
Virtual Tree Coherence: Leveraging Regions and In-Network Multicast Trees for

Scalable Cache Coherence

Natalie D. Enright Jerger
Dept of Electrical and Comp. Engineering

University of Wisconsin-Madison

Madison, WI 53706

Email: natalie.d.enright@gmail.com

Li-Shiuan Peh
Dept of Electrical Engineering

Princeton University

Princeton, NJ 08544

Email: peh@princeton.edu

Mikko H. Lipasti
Dept of Electrical and Comp. Engineering

University of Wisconsin-Madison

Madison, WI 53706

Email: mikko@engr.wisc.edu

Abstract

Scalable cache coherence solutions are imperative to drive
the many-core revolution forward. To fully realize the massive
computation power of these many-core architectures, the com-
munication substrate must be carefully examined and stream-
lined. There is tension between the need for an ordered inter-
connect to simplify coherence and the need for an unordered
interconnect to provide scalable communication. In this work,
we propose a coherence protocol, Virtual Tree Coherence
(VTC), that relies on a virtually ordered interconnect. Our vir-
tual ordering can be overlaid on any unordered interconnect to
provide scalable, high-bandwidth communication. Specifically,
VTC keeps track of sharers of a coarse-grained region, and
multicasts requests to them through a virtual tree, employing
properties of the virtual tree to enforce ordering amongst
coherence requests. We compare VTC against a commonly used
directory-based protocol and a greedy-order protocol extended
onto an unordered interconnect. VTC outperforms both of these
by averages of 25% and 11% in execution time respectively
across a suite of scientific and commercial applications on
16 cores. For a 64-core system running server consolidation
workloads, VTC outperforms directory and greedy protocols
with average runtime improvements of 31% and 12%.

1. Introduction

As transistor scaling affords chip architects the ability
to place more and more cores on-chip, the coherence and
communication substrates are going to become a significant
performance bottleneck. Already we are seeing dozens of cores
available on-chip from Intel [34] and Tilera [35]. Efficient
coherence mechanisms are required to continue scaling these
systems into the future.
Throughout the literature, there are two predominant classes

of cache coherence: broadcast-based protocols and directory-
based protocols. Both classes exhibit problems for emerging
many-core chip multiprocessors. Broadcast protocols do not
scale well in performance and power since they rely on a
central ordering point for all coherence requests and flood
the interconnect with broadcast requests. Directory protocols
provide greater scalability by distributing the ordering points to
various directories; but latency penalties are paid for traveling

This research was supported in part by the NSF under grants CCR-0133437,
CCF-0429854, CCF-0702272, CNS-0509402, the MARCO Gigascale Systems
Research Center, an IBM PhD Fellowship, as well as grants and equipment do-
nations from IBM and Intel. The authors would like to thank Ravi Rajwar and
the anonymous reviewers for their comments and suggestions on improving
this work.

to and accessing these ordering points. In large multi-chip
multiprocessor systems, it is fairly easy to add extra bits to
memory for directory storage and use directories to build
scalable coherence protocols. However, to make performance
acceptable for on-chip usage, directory information must be
stored on-chip (not as part of off-chip memory as is done in
distributed systems). Caching directory information on chip
represents substantial overhead; this additional area could
be better utilized for other CMP components, such as the
processing cores.
In [22], significant directory cache miss rates were ob-

served for commercial workloads (up to 74%). Directory cache
miss rates will become an even more significant performance
problem with server consolidation workloads. Multiple server
workloads sharing the same resources on chip will touch
large amounts of memory, placing enormous pressure on these
directory caches. So, while directory protocols do provide
designers with scalability; they do so with significant perfor-
mance degradations when directory indirections and directory
misses are factored in.
Even with hundreds to thousands of cores on-chip, in

the common case, only a few processors need to observe
a given coherence request. With the single-writer, multiple-
reader protocol invariant, only cores that are actively caching
a block need to be made aware of a pending write to that block.
Since providing global coherence, such as a broadcast, across
thousands of nodes is impractical from both a performance and
a power standpoint, a logical solution is to maintain coherence
amongst just the current subset of readers. Infrequently, it will
be the case that every core on-chip does need to observe a
coherence request; this case must be handled correctly but not
necessarily quickly.
In short, to address these key shortcomings of broadcast and

directory-based protocols, the desirable properties for scalable
on-chip coherence are:

• Limit coherence actions to the necessary subset of

nodes: This will reduce power consumption and inter-
connect pressure.

• Fast cache-to-cache transfers: Send request to sharers
as quickly as possible avoiding overheads of directory
indirections.

• Limited bandwidth overhead: Limit unnecessary broad-
casts to entire chip; only communicate amongst the subset
of sharers where coherence needs to be maintained.

• Limited storage overhead:Make efficient use of on-chip
directory cache storage and cache tag array storage.

The need for scalable coherence is not a new one; however,



the tight integration and the abundance of on-chip resources
provide a new set of opportunities in which to explore this
significant challenge. The tight coupling and integration of
dozens of computation elements on-chip necessitates the co-
design of various components of the memory hierarchy. This
work specifically leverages the important interplay of the on-
chip interconnection network and the cache coherence protocol
to achieve scalable on-chip coherence.
Specifically, in this paper, we propose Virtual Tree Coher-

ence (VTC), which targets and achieves each of the above
attributes of an ideal scalable on-chip coherence protocol:
Limit coherence actions to the necessary subset of nodes:

We use virtual trees to connect and order sharers, with requests
multicast through these virtual trees so coherence actions are
limited to true sharers and not broadcast to all nodes. These
virtual trees are the virtual circuit trees recently proposed to
support efficient multicasting in on-chip networks [14] and
can be mapped onto any unordered interconnect, thus enabling
scaling to many-core chips.
Fast cache-to-cache transfers: The root of each virtual tree

is used as the ordering point where all requests are first sent to
and ordered, much like the home node of a vanilla directory
protocol. However, as the root is one of the sharers and not a
statically mapped home node that may be far away, the cost
of indirection is reduced considerably.
Limited bandwidth overhead: By multicasting coherence

only to the current sharers, VTC avoids the bandwidth over-
head of broadcast-based protocols, while approaching their
benefit of fast cache-to-cache transfers.
Limited storage overhead: VTC allocates virtual trees for

sharers of coarse-grained regions [9], [26], rather than per
cache line. The sharers of each region are tracked in local
structures and are guaranteed to completely capture all current
sharers of a region. Tracking on a coarse granularity allows
VTC to reduce the state that needs to be maintained, and limits
storage overhead.
We show that VTC improves performance by an average

of 25% (16-core) and 31% (64-core) over a directory protocol
and reduces interconnect bandwidth by an average of 35% (16-
core) and 68% (64-core) over a broadcast protocol.
The rest of this paper is organized as follows: background

information on the underlying interconnection network and
recent coarse grain optimizations is provided in Section 2.
The proposed coherence ordering mechanism, Virtual Tree
Coherence is explained in Section 3 with its implementation
details discussed in Section 4. Results are presented in Section
5 followed by related work in Section 6. Finally the paper is
concluded in Section 7.

2. Background
Two key considerations for a coherence protocol are the

network and the storage of state information. In this section,
we provide background on the use of coarse grain tracking of
coherence state as well as the multicast network design that
we leverage for Virtual Tree Coherence.

2.1. Regions

In conventional systems, information about cache coherence
is maintained on a per-block granularity. However, by tracking
coherence information across multiple contiguous addresses (a
region), more optimizations can be enabled. A region is defined

as a contiguous portion of memory consisting of a power of
two number of cache blocks. A cache line address maps to one
and only one region and will map to the same region for all
processors.

Coarse Grain Coherence Tracking (CGCT) [9] has been
proposed to eliminate unnecessary broadcasts in order to
improve the scalability of broadcast-based systems. Requests
to non-shared regions of the address space can send a request
directly to the memory controller rather than order their request
on the broadcast bus which is a precious and limited resource.
Tracking sharing patterns on a coarser granularity than cache
lines can take advantage of spatial locality and reduce the
storage overhead associated with maintaining this information.
RegionScout [26] makes similar observations about the benefits
of tracking information on a coarse granularity for coherence
purposes.

Tracking coherence state on a region granularity has several
benefits. If a processor holds a region exclusively, it can
upgrade any cache line in that region to a modified state
without sending a request to other processors. If a processor
knows no other core is caching a region, it can send its cache
miss directly to memory without snooping those caches. The
CGCT work tracks if other cores are caching a region; we
expand this to encompass not only if but who is caching each
region.

