latency for 2 and 4 circuit planes
as compared to an optimized baseline packet-switched in-
terconnect. Average packet delay is calculated as the time
between the injection of the head flit and when the critical
word arrives at the destination. As the total link bandwidth
is kept constant at 64 bytes, the 2 and 4 circuit planes will
have 32 and 16 bytes respectively per plane; packets will
consist of 2 and 4 flits respectively. The four circuit plane



TABLE V

Benchmark Descriptions

Bench. Description

SPECjbb Standard java server workload utilizing
24 warehouses, executing 200 requests

SPECweb Zeus Web Server 3.3.7 servicing 300 HTTP req.
TPC-W TPC’s Web e-commerce benchmark, DB Tier

Browsing mix, 40 web transactions
TPC-H TPC’s DSS Benchmark, IBM DB2 v6.1

running query 12 w/ 512MB DB, 1GB Mem
Barnes 8K particles, full end-to-end run i.e. init
Ocean 514x514 full end-to-end run (parallel phase only)
Radiosity -room -batch -ae 5000 -en .050 -bf .10 (parallel only)
Raytrace car input (parallel phase only)

configuration gives us additional benefit as circuits can be
maintained longer between reconfigurations and see more
reuse, thus reaping more benefit. To combat the increased
serialization delay that moving to 4 circuits would cause,
we send the critical word first through the network.

In addition to comparing HCS against PS, we also present
results for Narrow Packet Switching (NPS); in NPS we
partition a PS network into 4 narrower networks (similar
to the 4 narrow circuit planes in HCS). Each narrow net-
work in NPS has 2 virtual channels with 2 buffers per VC.
When a packet is injected into the network, it selects an
NPS network in a round robin fashion and continues on
the same NPS network until reaching its destination. NPS
provides modest improvements over PS but underperforms
when compared to HCS.
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Fig. 6. Reduction in Interconnect Latency due to HCS

Circuit-switched connections are designed to enable fast
connections between frequently sharing cores; however, we
do not want to sacrifice the performance of messages that do
not involve frequent sharing. Our design is able to circuit-
switch 18 to 44% of all flits with an average latency of 4.3
cycles. The remaining 56 to 82% of flits that are packet-
switched or partially circuit-switched through the network
still achieve a reasonable average interconnect latency of 7.9
cycles. Figure 7 gives the contribution of circuit-switched
flits and non-circuit-switched flits to overall average net-
work latency. Non-circuit-switched flits encompasses both
packet-switched flits and reconfigured circuit-switched flits.
The x-axis shows the percentage of overall network mes-
sages that are either circuit-switched or not. With 4 cir-
cuits, we see a larger contribution of purely circuit-switched
flits; this is expected as reconfigurations are less frequent.
This larger contribution of circuit-switched flits causes the
overall average network latency to be lower. Policies that

take further advantage of circuit-switched links and reduce
unnecessary reconfigurations can further reduce intercon-
nect latency.
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Fig. 7. Latency Breakdown of Circuit-Switched Flits and Packet-
Switched/Partial Circuit-Switched Flits

Figure 8 shows the overall system performance for hybrid
circuit-switching with 2 and 4 circuit planes and narrow
packet-switching with 4 narrow networks, all normalized to
the baseline PS network. Moving from 2 circuits to 4 cir-
cuits shows an average of 3% reduction in execution time
(up to 7%) for commercial workloads. Frequent reconfigu-
ration prevents TPC-H from seeing any benefit from 2 cir-
cuits. When characterizing the sharing patterns in TPC-H,
4 recent sharers are needed to satisfy 64% of on-chip misses
in contrast to only 2 for the other commercial workloads
(Figure 3). Ocean does not benefit from circuits since most
misses go off-chip causing the miss latency to be dominated
by the memory access time. The other scientific workloads
see little benefit from hybrid circuit-switching due to low
overall miss rates and low numbers of coherence misses.
Increasing the number of circuits further would likely yield
little benefit due to the increase in flits/packet. For most
workloads, little improvement is gained from the NPS con-
figuration; NPS does not provide the added performance
improvement for pair-wise sharing that HCS targets.
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B. Circuit Setup Policies