The structures required by CGCT and RegionScout have
been generalized in RegionTracker [37] to scalably incorporate
additional functionality. Specifically, RegionTracker replaces a
conventional tag array with region tracking structures, and is
shown to achieve comparable performance to a conventional
fine-grained tag array with the same area budget. With Region-
Tracker, one structure is used to encompass the functionality of
both the fine-grained tags of a conventional cache and maintain
additional information about larger regions. For details on how
RegionTracker achieves this low overhead, we refer the reader
to [37].

Further distinguishing this work from previous proposals
that used region tracking structures to filter away unnec-
essary broadcasts [9], [26], perform DRAM-speculation [3],
and prefetching [10], Virtual Tree Coherence leverages these
structures to keep track of the current set of sharers of a region.
Additional bits are thus added to the Region Vector Array
(RVA) of RegionTracker to track the current region sharers
and the region root node (these additions will be discussed in
Section 3). The low overhead design of RegionTracker allows
us to optimize for region based sharing with only a very modest
area increase over a conventional L2 cache design.

2.2. Virtual circuit tree multicasting (VCTM)

To reduce bandwidth overhead, Virtual Tree Coherence
utilizes multicasting to send requests to sharers within a region,
rather than broadcasting to all nodes. However, as state-of-the-
art on-chip networks do not support multicasting (due to the
high hardware overhead of providing such support), multicast
functionality has to be synthesized by sending multiple uni-
cast messages destined for multiple nodes. This creates high
bandwidth overheads which translate to high interconnect delay
and power, reducing the attractiveness of multicast coherence
protocols such as Virtual Tree Coherence.

Recently, a lightweight multicast network design, Virtual



Circuit Tree Multicasting (VCTM), that can be implemented
within the tight delay, area and power budgets of on-chip
networks has been proposed [14]. VCTM makes multicast co-
herence protocols such as the Virtual Tree Coherence proposed
here viable for CMPs.
VCTM essentially overlays virtual multicast trees on any

unordered interconnect (e.g. mesh, torus, hierarchical meshes).
Figure 1(a) illustrates how a multicast message will have to
be realized with multiple unicasts in a network that does not
support multicasting. VCTM observes that it is much more
efficient (in both power and bandwidth) to only replicate the
messages at forks in the tree. In this example, a message is
thus sent from A to the closest nodes B and C and then those
messages are in turn forwarded to the remaining leaves (Figure
1b). Finally, in Figure 1c, it is shown how VCTM maps the
logical tree to an underlying mesh network.
Each tree is associated with a fixed tree route from the

source to the destinations in the multicast destination set. This
tree route is set up upon the first multicast to a set, with
setup packets snaking through the network to build up the
tree. The tree route information is then stored in virtual circuit
tree (VCT) tables at each router along the path. Subsequent
multicasts to the same set of sharers reuse this tree route by
looking it up in VCT tables. At each intermediate router in
the network, the packet follows the predetermined tree route,
while network resources (virtual channels [12] and buffers)
are granted on a per-hop basis so as to maintain high network
bandwidth.
As may be evident from this brief description of VCTM, its

performance improvement and power savings are predicated
on reuse of the multicast tree, as tree reuse amortizes the
setup time of the tree route, and reduces the size of the
VCT table needed. This makes a VCTM network particularly
suited for VTC: VTC use a multicast tree per coarse-grained
region, and reuses this multicast tree for all requests to sharers
of this region. In the rest of this paper, we will discuss
how Virtual Tree Coherence leverages VCTM to lower its
bandwidth overhead, and how VCTM needs to be modified
to support the ordering properties required by VTC.

3. Virtual Tree Coherence
Most cache coherence protocols rely on an ordering point

to maintain correctness. In directory-based protocols, the di-
rectories serve as an ordering point for requests. With bus-
based protocols, the bus serves as the ordering point for
requests. Recently several proposals have leveraged the partial
ordering properties of a ring to facilitate cache coherence [24],
[31], [32]. Exploiting the partial ordering properties of a ring
eliminates some of the disadvantages of using a bus; however,
there are some downsides. A ring is a significantly less
scalable topology than a mesh or torus. Logically embedding
a ring into a mesh topology [32] provides a higher bandwidth
communication for data but still suffers from large hop counts
and lower bandwidth for ordering requests.
Virtual Tree Coherence observes that ordering can be

achieved through structures other than a ring or a bus, in
particular, through a tree. Specifically, rather than realizing
ordering through a physical tree interconnect [16], Virtual
Tree Coherence maintains coherence through virtual trees.
These trees are embedded into a physical network of arbitrary
topology by VCTM, with a virtual tree connecting the sharers

of a region. The root of this virtual tree now serves as the
ordering point in place of a directory protocol’s home node.
Virtual Tree Coherence is a hierarchical protocol. At the first

level, snooping is achieved through logical trees. At the second
level of the protocol, the coarse directories provide the caches
with information about which processors must be involved in
first level snooping.
In a nutshell, every request is first sent to its virtual tree root

node (obtained from the local region tracking structure). This
root node orders the requests in order of receipt, then multicasts
requests to all sharers of the region through a VCTM virtual
tree for that region. The above works for all current sharers.
New sharers, however, need to take a 2-level approach: they
have to first go to the directory home node to obtain the root
node. This new sharer will then be updated into the local region
tracking structure and added incrementally into the virtual tree.
Virtual Tree Coherence results in several benefits. First,

the root node can be strategically selected to be one of the
sharers to cut down on latency, especially when sharers are
physically clustered close by. In a conventional directory, the
directory home node for an address is statically defined given
an address, and is thus not necessarily a sharer. Second,
latency is low, comparable to a broadcast-based protocol, since
we do not need to collect acknowledgments nor wait for a
directory lookup; messages that reach the root node begin their
tree traversal immediately. Third, bandwidth overhead is low
compared to a broadcast-based protocol, as only the current
sharers are involved in the multicast, not all nodes.

3.1. Walk-through Example

TABLE 1
STEPS CORRESPONDING TO FIGURE 2

(1) Both A and B issue requests to the root to modify the same
block owned by F with A,B,E,F caching this region, E is the
root node for this region

(2a) E receives B’s root request and it becomes ordered.
(2b) E receives A’s root request, it becomes ordered after B
(3) E forwards B’s request to all leaf nodes of the region tree

A sees B’s request has been ordered prior to its own request
A knows it will receive data from B after B has completed
A must invalidate its existing copy so as not to read stale data

(4) E forwards A’s request to all leaf nodes of the region tree
B sees its own request forwarded from E. B knows its request
has been ordered. B does not need to wait for acknowledgments
F sees B’s request and responds with the Data

(5) B receives the Data response from F and completes its
transition to Modified State. A,B,F see A’s ordered request

(6) B invalidates its Modified copy and sends the data to A
(7) A receives the data from B and completes its transition to

Modified State

An example of Virtual Tree Coherence is illustrated in
Figure 2 with the corresponding step descriptions presented
in Table 1. In this example, Node E is the root of this region’s
tree; as such, all requests to addresses within that region must
be ordered through Node E.
In the example, A and F are initially caching the block

in question (A has the block in shared state and F has the
block in owned state). Both invalidate their blocks when they
see B’s request from the root node. This prevents A from
reading a stale copy of the block after B has written it.
Invalidation acknowledgments are unnecessary with VTC for
writes to complete since the virtual trees are snoop-based. This



A

B C

D E F G

(a) Multicast message from A to
B-G realized as multiple unicasts

A

B C

D E F G

(b) Logical multicast tree

E F

Root

A C

G

D

B

(c) VCTM: Logical multicast tree
mapped to mesh

Figure 1. VCTM Overview

A B C

D E F

O

IàMSàM

I

1.
1.

2a.

2b.

Root

(a) Time 1-2

A B C

MI!M

5.

4.

D E F

O!II

3.

3.

3.

4.

Root

(b) Time 3-5

A B C

M!IM
7.

6

5.
6.

D E F

II

6.

4.

4.

Root

(c) Time 4-7

Figure 2. Virtual Tree Coherence Example: This example illustrates two exclusive requesters to the same address

in the tree-order protocol. Dashed and curved arrows represent messages originating at or intended for B,solid and

straight arrows represent messages originating at or intended for A. E is the root node for the region being accessed.

is analogous to the lack of acknowledgments in a snooping bus
protocol. With VTC, a write can complete when it sees its own
request returned from the root node.