Two different policies regarding the setup of new circuits
are explored. In the first policy, the decision to allow a
new message to construct a circuit-switched path (if one
is not already present) is made based on the nature of the
message. Invalidation requests from the directory are not
indicative of a pairwise sharing relationship and therefore
are injected as packet-switched flits. Read requests and
data transfers will setup a circuit if one is not present. All
types of requests can reuse an existing circuit between given
source-destination pairs. This policy is contrasted with a
policy that allows all types of messages to construct a new
circuit in Figure 9 for 2 circuits. Limiting the construction
of new circuits to certain message classes causes a loss in
opportunity as noted by a average increase in network la-
tency of 3% with a maximum increase of 7%. Up to 10%
more flits take advantage of circuit-switched paths when
new circuits are always constructed. The limited setup pol-
icy does drive up reuse by 30%. Additional policies to si-
multaneously drive up reuse while maximizing utilization
of circuits may further lower interconnect latency. 
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Fig. 9. Impact on Network Latency of Restricting Circuit Setup to
Certain Classes of Messages

Limiting the setup of circuits increases the percentage of
packet-switched flits and reduces the average time interval
between instances of link stealing at each input port. Sci-
entific workloads see longer intervals between link stealing
than commercial workloads due to the lower communica-
tion demands in the former.

C. Packet-Switched Flit Starvation

As described in Section II, to prevent the unlikely sce-
nario of packet-switched flit starvation, a timeout mecha-
nism reconfigures the circuit starving the packet-switched
flits to allow packet-switched flits to make forward progress.
To characterize the potential for starvation, we measure
the waiting time of packet-switched flits (with the timeout
mechanism disabled). The percentage of all PS flits that
must wait at least 1 cycle to steal bandwidth from a cir-
cuit, in all cases is less than 1%. Average wait time for this
small number of flits is less than 7 cycles across all work-
loads. The average wait time increases slightly when the
number of circuit planes is increased from 2 to 4; this is
explained by higher circuit utilization.

D. Setup Network Evaluation

In Section II we assert that a wormhole network is suffi-
cient for the setup network. Figure 10 supports this claim.

Utilization of the setup network is particularly low when
circuit construction is limited to a subset of messages. The
data in Figure 10 is measured as the average number of flits
waiting at a router when a new flit arrives (including the
new flit). The always setup policy drives up the load on
the setup network but it is still at an acceptable level for
wormhole switching. The average delay through the setup
network is 10.5 cycles which reflects the very low utilization
of the setup network. The setup network does not need sig-
nificant buffering resources since utilization is low coupled
with the small setup flit size (6-8 bits).
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Fig. 10. Channel Load of Setup Network

E. Interactions between Network and Coherence Protocol

Overall system performance when HCS is combined with
the protocol optimization is shown in Figure 11. Since the
protocol optimizations are largely independent from the in-
terconnect design, we compare against the baseline packet-
switched network plus protocol optimizations with results
normalized to the packet-switched baseline. The HCS re-
sults are given for 4 circuit planes and the always setup
policy. We see up to 15% improvement in overall system
performance with an average improvement of 12% for com-
mercial workloads and 4% for scientific workloads. The
commercial workloads see greater benefit due to their larger
miss rates and greater sensitivity to miss latency. TPC-H
derives most of its benefit as a result of 82% of misses be-
ing satisfied on-chip coupled with a very low contribution
of store misses to the overall miss rate. As our protocol op-
timization only targets load and instruction misses, TPC-
H will see more benefit than those benchmarks that have
a larger contribution of store misses. Ocean performance
is dominated by off-chip misses; the injection of additional
traffic due to the protocol optimization further delays these
misses resulting in a slight performance degradation.

Comparing Figures 8 and 11, we see that in many cases,
the improvement for HCS with the protocol optimization
is greater than the sum of the HCS alone and the protocol
optimization with packet switching. Given our co-design of
both the coherence protocol and the interconnect, hybrid
circuit-switching has more opportunities for reuse when the
protocol optimization is added, resulting in superior perfor-
mance; circuit reuse increased by up to 64% when HCS is
combined with protocol optimizations. Protocol optimiza-
tions reduce coherence miss latency by 50%; with hybrid
circuit switching, those miss latencies are further reduced
by 10%.
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F. HCS with Synthetic Traffic

In addition to performing full-system simulation with
commercial and scientific workloads, we further explore the
performance of HCS through synthetic traffic patterns in
Figures 12 and 13. Both figures show average interconnect
latency in cycles across all injected packets. All simula-
tions run for 1 million cycles with increasing injection rates
(or channel load) as a percentage of maximum link capacity
along the x-axis. With uniform random traffic in Figure 12,
we reduce latency by 10-15% over packet switching across
all loads prior to saturation, despite the fact that there is
hardly any reuse of circuits due to the randomized traffic.
HCS has lower latency at low to moderate loads primar-
ily because circuits are always given priority on their first
use–i.e. the first packets on circuits always zoom through–
whereas in packet-switching, bypassing within the router
will not be possible if there is more than one flit in the
entire router. At very low utilization circuit-switching out-
performs our PS baseline since we piggyback data flits long
with the setup flits which shaves one cycle off the serial-
ization latency. Figure 12 also shows network latency re-
sults for Narrow Packet Switching (NPS).At moderately
low loads, approximately 40% more incoming packets are
able to bypass directly to the crossbar with HCS than with
NPS or PS. When the load reaches roughly 30%, HCS and
PS bypass similar number of packets resulting in similar
network saturation points. This attests to the effectiveness
of packet-switched flits in HCS stealing idle circuit band-
width. At moderate loads (20-40%), NPS is able to bypass
5-18% more packets than PS, delivering higher saturation
throughput. This matches intuition since NPS trades off
serialization delay with bandwidth.
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Fig. 12. Performance of HCS with Uniform Random Traffic

In Figure 13, we simulate the performance of HCS under
permutation traffic, where each node communicates with

one other node. Since HCS specifically targets pair-wise
sharing, we would expect this type of traffic to benefit from
circuit reuse and perform very well. At low to moderate
loads HCS improves network latency by 20% over PS, and
saturates at higher utilization. NPS performs slightly bet-
ter than PS at very low utilization. As the load increase,
NPS performs considerably better than PS (10-15% lower
latency) since the load is distributed across multiple narrow
network allowing speculation to be more effective. With
round-robin placement of packets on NPS networks, those
networks eventually saturate at a similar load to PS.
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To reiterate, Figure 12 represents worst-case circuit reuse
behavior (we observe much higher reuse for real applica-
tions), so we are not surprised that HCS saturates some-
what earlier than the NPS case, and are pleased with its
robust latency reductions at low utilization. In contrast,
Figure 13 demonstrates the robustness of HCS over both
PS and NPS under all traffic loads when there is significant
circuit reuse.

V. Related Work

Our work proposes a hybrid circuit-switched router that
interleaves circuit- and packet-switched flits on the same
physical network with low area and power overhead. Net-
work design for CMPs is an area of significant research ef-
fort. Several other hybrid network designs have been pro-
posed in the literature. Here, we highlight some of the key
differences between those proposals and our work. SoCBus
[26] only packet-switches the configuration message but
holds the data at the source until setup is acknowledged.
All data in their proposal must be circuit-switched through
the network. Wolkotte et. al [27] propose a design that
has both circuit- and packet-switching; however, it is our
understanding that these two networks are physically sep-
arate. The packet-switched network is used for reconfigu-
ration and best-effort traffic while the circuit-switched net-
work is used for guaranteed-throughput communications.
Wave-switching [8] combines circuit-switching and wave-
pipelining but in their design, wormhole-routed and circuit-
switched data do not interact and have physically separate
resources. Pipeline circuit switching [10] requires that a
setup and acknowledgment message be sent and received
before data can use the circuit. HCS differs from these
proposals since it obviates the need for setup and acknowl-
edgment messages to be sent and received prior to the data
transfer. Additionally, in HCS, PS and CS flits share the
same physical network.