Currently we use a first touch assignment policy to deter-
mine the root node. When the first system-wide request for a
region is made to the directory, the requester will become the
root node. The directory stores the identity of the root node
as well as the sharing vector for each region block. Other root
assignment policies could be employed; however, the impact
of these policies as well as root migration is left for future
work.

3.2. Ordering

Virtual Tree Coherence provides the following ordering
invariants:

• Ordering Point: Each region is mapped to a single order-
ing point so all requests to the same address will go to
the same ordering point. This is achieved by assigning
a single virtual tree per region, and having the root of
that virtual tree as the ordering point. Requests are then
unicast to the tree root. This is similar to the use of a
directory as an ordering point.

• Sharers observe the same ordering of requests: requests
multicast from the root node must arrive at leaf nodes in
the same order. Logically, the tree needs to maintain the
ordering of a bus: sending a request to the root node of
the tree is equivalent to arbitrating for the bus (observing

the forwarding of one’s request from the root node is
equivalent to gaining access to the bus). All requests sent
out from the root of the tree will be in a total order. In
other words, requests on the same virtual tree must not be
reordered by the underlying physical interconnect. This is
achieved by modifying VCTM to ensure that each virtual
tree is tied to a single virtual channel.

• Cores caching a block must see all coherence requests to
that block: A multicast must contain all current sharers.
Additional non-sharing cores can be included but never
fewer. This is achieved with the second-level directory
always having a complete list of the sharers. When a non-
sharer requests a block, it must first get the sharing list
from the directory and be added to the sharing list at
that time. Then when the Tree Root multicasts the new
sharer’s request to all sharers, the current sharers will add
the requester to their sharing list so that region sharing
lists at the L2 cache are kept up-to-date.

• Write serialization: Ordering through the root node serial-
izes all writes to the same address region. In Section 4.2,
we discuss how that write order is preserved through the
network from the root to all leaf nodes. Requests to the
same virtual tree maintain a total order. Since write order
is maintained from the ordering point to the leaf nodes,
invalidation acknowledgments are not necessary.

• Write propagation: A write can complete once it sees
its ordered request returned from the root node; this



guarantees that any subsequent request to that cache block
by any processor will receive the new value written. It is
essential that all cores caching the region be involved in
the virtual tree; stale values are invalidated when the root
forwards the write request to all leaf nodes.

3.3. Coherence States,Requests,Actions

Coherence information is maintained at the processor at
two granularities. The local last-level cache (L2) maintains
coherence state information on a cache block granularity.
Coherence information is then maintained by RegionTracker,
encompassing multiple contiguous cache blocks. On a per-
region granularity, we track which external cores are caching
the region and the location of the root node for this region.
CGCT was first proposed for SMP systems; on clean-shared

misses a request would go directly to the memory controller
rather than waste precious bus bandwidth. Since our work deals
with a many-core CMP, we want requests to stay on-chip to
save miss latency. Therefore, clean-shared misses are multicast
to other cores caching the region. Table 2 gives an overview
of the steps taken based on the region state for loads, stores
and upgrades. Numbers with multiple parts (e.g. 1a and 1b)
indicate actions that occur in parallel.
When a core replaces a region, it notifies the root node for

that region to remove it from the sharing list. The root node
will then construct a new tree for that region with one fewer
leaf node. The other cores caching the region do not need
to be notified since only the root is responsible for sending
coherence requests to all sharers.

3.4. Relationshipbetween trees and regions

To maintain coherence, all cores caching a region must see
coherence requests to that region. A single tree is maintained
at the root node for that region. Remember, an address maps
to only one region; so that address participates in a single
tree connecting all sharers. All requests use this tree; it is not
possible for a single region to map to multiple trees. If that
is allowed, it would mean that different cores had different
sharing lists for that region and incoherence would result.
Multiple regions can map to the same tree; this simply means
that multiple regions are being shared by the same set of
processors with the same root node. If all cores are caching
a region (for example, a lock variable), a single tree will be
constructed at the root node with all cores as leaf nodes.

4. Implementation

The following section details issues related to the hardware
implementation of Virtual Tree Coherence. Specifically, we
first present high-level changes to the system architecture. Next
we discuss the requirements placed on the underlying intercon-
nection network to preserve coherence ordering. Finally, we
discuss the area overheads of additional structures.

4.1. High level Architecture

Figure 3 presents a high level diagram of the architecture
we are proposing. Each node consists of a core, private L1
instruction and data caches. Modifications are made starting at
the private L2 cache; the key structures for this architecture are
highlighted with bold borders. A RegionTracker sits alongside
the Level 2 cache and maintains sharing lists for currently
cached address regions; this structure also encompasses the

R t

Coarse 

Dir

Region 

Tracker
L2 Cache

Data Array
Router

VCT Table

Allocators

ata Array

Core + L1 I/D 

Cache

Figure 3. Hardware Architecture Diagram

functionality of the Level 2 tags, thus resulting in very small
area overhead. The directory at each node is coarse grained
and also contains sharing lists but is decoupled from the private
L2 cache as regions are distributed across all the directories
in the system. Upon a miss in the RegionTracker, a request
has to go to the directory to obtain the current sharing lists,
thereby refreshing the RegionTracker. Entries are evicted from
the RegionTracker in an LRU fashion. The packet-switched
router has been modified to include VCTM extensions, in
particular the virtual circuit tree (VCT) table. For details about
the VCT overheads, we refer the readers to [14].

4.2. Network design

Virtual tree construction. VCTM maintains a small con-
tent addressable memory (CAM) of currently active trees at
the network interface of each node. RegionTracker provides
the destination set required for the coherence request to the
network interface controller which then searches the CAM to
determine if there exists an active tree for this destination set. If
a tree exists, the CAM returns the Virtual Circuit Tree Id which
is used to index into the VCT lookup tables at each router. If
no match is found in the CAM, a new tree must be setup; this
is done with low overhead, per the VCTM mechanisms.

When a sharer has been added to a region, this will result in
a new destination set being provided to the network interface
controller. This will likely trigger a new tree setup unless that
destination set is being actively used by another region. Region
sharing lists are decoupled from Virtual Circuit Trees; multiple
regions can map to a single tree.

Preserving order in the network. We modify VCTM to
restrict virtual channel allocation so as to maintain the ordering
invariants associated with a tree. Specifically, requests must not
be reordered from the time they depart the root node to the time
they arrive at each leaf node. An unrestricted virtual channel
allocation policy would permit such a reordering, leading to a
leaf node seeing a different order than other leaves. As such,
each region is assigned a single virtual channel. All requests
for that region must use the same virtual channel and cannot
change virtual channels at intermediate nodes in the network. It
should be noted that here, ordering only needs to be maintained
within a single virtual tree, not across the entire network.
Hence, different regions and different trees can be assigned
to different virtual channels, which will avoid degrading the
network performance.

Scalability. As the number of nodes in the network grows,
VCTM requires additional storage for multicast trees. Each
node in the network is allocated a portion of the Virtual



TABLE 2
VIRTUAL TREE COHERENCE

Region State Cache Miss VTC Coherence Actions
Invalid: Load/Store 1. Request Region Destination Set Information from Directory
no information 2. Directory responds with region sharing list
about remote 3. Region state set to Exclusive/Modified if sharing list is null
copies of region else Region State is set to shared

4. Load/Store actions performed according to steps below
Shared: Load 1a. Send Read Request to Root Node
Other cores are 1b. Request data from memory: speculative memory request (partially overlap mem. latency w/ordering)
caching the region 2. Request is ordered by Root Node and forwarded to region sharers
(may be clean/dirty) 3. Observe own request - ordered w.r.t. other requests to this address

4. Multicast sharers caching data, respond to Read Request with Data
5. If data not on chip, wait for memory response.

Store 1a. Send Store Request to Root Node
1b. Request data from memory: speculative memory request
2. Request is ordered by Root Node and forwarded to region sharers
3. Observe own request
4. Region sharers caching data, response to Store Req. w/Data and invalidate own copy
5. Receive data from multicast sharer or wait for memory response if not cached on chip

Once observed own request and received cache line, it is safe to perform store
Upgrade 1. Sent Upgrade Request to Root Node

2. Root Node Forward Upgrade to all sharers
3. Region sharers caching data observe upgrade request and invalidate cache block
4. If Observe other store/upgrade request, another request ordered before own

Invalidate cache line, now request that was ordered prior to mine will supply fresh data
5. else if Observe own request, Upgrade complete

Exclusive Load 1. No other cores caching region - request does not need to be ordered
or Modified: 2. Send Read Request to Memory
No other core Store 1. No other cores caching region - request does not need to be ordered
caching region 2. Send Store Request to Memory

Upgrade 1. Can upgrade without sending message
Replace – 1. Invalidate all copies cached in region

2a. Send Region Invalidate Acknowledgment to Directory
2b. Notify root of invalidation
3. Directory removes sharer from sharing list for region

Circuit Tree tables located in each router. If 64 trees are
allocated to each core, in a sixteen node system, this will
result in 1024 entries in each VCT table. With 64 cores in
the system, this grows to 4096 entries. (Note: the size of
each VCT entry remains the same, with Destination Set CAM
entries widened to account added destinations). As the system
grows, so do the number of unique trees; however, server
consolidation workloads will not realistically access a large
percentage of trees. To better scale the VCTM mechanism,
we propose replacing the original Destination CAM (used to
track active trees at the network interface controller) with a
Ternary CAM (TCAM). A TCAM allows us to collapse similar
trees by specifying “don’t care”bits in the search for an active
tree. This will allow us to hit on an active tree that includes
all necessary destinations for our request with some extra
unnecessary destinations included in the tree. To prevent the
use of tree collapsing from driving up bandwidth, we restrict
the maximum size of a similar tree to be within 2 links of the
original tree. As a result, 8 trees per core can achieve the same
performance and hit rates as 64 trees per core, greatly reducing
the storage requirements at each router. Additionally trees with
many destinations can map to a single broadcast tree as well.

4.3. Storage overheads

The storage overheads of Virtual Tree Coherence stem
largely from three components: (1) the RegionTracker structure
in each core, (2) the second-level coarse-grained directory
cache in each core, both adding to the storage overhead,
but (3) as RegionTracker obviates the need for L2 tags, L2
tag array storage overhead is saved. Additionally, the second-
level coarse-grained directory cache replaces the fine-grained
directory cache required for the baseline directory protocol.

2

3

4

5

6

7

m
b
e
r 
o
f 
R
e
g
io
n
 

S
h
a
re
rs

64B

1KB

0

1

S
P
E
C
jb
b

S
P
E
C
w
e
b

T
P
C
!H

T
P
C
!W

B
a
rn
e
s

O
ce
a
n

R
a
d
io
si
ty

R
a
y
tr
a
ce

N
u
m 1KB

4KB

Figure 4. Characterization of Sharers by Region Size

The sizes of these three components clearly depend on the
size of a region, R.
To arrive at R, we perform a characterization study across

our suite of benchmarks. In Figure 4, we present the sharing
patterns for a variety of scientific and commercial workloads
based on various region sizes. Similar to what has been
previously observed [7], [19], the number of sharers for a
cache block (cache block size =64B) is small. As the region
size increases (16and 64 cache lines), the number of sharers
increases slightly; this increase is a result of false sharing.
Sending multicasts to an increased number of cores will utilize
additional bandwidth but at a substantial area savings for
tracking this information. Previous work leveraging regions
has used a 1KB region size; similarly, we believe this is a
good trade-off between area overhead and multicast sharing
information.

The original RegionTracker proposal consumes area compa-



rable to a conventional L2 tag array assuming 1KB regions and
an 8MB data array. We’ve added additional bits of information,
specifically 16bits to track the multicast sharing vector and 4
bits to track the multicast root node, for 16cores. The region
array size per core is determined by Equation 1 in terms of N ,
number of cores and region geometry (e.g. RS e ts , number
of sets in Region, Re g S iz e , size of each region, RW a y s ,
the associativity of the region array). Each entry contains
the Region Tag, 3 bits of state, N bits for the multicast
sharing vector, lo g 2(N) bits to identify the root and 4 bits
of state per cache line (v a lid bit + w a y ) in the region. This
design includes per-region storage for both the root node
and the sharing vector; however, only the root node needs
to be responsible for maintaining the current sharing vector,
while each sharer can just maintain the identity of the root
node. Storage requirements could be reduced by removing
the sharing vector from the RegionTracker and employing a
second structure for the root node to look up the sharing vector
associated with that region.

Re g io n A r r a y S iz e = (T a g + 3 + N + lo g 2(N)+

(Re g S iz e / C a c h e L in e S iz e )× 4)×RS e ts ×RW a y s
(1)

For example, assuming a 50 bit address, 1KB regions, 1024
region sets, and 8 region ways, we find the region array size
to be 113 KB. Our simulation parameters assume a L2 cache
of 1MB, where the size of conventional cache tags would be
74 KB.
The second level directories also consume area; however,

compared to a conventional fine-grained directory, coarse-
grained directories have significantly greater memory reach
which improves performance by reducing the directory miss
rate. Computing the directory size (in bits) is done using
Equation 2, assuming each directory entry contains N bits for
the sharing vector and lo g 2(N) bits to identify the owner node
(in a conventional directory) or lo g 2(N) bits to identify the tree
root with VTC. Directory sizes assuming 1024 directory sets
and 16directory ways are presented in Table 3.

D S iz e = (T a g + N + lo g 2(N) + 3)× D ir S e ts × D ir W a y s
(2)

Bit requirements for the baseline configuration (a conven-
tional L2 +fine-grained directory cache) are compared against
the RegionTracker +coarse-grained directories in Table 3, with
the parameters detailed above. We see VTC has a 21% storage
overhead over the baseline directory-based protocol.
However, this storage overhead can be tuned by reducing

the size of the coarse-grained directories, since a single entry
in the coarse-grained directory covers 16times more memory
than a corresponding entry in a fine-grained directory, with a
region size that is 16times a cache line size. So, we can reduce
the coarse-grained storage to trade off the storage overhead of
RegionTrackers, while still being able to cache and cover more
memory than conventional fine-grained directories. Setting the
number of bits of the fine-grained directory + conventional
L2 tag array = coarse-grained directory + RegionTracker, we
have enough bits for a smaller coarse grain directory composed
of 690 sets and 16ways. With 690 sets and 16ways, the small
(area-equivalent) coarse-grained directory can cache 11MB of
memory versus 1MB of memory that is cacheable with the
fine-grained directory.

Using the same number of sets and ways in both the fine-
and coarse-grained directories, the coarse-grained directory +
RegionTracker configuration consumes 21% more bits. More
geometries could be explored to find additional area and
memory-reach trade-offs.

TABLE 3
STORAGE COMPARISONS IN KBITS

Conventional Directory-Based Protocol
Conventional L2 Tag Array 592
Fine-Grained Directory 896
Virtual Tree Coherence
RegionTracker 904
Coarse-Grained Directory 864
Area-equivalent Coarse-Grained Directory 582

(a) Storage Breakdown

Conventional L2 Tag Array +Fine-Grained Directory 1488
RegionTracker +Coarse-Grained Directory 1768
RegionTracker +Area-equivalent Coarse-Grained Directory 1486

(b) KBit Totals

4.3.1 Scalability. In Section 4.2, we discussed a TCAM tech-
nique to improve the scalability of VCTM for larger systems.
For other added hardware discussed in this section, we consider
scalability issues as the number of cores in the system grows.
First, we expect that much larger regions will provide benefit
for systems running server consolidation workloads. Coarse
address regions will include more false sharing but will still
keep virtual machines isolated from one another providing
performance benefits and scalability.

A concentrated mesh (CMESH) [5] has been proposed for
large systems. A CMESH groups four cores to one single
router; so a 64-core system would require a 4x4 mesh. This
clustering can be applied to our storage structures as well; 4
cores can share a region array, last level caches and a coarse
grain directory to reduce the amount of required storage. A
CMESH will also reduce pressure on the VCTM hardware;
multicasts can be routed to network nodes and then broadcast
to the 4 tiles connected to each router.

5. Evaluation
In the following sections, we present our evaluation method-

ology as well as detailed information regarding the baseline
systems, followed by results.

5.1. Methodology
We use PHARMsim, a full system multiprocessor simulator

[8], [18] built on SIMOS-PPC. Included in our simulation
infrastructure is a cycle-accurate network model including
pipelined routers, buffers, virtual channels and allocators for
both the baseline packet-switched mesh and the routers aug-
mented with VCTM. Our simulation parameters are given
in Table 4. Results are presented for the following commer-
cial workloads: TPC-H and TPC-W [33], SPECweb99 and
SPECjbb2000 [30] and several Splash2 workloads [36]. Details
for each workload are presented in Table 5. We compare
Virtual Tree Coherence against two baselines, a directory pro-
tocol and a greedy-order protocol which are explained below.