Hybrid circuit-switching is able to remove the buffer
write and virtual channel/switch allocation stages for up
to 44% of flits. Other recent work [15] also successfully
removes a significant portion of this overhead through Ex-
press Virtual Channels (EVCs). EVCs create express vir-
tual paths that bypass nodes for a given number of hops
allowing them to reduce both delay and energy consump-
tion in the network. In contrast to this work, which specif-
ically tries to optimize for sharing patterns in conjunction
with the coherence protocol, EVCs provides a more general
framework to accelerate messages. To achieve maximum
benefit, EVCs are limited to a small number of hops; our
network will show increasing gains as the hop count goes
up under low loads. Flit reservation flow control [20] avoids
router overhead by sending a control flit to reserve network
resources ahead of the data flits; however this design suf-
fers from increased router complexity and high overhead.
Another hybrid network [21] combines a bus architecture
with a switched network; the bus allows processing ele-
ments with communication affinity to transfer data quickly
without high overhead while the switched network provides
scalability. Our design provides greater flexibility as shar-
ing cores do not need to be physically close to experience
low latency communication.

Topologies such as a flattened butterfly [14] can be used
to reduce the number of router traversals; however, this
design suffers from the use of long global wires. HCS is
able to bypass routers without the drawback of long global
wiring.

We advocate the co-design of the network with a predic-
tion based coherence protocol. Prior work looks at predict-
ing sharing and communications patterns in shared memory
multiprocessors [3,13]. Work by Acacio et. al [1] also looks
at taking the directory access off the critical path for DSM
designs. In their work, only lines held in the exclusive or
modified state can be accelerated through prediction; our
optimization is extended to include shared cache lines; ad-
ditionally our work co-designs the interconnect which is not
a component of their work.

Our baseline packet-switched router is more aggressive
than a recent Intel router design [17] which has a 4-stage
pipeline to accommodate an aggressive 16-FO4 clock cy-
cle; At low loads, it has a single-stage pipeline. Recent
routers have aggressively pursued a single-cycle pipeline,
but only at low loads: TRIPs uses lookaheads and by-
passing to realize a single-stage router [11], while Mullin’s
Lochnest router uses aggressive speculation to shorten the
pipeline to a single cycle at 35-FO4 clock cycle [19]. RAW’s
dynamic network consists of a 3-stage pipeline which re-
sembles our 3-stage non-optimized baseline pipeline. Hy-
brid circuit-switching can be seen as another technique to
further shorten the router pipeline in the presence of cer-
tain sharing patterns; the performance of hybrid circuit-
switching is enhanced through protocol optimizations. The
same is not possible for aggressive packet-switched routers.

VI. Conclusions

This work demonstrates the potential of circuit-switched
networks for multi-core architectures. Hybrid circuit-
switching is able to reduce network latency by up to 23%
and improve overall performance by up to 7%; when com-
bined with our protocol optimizations overall performance
improves by up to 15%. HCS achieves these performance

gains over a highly optimized baseline packet-switched
router with single-cycle delay for low-loads.Our HCS net-
work successfully overcomes some of the drawbacks asso-
ciated with circuit switching, specifically: avoiding setup
overhead, reconfiguring circuits on-the-fly, and interleav-
ing circuit- and packet-switched flits on the same physical
resources. The co-designed coherence protocol drives up
circuit reuse and reaps better performance than the sum of
the benefit from the circuit-switched interconnect and the
protocol modifications, when applied separately.

Looking forward: while current applications exhibit fairly
coarse-grained parallelism, future applications are likely to
have more fine-grained parallelism [12] resulting in more
frequent sharing and greater latency sensitivity. This in-
crease in sharing will heighten the need for a fast intercon-
nect of the type that our hybrid circuit-switching provides.
Server consolidation workloads, an emerging class of ap-
plications for CMPs, will exhibit limited sharing and see
greater benefits from our hybrid circuit-switching by allow-
ing circuit-switched pairs to persist longer and reap even
greater benefit [9].
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