TABLE 4
SIMULATION PARAMETERS

Cores 16in-order & 64 in-order cores

Memory System

L1 I/D Caches (lat) 32 KB 2 way set assoc. (1 cycle)
Private L2 Caches 1 MB (16MB total) 8-way set assoc.

(6cycles), 64 Byte lines
RegionTracker 1024 sets, 8 ways, 1KB regions
(associated with each L2)
Memory Latency 500 cycles

Interconnect

Packet Switched Mesh 3 Pipeline Stages
8 VCs w/4 Buffers per VC

VCTM 64 Trees per source node (1024 total)

Statistical simulation is used to quantify overall performance
with 95% confidence intervals [4].

We have configured our simulation environment to support
server consolidation workloads [15], [25] for up to 64 cores.
For the server consolidation workloads, we create homoge-
neous combinations of each of the commercial workloads listed
in Table 5; e.g. we run 4 copies of SPECjbb to create a 64-
core workload. Each virtual machine is scheduled to maintain
affinity among the threads of its workload.

TABLE 5
BENCHMARK DESCRIPTIONS

Bench. Description

SPECjbb Standard java server workload utilizing 24 warehouses,
executing 200 requests

SPECweb Zeus Web Server 3.3.7 servicing 300 HTTP requests
TPC-W TPC’s Web e-commerce benchmark, DB Tier
TPC-H TPC’s Decision Support System Benchmark, IBM DB2 v6.1

running query 12 w/512MB database, 1GB of memory
Barnes 8K particles, full end-to-end run including initialization
Ocean 514x514 full end-to-end run (parallel phase only)
Radiosity -room -batch -ae 5000 -en .050 -bf .10 (parallel phase only)
Raytrace car input (parallel phase only)

5.1.1 BaselineI: Directory-based Coherence. The first base-
line we evaluate VTC against is a standard Directory protocol
modeled after the SGI-Origin protocol [17]. This protocol suf-
fers from the latency overheads associated with an indirection
through a directory on each cache miss. Additionally, to make
this protocol amenable for a many-core architecture, directory
caches must be used. Misses to these directory caches suffer
the latency overhead of going off-chip to memory and can be
quite frequent for server workloads and even more frequent
for server consolidation workloads. For a set of commercial
workloads, miss rates between 22 and 74% have been observed
[22].

5.1.2 BaselineII: Greedy order region coherence. Greedy
order protocols have been proposed for ring interconnects [6],
[24], [29] and overlaid atop unordered interconnects [32]. Here,
as a second baseline, we map and optimize a greedy order
protocol that can leverage the region tracking structures and
multicast network that VTC uses. The key difference is that
VTC relies on the virtual tree for ordering, while greedy order
does not.

In greedy order protocols, requests are ordered by the current

TABLE 6
STEPS CORRESPONDING TO FIGURE 5

(1) Both A and B issue requests to all processors caching region
to modify a block owned by F with A,B,E,F caching this region

(2) A’s request reaches B and is replicated and forwarded to E and
F. B’s request reaches E and F

(3) A’s request reaches F
B’s request reached F (Owner) first, so B’s request will win

(4) E and F respond with acknowledgments to A and B’s request.
B gets an owner acknowledgment from F
F transitions from owned to invalid

(5) A receives E’s acknowledgment, B receives E’s acknowledgment
(6) A receives F’s acknowledgment, B receives F’s owner

acknowledgment
(7) B knows its Modified request will succeed, it sends a negative

acknowledgment to A
(8) A receives a negative acknowledgment from B, it has now

collected all acknowledgments and did not succeed so it will
acknowledge B’s request and it must retry its own request

(9) B collects its final acknowledgment from A and successfully
transitions to Modified State.

owner. Requests are live as soon as they leave the requester; in
other words, they do not need to arbitrate for a shared resource
such as a bus or pass through a central ordering point such as
a directory. A request becomes ordered when it reaches the
owner of the cache block (another cache or memory). In the
common case when no race occurs, these requests are serviced
very quickly because they do not require the additional latency
of an indirection through a directory. In [24], requests complete
after they have observed the combined snoop response that
trails the request on a ring. Based on the combined response,
a request is successful or must retry.
Mapping and extending Greedy-Order protocols onto an un-

ordered interconnect such as a mesh requires acknowledgments
to be collected from all relevant processors. Also, extending
to regions rather than individual cache lines mean that ac-
knowledgments have to be collected only from cores that are
caching that particular address region rather than all cores. So,
the number of acknowledgments that are expected is derived
from the sharing vector in the region cache. The collection of
acknowledgments is similar to the combined response on the
ring but requires more messages. This is also similar to the
process of collecting invalidates in a directory protocol. The
owner sends an owner acknowledgment signifying the transfer
of ownership. If no owner acknowledgment is received, then
another request was ordered before this one and this request
must retry. Greedy-Order can be applied in a broadcast fashion
as well, where no sharers are tracked and acknowledgments are
gathered from every processor. An example of Greedy-Order
is depicted in Figure 5 and walked through in Table 6.

5.2. Results
In the following sections, we present quantitative perfor-

mance results comparing Virtual Tree Coherence against our
two baselines. Additionally, we present a comparison between
Virtual Tree-Multicast (VT-M) and Virtual Tree-Broadcast
(VT-B). With VT-B, a virtual tree connects all nodes; however,
regions are used to designate the root node so that there is not
a single root bottleneck. Significant network bandwidth and
dynamic power can be saved by limiting coherence actions to
multicasts instead of broadcasts.
In Figure 6, results are presented for Greedy-Order Mul-

ticasting, Virtual Tree Broadcast and Virtual Tree Multicast



A B C

I!MI!M

1.
1.

2.

1.

3

D E F

OI

2.
3.

2.

(a) Time 1-3

A B C

I!OMI!M

5 6

5,6.

D E F
O!II

4.4.

5,6.

4.

(b) Time 4-6

A B C

MI
8.

7

9. Retry 8. Success!

D E F
II

7.

(c) Time 7-8

Figure 5. Greedy Order Example: This example illustrates two exclusive requesters in the greedy-order region protocol.

Dashed and curved arrows represent messages originating at or intended for B, Solid and straight arrows represent

messages originating at or intended for A. Time is progressing from left to right in the figure.

Coherence.Allresultsare normalizedtoBaselineI:Directory
Coherence.Overall, significantperformance gainsare achieved
byVT-BandVT-M, upto39% and38% respectively(19% and
25% onaverage) whencomparedtothe directoryprotocol.Vir-
tualTree Coherence outperformsGreedy-Orderbyupto31%
withanaverage improvementof11%.Ina4x4 system, the
differencesbetweenVT-B andVT-M are minor;however, as
systemsscale, the difference betweenthese twobecome much
more pronouncedwithfavorable resultsforVT-M (Figure 6b).

In acouple ofinstances, notably, TPC-H and SPECjbb,
VT-B outperformsVT-M.Withlargermemoryfootprints, and
irregularaccesspatterns, these workloadsexperience much
largerregionmissrateswhich incuradditionaloverheadto
re-fetchregion information from the second-leveldirectory.
ForSPECjbb andTPC-H, 21% and18% ofL2missesalso
resultinregionmisses;the restofthe workloadsexperience
regionmissratesoflessthan10%.SPECweb seesonlyasmall
performance improvementfrom VTC (5%);SPECweb sees
the sharpestincrease intrafficwhichlimitsthe performance
improvement.Techniquestoimprove the regionhitrate and
lowerthe numberoffalse-sharerswillleadtoperformance
improvementsforSPECweb.

In Figure 6b, the difference between VT-B and VT-M
becomesmore pronounced, VT-M outperformsVT-B byan
average of11% and up to 16%.With a 64-core system,
broadcasting becomesmore expensive (both inperformance
and power).VT-M providesmore isolation forthe virtual
machines;coherence requestsare onlysenttonodesinvolved
insharing.VT-Bsendsbroadcaststoallnodes(acrossmultiple
virtualmachines).

InFigure 6, Greedy-Order, VT-B andVT-M, allleverage
the benefitsofVCTM.On a non-VCTM packet-switched
mesh, the peformance ofVT-M degradesbyanaverage of
15%.Greedy-Orderwhichplacessignificantpressure onthe
interconnectdue toretriesseesperformance degradationsof
48% when VCTM isremoved.VCTM simplifiesordering
ofcoherence requests in the network and is essentialfor
performance improvementsandscalability.WithoutVCTM,
ina64-core system, VT-B sendsout63coherence packets
foreachcache misswhichsaturatesthe network.

BothVTC anddirectoryprotocolsrequire the indirection
to the ordering pointforcoherence requests.VTC derives
performance benefitinpartfrom reducingthe costofthese
indirections.WithVTC, the hopcounttothe orderingpoint

0.6
0.7
0.8
0.9
1

1.1
1.2
1.3

li
z
e
d
 R
u
n
ti
m
e

Greedy!O rder 

Multicast

VT!B

0.4
0.5

S
P
E
C
jb
b

S
P
E
C
w
e
b

T
P
C
!H

T
P
C
!W

B
a
rn
e
s

O
ce
a
n

R
a
d
io
si
ty

R
a
y
tr
a
ce

A
v
e
ra
g
e

N
o
r
m
a
l

VT!M

(a) Performance ofsingle workloadson16 cores

0 6
0.7
0.8
0.9
1

1.1
1.2

m
a
li
z
e
d
 R
u
n
ti
m
e

Greedy Order 

Multicast

VT!B

0.4
0.5
0.6

S
P
E
C
jb
b

S
P
E
C
w
e
b

T
P
C
!H

T
P
C
!W

A
v
e
ra
g
e

N
o
r
m

VT!M

(b) Performance of64-core serverconsolidationworkloads

Figure 6. Performance of Coherence Protocols.

isreducedby15% for16-core and50% for64-core since the
rootnode isaregionsharer.Furthermore, onaverage 4.2x
more coherence requestsare orderedinzerohopswithVTC
thanwiththe directoryprotocol.

The interplaybetweenregionsize andthe efficiencyofa
VCTM networkisaninterestingmotivationforthe needtoco-
designthe coherence protocolandthe interconnect.Choosing
smallregionsresultsinamuchlargernumberofunique trees
thatare needed;thislarge numberofunique treescausesthe
virtualcircuittreestothrashinthe network.The virtualcircuit
tree hitrate in the interconnectrangesfrom 78% to 99%
for1KB regions;the hitrate dropsto65% to95% for64B
regionsasdepicted inFigure 7.Withalowerhitrate there



0 7

0.75

0.8

0.85

0.9

0.95

1

1.05
u
it
 T
r
e
e
 H
it
 R
a
te

64

1024

0.6

0.65

0.7

S
P
E
C
jb
b

S
P
E
C
w
e
b

T
P
C
!H

T
P
C
!W

B
a
rn
e
s

O
ce
a
n

R
a
d
io
si
ty

R
a
y
tr
a
ce

V
ir
t
u
a
l 
C
ir
c
u 1024

4096

Figure 7. Impact of Region Size on Virtual Circuit Tree

Hit Rate (16cores)

are more tree setupsinthe network;recallfrom the original
VCTM proposal, tree setuprequiresreplicationofthe multicast
message intomanyunicastsresultinginashortburstoftraffic
during the setup phase which impactsinterconnectlatency
andthroughput.Asaresult, 1KB regionwhichsuffersfrom
amodestamountoffalse sharingcomparedto64B regions,
actually has3% less interconnecttraffic by making better
use ofvirtualcircuittrees.With 4KB regions, performance
issimilarto1KB regions;withslightdegradationsobserved
forSPECweb andOcean.

Restricting a virtualtree to a single virtualchannelis
neccesary to maintain in network order;howeverwith a
large numberofavailable trees, we are able touse network
bandwidthefficientlyandonlysee adegradationof3% inend-
to-endnetworklatency(versusanunrestrictedvirtualchannel
allocation).

5.2.1 Activity Comparisons. Figure 8 showsthe network
activity(basedonlinktraversalsbyflits) foreachcoherence
protocolrelative todirectorycoherence.Ofcourse, directory
coherence hasthe lowestinterconnecttrafficsince nearlyall
ofthe messagesare ofaunicast(pointtopoint) nature (in-
validationrequestsfrom the directoryare the exception).Data
trafficissimilarforeachprotocol;the maindifference liesin
the requiredcoherence traffic.Greedy-Orderrequiresthe most
interconnectbandwidthofallthe protocols, averaging 3.8x
the numberoflinktraversalsasthe directoryprotocol.VT-
M consumeslessnetworkbandwidththanVT-B, 35% usage
reductiononaverage, withthe mostsignificantreductionsof
68% forSPECjbb and 40% forOcean.A large fractionof
Ocean’sreferencesare memorymisses;VT-M willoptimize
andgodirectlytomemoryifnoothercoresare cachingthe
region.These memorymissesare broadcasttoallcoresin
VT-Bresultinginabandwidthspike whencomparedtoVT-M
andGreedy-Order.The interconnecttrafficdifference between
VT-B andVT-M growsfrom 35% with16 coresto68% with
64 cores.VT-M requires1.6x more trafficthanadirectory
protocolfor64 cores.

Networkactivity isonlypartofthe storyforpowercon-
sumptiondifferencesinVT-B andVT-M.VT-B willconsume
significantlymore powersince allcacheswillsnoopallcoher-
ence requests;VT-M eliminatesasignificantfractionofcache
accessesrequiredwithVT-B.The retriesinGreedy-Orderalso
increase the numberofcache accessesrequired.

2

3

4

5

6

7

 I
n

te
rc

o
n

n
e

c
t 

T
ra

ff
ic

Data

Coherence

0

1

G
re
e
d
y

V
T
!B

V
T
!M

G
re
e
d
y

V
T
!B

V
T
!M

G
re
e
d
y

V
T
!B

V
T
!M

G
re
e
d
y

V
T
!B

V
T
!M

G
re
e
d
y

V
T
!B

V
T
!M

G
re
e
d
y

V
T
!B

V
T
!M

G
re
e
d
y

V
T
!B

V
T
!M

G
re
e
d
y

V
T
!B

V
T
!M

SPECjbb SPECw eb TPC!H TPC!W Barnes O cean Radiosity Raytrace

N
o

r
m

a
li

z
e

d

Figure 8. Interconnect Traffic Comparison Normalized

to Directory for 16cores (measured in link traversals by

flits)

5.3. Discussion

Inthe previoussections, we illustratedthatVTCcouldpro-
vide substantialperformance improvementsoveradirectory-
based protocol.VTC Broadcastperformswellwithoutthe
needtotrackmulticastsharinggroups;however, the broadcast
protocolplacesheavydemandsonthe interconnectionnetwork
andconsumessignificantunnecessarypowerlimitingitsability
toscale.

VTC largely out-performsGreedy-Order, butthere are a
few benchmarkswhere Greedy-Orderdoesslightlybetter.The
keydownside toGreedy-Orderprotocolsisthattheycanhave
anunboundednumberofretrieswhencertainrace conditions
occur(whichcanleadtostarvation).Inpractice, we found
the numberofretriestobe small(fewerthan10retriesper
1000L2misses) withafew exceptions:RadiosityandTPC-
H exhibitlarge numbersofretries, 696 and327for1000L2
misses, whichaccountsforthe large spike intrafficforGreedy-
Order.Anadditionaldownside ofaGreedy-Orderprotocolon
ameshascomparedto itsuse onaring, isthe additional
messagesrequired.Withnocombinedsnoopresponse, there
isasignificantincrease inacknowledgmentmessagesplacing
highbandwidthdemandsonthe interconnect.

In addition to the problem ofretries, the Greedy-Order
protocolmakesnouse ofthe implicitorderingpropertiesofthe
underlyingnetworkfunctionality.Greedy-Orderonlyutilizes
the virtualmulticasttreestoovercome the overheadassociated
withmulticastingonameshnetwork.Greedy-Orderalsoplaces
substantially more pressure on the VCTM hardware;with
VTC, eachregionhasatmostone tree.WithGreedy-Order,
eachregionsharercreatesitsowntree resultinginaforestof
treesforwidelysharedvariables.

InSection1, we posited4 keyfeaturesofascalable coher-
ence protocolformany-core architectures.Here we examine
how wellVTC achievesthese goals.

• Limit coherence actions to the necessary subset of

nodes: Coherence requestsare seenbyanaverage of4
coreswith1KB regionsizes.Increasingthe regionsize
tradesoffstorage overheadatthe expense ofmore un-
necessarycoresbecominginvolvedincoherence requests.
Forexample, witharegionsize of4KB, onaverage 10%
more coressee acoherence requests.

• Fast cache-to-cache transfers: The orderingpoint, the
virtualtree rootislocatedatone ofthe regionsharers
reducingthe latencyoforderingarequest.VirtualTree



Coherence outperformsDirectoryCoherence by25% on
average, adirectresultoffastcache-to-cache transfers.
VTC out-performsGreedy-Orderbyanaverage of11%
byavoidingretries.

• Limited bandwidth overhead: VTC reduceson-chip
bandwidthutilizationbyanaverage of35% overabroad-
castprotocoland45% overagreedyprotocol.We increase
on-chip bandwidthutilization byafactorof2.1x over
adirectoryprotocol.Only in one instance (SPECweb)
didthisbandwidthincrease resultinlimitedperformance
improvement.

• Limited storage overhead: Inourmodifiedsystem Re-
gionTracker + Coarse-Grain Directories consume 21%
more areathanthe baseline L2 tags + Fine-Grain Di-
rectories.However, with this increase in area comes
significantlymore reachforourdirectories.The coarse
directoriesare able to touch 16x more memory with
1KB regionsandthe same numberofdirectoryentries.
Additionally, withafixedareabudget(baseline:L2Tags
+Fine-GrainDirectories, VTC:RegionTracker+Coarse-
GrainDirectories), the Coarse GrainDirectorieshave a
4% lowerdirectorycache missrate thanthe Fine-Grain
Directories.Considerable performance improvementis
possible withVTCwithoutincurringlarge areaoverheads.

• Scalability: With a 64-core system, VTC outperforms
bothadirectoryprotocolandVT-Bbyanaverage of31%
and15% respectively.

6. Related Work
Cache coherence researchhasbeenofsignificantinterest

inbothsingle andmulti-chipmultiprocessorsystems.A vari-
etyofprotocolshave beenproposed/implementedtoachieve
performance andscalabilityon bothorderedandunordered
interconnects.We contrastthese priorworkswithVirtualTree
Coherence inthe followingsections.

6.1. Ordered Interconnect
Multicastsnoopinganddestinationsetprediction[7], [19]

use predictionmechanismstodetermine whichprocessorswill
likelyneedtosee acoherence request.Incontrast, ourwork
determinesexactlywhomustbe includedinamulticast.Extra
coresmightbe contained in the destination setbutnever
fewercoresthannecessary.These protocolsrelyonatotally
ordered interconnectforsendingoutmulticastrequests.Our
designrelaxesthisconstraint, permittingahigherperformance
interconnect.Requeststo the same addressregion use the
same virtualtree andare restrictedtousingthe same virtual
channelaspriorrequeststothe same addressregion.This
virtualchannelrestrictionpreventsmessagesfrom becoming
reorderedwithrespecttoeachotherinthe network.
BandwidthAdaptive Snooping[21]employsahybridproto-

colthatachievesthe latencyofbroadcastingwhenbandwidth
isplentifulbutconvertstoadirectorystyle protocolwhen
bandwidth islimited.Thisworkreliesonatotallyordered
interconnectbutovercomessome ofthe pressure thatlarge
snoopingsystemscanplace onthe interconnect.

6.2. Unordered Interconnect
Tokencoherence providesthe tokenabstractiontodecou-

ple performance from correctness[20].Severalvariantsof
Token Coherence have been proposed including one based
onbroadcastsandone ondirectories.TokenB, the broadcast

Tokenprotocolrequiresmore bandwidththanmulticastingwith
VirtualTree Coherence.Extensionshave beenproposedfor
multi-chipCMPbasedsystemsin[23].

Virtualhierarchies[25]propose cache coherence variations
targetingserverconsolidationworkloadsrunningonchipmul-
tiprocessors.One proposalutilizestwolevelsofdirectories
toprovide fastlocalcoherence andcorrect(andsubstantially
slower) globalcoherence (withthe observationthatglobalco-
herence israre).The otherproposalstillutilizeslocaldirecto-
riesforfastcoherence withinaserverapplicationandabacking
broadcastprotocolforglobalcoherence.The alternative of
utilizingalocalbroadcastbackedbyaglobaldirectoryprotocol
ismentioned butnotexplored.The coherence mechanism
in thiswork issimilarto the lattercase.Firstofall, we
examine adifferenthierarchythanwhatisproposedinVirtual
Hierarchies.Assuch, we donotprovide adirectquantitative
comparison;however, we doprovide some pointsthatfurther
distinguishourproposal.

Some ofthe performance improvementsofVirtualHierar-
chiesare predicatedonthe abilityofthe schedulertoprovide
localitybetweencommunicatingandsharingcoresorthreads.
VirtualHierarchieswillworkwhenlocalityisnotpreserved;
however, we believe thatthe couplingofmulticastcoherence
with afastmulticastsubstrate (VCTM) resultsin superior
performance.VirtualTree Coherence willsupportflexible
placementandschedulingofcommunicatingthreads, whereas
the benefitsachievedwithVirtualHierarchiesare predicated
onphysicalproximity.

The actionsofthe secondleveldirectoriesinVirtualTree
Coherence are verysimple unlike directoriesin otherhier-
archicalprotocols.VirtualHierarchiesrequiresaverylarge
numberofstatesandtransitionsinthe coherence protocolto
accommodate twolevelsofdirectories;thisisnotthe case for
VirtualTree Coherence.The directoriescontainsthe sharing
listofeachregionthatiscachedanywhere onchip, the identity
ofthe tree rootforthatregion, andwhetherablockisowned
on-chiporifmemoryisthe owner.

In-NetworkCache Coherence [13]replacesdirectoriesby
embeddingsharing information intree structureswithinthe
network.These virtualtrees (differentfrom VTC’svirtual
circuittrees) are usedtolocate dataon-chip.Whenarequest
isen-route tothe directory, itcanbumpintoatree whichwill
redirectthe requesttothe appropriate core thatissharingthe
cache block.Thisoptimizationtargetsthe directoryindirection
latencyandcanleadtofewerinterconnecthopstofindavalid
cache line.

However, with In-Network Coherence, depending on the
route taken by arequest, asharermay be nearby, butthe
requestmaymissitandstillhave tomake itswaythe whole
stretchtothe directory.Insuchscenarios, VTC willperform
better.Cache missesthatdobumpintoatree inIn-Network
Coherence willbe satisfiedmore quicklythanrequeststhat
have totravelsignificantdistance tothe rootnode inVTC.
Itshouldbe notedthoughthatinVTC, itisalwaysthe case
thatthe rootnode isasharerofthe region, whichmaybe
closerthanthe statically-mappeddirectorynode inIn-Network
Coherence.Also, VTC utilizescoarse-grainedtrackingwhich
requireslessstorage overheadthanthe per-line, per-hopstorage
neededinIn-NetworkCoherence.

UnCorq[32]broadcastscoherence requestsonanunordered



interconnect(e.g.amesh) andthenorderssnoopresponsesvia
alogicalring.Similarly, we utilize the ordering implied by
logicaltreestomaintaincoherence;however, we orderrequests
viavirtualtreesratherthanresponses.Anadditionaldifference
isthe use ofmulticasting insteadofthe fullbroadcastused
byUnCorq.Greedy-Orderbearssome similaritytoUnCorq;
requestsare senttosharersquicklywithoutregardtoorder.
UnCorq then ordersresponsesvia a logicalring, whereas
Greedy-Orderusesthe ownertoorderrequests.

Treeshave alsobeenleveragedinpreviousproposalstobuild
more scalable directoriesforlarge distributedsharedmemory
machines[11], [28].These treesare usedtoreduce storage
overheadbutthe directoriesstillserve asthe orderingpoint.

6.3. NetworkDesigns Cognizant of Cache Coherence

Inadditiontorelevantwork inthe domainofcache co-
herence protocols, VTC alsoexaminesthe requirementsthat
are placedonthe interconnecttomaintaincorrectness.These
requirementshave alsobeenexaminedinpriorwork.

The RotaryRouter[1], [2]providesmechanismstomaintain
the orderingofcoherence requestsinthe networkandprevent
coherence deadlockwithinthe interconnect.Bufferresource
allocationisdividedupbetweendependentmessagestopre-
ventdependentmessagesfrom deadlockinginthe networkdue
tounavailable resources.In-orderdelivery isguaranteed by
forcingorderedmessagestotraverse the same path.

Anothercommonsolutiontoavoidingdeadlockandprevent-
ingmessage reorderingistodedicate aseparate virtualnetwork
toeachclassofcoherence message (e.g.requestsvsresponses),
where eachvirtualnetworkhasdistinctvirtualchannels.This
technique isemployedbythe Alpha21364 [27].VTC forces
the underlyingnetworktodelivercoherence requestsinorder
byrestrictingavirtualtree touse asingle virtualchannel.

7. Conclusion

Thisworkproposesanew coherence protocolformany-
core architectures, VirtualTree Coherence.Unordered inter-
connectionnetworktopologiessuchasameshoratoruscan
be overlaidwithanorderinginvarianttomore easilyfacilitate
cache coherence mechanisms.We utilize one suchnetwork,
VirtualCircuitTree Multicastingtorealize VirtualTree Co-
herence asascalable on-chipcache coherence solutionthat
improvesperformance byanaverage of25% overadirectory-
basedprotocol.Byrelyingoncoarse-grainedregioncoherence
state, we reduce the on-chipstorage overheadforcoherence
state substantially, withoutthe expectednegative side effects
offalse sharingandcoherence thrashing.Instead, we employ
efficienton-chipmulticastingtoreachallnodesinthe sharing
set, andmaintainatotalorderofmessagestothe same region
byrestrictingeachtree tosingle virtualchannel.VirtualTree
Coherence issimple inconceptand implementationsince it
reliesonastraightforwardorderinginvariantbasedonalogical
tree.In summary, we have extended the fruitfulspace of
region-basedoptimizationstoinclude ascalable multicasting
protocol.ExtendingVirtualTree Coherence tothe domainof
serverconsolidationworkloads[15], where sharingisgenerally
limitedtowithinavirtualmachine andtosubsetsofcores
withinthatVM resultsinevenmore substantialbenefitswith
anaverage improvementof31%.

References
[1]P.Abad, V.Puente, and J.Gregorio, “Reducing the interconnection

networkcostofchipmultiprocessors,”inNOCS, 2008.
[2]P.Abad, V.Puente, J.Gregorio, andP.Prieto, “Rotaryrouter:anefficient

architecture forcmpinterconnectionnetworks,”inISCA, 2007.
[3]N.Aggarwal, J.Cantin, M.Lipasti, and J.E.Smith, “Power-Aware

DRAM Speculation,”inHPCA-12, 2008.
[4]A.R.AlameldeenandD.A.Wood, “Variabilityinarchitecturalsimula-

tionsofmulti-threadedworkloads,”inProceedings ofHPCA-9, 2003.
[5]J.Balfourand W.Dally, “Design tradeoffs fortiled cmp on-chip

networks,”inInternational Conference on Supercomputing, 2006.
[6]L.A.BarrosoandM.Dubois, “The performance ofcache-coherentring-

basedmultiprocessors,”inISCA-20, 1993.
[7]E.Bilir, R.Dickson, Y.Hu, M.Plakal, D.Sorin, M.Hill, andD.Wood,

“Multicastsnooping:Anew coherence methodusingamulticastaddress
network,”inProc.ofISCA, May1999.

[8]H.Cain, K.Lepak, B.Schwarz, and M.H.Lipasti, “Precise and
accurate processorsimulation,”inWorkshopOn Computer Architecture
Evaluation using Commercial Workloads, 2002.

[9]J.F.Cantin, M.H.Lipasti, andJ.E.Smith, “Improvingmultiprocessor
performance withcoarse-graincoherence tracking,”inISCA-32, 2005.

[10]—— , “Stealthprefetching,”inInternational Conference on Architectural
Support for Programming Languages andOperating Systems, 2006.

[11]Y.ChangandL.N.Bhuyan, “Anefficienttree cache coherence protocol
fordistributedsharedmemorymultiprocessors,”IEEE Transactions on
Computers, vol.48, no.3, 1998.

[12]W.J.Dally, “Virtual-channelflow control,”inISCA, 1990.
[13]N.Eisley, L.-S.Peh, andL.Shang, “In-networkcache coherence,”in

International Symposium on Microarchitecture, 2006.
[14]N.EnrightJerger, L.-S.Peh, andM.H.Lipasti, “Virtualcircuittree mul-

ticasting:Acase foron-chiphardware multicastsupport,”inProceedings
ofISCA-35, 2008.

[15]N.EnrightJerger, D.Vanatrease, andM.Lipasti, “Anevaluationofserver
consolidationworkloadsformulti-core designs,”inIISWC, 2007.

[16]K.Gharachorloo, M.Sharma, S.Steely, andS.V.Doren, “Architecture
anddesignofAlphaServerGS320,”inArchitectural Support for Pro-
gramming Languages andOperating Systems, 2000.

[17]J.LaudonandD.Lenoski, “The SGIOrigin:accNUMAhighlyscalable
server,”inISCA-24, 1997.

[18]K.M.Lepak, H.W.Cain, andM.H.Lipasti, “RedeemingIPC asa
performance metricformultithreadedprograms,”inProceeding of12th
PACT, 2003, pp.232–243.

[19]M.M.K.Martin, P.J.Harper, D.J.Sorin, M.D.Hill, andD.A.Wood,
“Usingdestination-setpredictiontoimprove the latency/bandwidthtrade-
offinshared-memorymultiprocessors,”inProceedings ofthe 30thISCA,
June 2003.

[20]M.M.K.Martin, M.D.Hill, andD.A.Wood, “Token coherence:
Decouplingperformance andcorrectness,”inISCA-30, 2003.

[21]M.M.K.Martin, D.J.Sorin, M.D.Hill, andD.A.Wood, “Bandwidth
adaptive snooping,”inHPCA-8, 2002.

[22]M.R.Marty, “Cache coherence techniquesformulticore processors,”in
PhD Dissertation,UniversityofWisconsin - Madison, 2008.

[23]M.R.Marty, J.D.Bingham, M.D.Hill, A.J.Hu, M.M.K.Martin, and
D.A.Wood, “Improvingmultiple-cmpsystemsusingtokencoherenece,”
inHPCA, February2005.

[24]M.R.MartyandM.D.Hill, “Coherence orderingforring-basedchip
multiprocessors,”inMICRO-39, December2006.

[25]—— , “Virtualhierarchiestosupportserverconsolidation,”inISCA-34,
2007.

[26]A.Moshovos, “Regionscout:Exploitingcoarse grainsharinginsnoop-
basedcoherence.”inISCA-32, 2005.

[27]S.S.Mukherjee, P.Bannon, S.Lang, A.Spink, andD.Webb, “The
Alpha21364 networkarchitecture,”IEEEMicro, vol.22, no.1, pp.26–
35, 2002.

[28]H.Nilsson and P.Stenstrom, “The scalable tree protocol- acache
coherence approachforlarge-scale multiprocessors,”inIPDPS, 1992.

[29]B.Sinharoy, R.Kalla, J.Tendler, R.Eickemeyer, andJ.Joyner, “Power5
system microarchitecture,”IBM Journal ofResearchandDevelopment,
vol.49, no.4, 2005.

[30]SPEC, “SPEC benchmarks,”http://www.spec.org.
[31]K.Strauss, X.Shen, and J.Torrellas, “Flexible snooping:Adaptive

forwardingandfilteringofsnoopsinembeddedringmultiprocessors,”
inInternational Symposium on Computer Architecture, 2006.

[32]—— , “Uncorq:Unconstrainedsnooprequestdeliveryinembedded-ring
multiprocessors,”inMICRO-40, 2007.

[33]TPC, “TPC benchmarks,”http://www.tpc.org.
[34]S.Vangal, J.Howard, G.Ruhl, S.Dighe, H.Wilson, J.Tschanz, D.Finan,

P.Iyer, A.Singh, T.Jacob, S.Jain, S.Venkataraman, Y.Hoskote, and
N.Borkar, “An80-tile 1.28tflopsnetwork-on-chipin65nm cmos,”in
IEEEInternational SolidState Circuit Conference, 2007.

[35]D.Wentzlaff, P.Griffin, H.Hoffman, L.Bao, B.Edwards, C.Ramey,
M.Mattina, C.-C.Miao, J.B.III, andA.Agarwal, “On-chipintercon-
nectionarchitecture ofthe tile processor,”IEEEMicro, pp.15–31, 2007.

[36]S.Woo, M.Ohara, E.Torrie, J.Singh, andA.Gupta, “The SPLASH-2
programs:Characterizationandmethodologicalconsiderations,”inISCA-
22, June 1995.

[37]J.Zebchuk, E.Safi, andA.Moshovos, “A frameworkforcoarse-grain
optimizationsinthe on-chipmemoryhierarchy,”inMICRO-40, 2007.


