Virtual Tree Coherence: Leveraging Regions and In-Network Multicast Trees for
Scalable Cache Coherence

Natalie D. Enright Jerger

Li-Shiuan Peh

Mikko H. Lipasti

Dept of Electrical and Comp. Engineering Dept of Electrical Engineering Dept of Electrical and Comp. Engineering

University of Wisconsin-Madison
Madison, WI 53706
Email: natalie.d.enright@gmail.com

Abstract

Scalable cache coherence solutions are imperative to drive
the many-core revolution forward. To fully realize the massive
computation power of these many-core architectures, the com-
munication substrate must be carefully examined and stream-
lined. There is tension between the need for an ordered inter-
connect to simplify coherence and the need for an unordered
interconnect to provide scalable communication. In this work,
we propose a coherence protocol, Virtual Tree Coherence
(VTC), that relies on a virtually ordered interconnect. Our vir-
tual ordering can be overlaid on any unordered interconnect to
provide scalable, high-bandwidth communication. Specifically,
VTC keeps track of sharers of a coarse-grained region, and
multicasts requests to them through a virtual tree, employing
properties of the virtual tree to enforce ordering amongst
coherence requests. We compare VTC against a commonly used
directory-based protocol and a greedy-order protocol extended
onto an unordered interconnect. VIC outperforms both of these
by averages of 25% and 11% in execution time respectively
across a suite of scientific and commercial applications on
16 cores. For a 64-core system running server consolidation
workloads, VIC outperforms directory and greedy protocols
with average runtime improvements of 31% and 12%.

1. Introduction

As transistor scaling affords chip architects the ability
to place more and more cores on-chip, the coherence and
communication substrates are going to become a significant
performance bottleneck. Already we are seeing dozens of cores
available on-chip from Intel [34] and Tilera [35]. Efficient
coherence mechanisms are required to continue scaling these
systems into the future.

Throughout the literature, there are two predominant classes
of cache coherence: broadcast-based protocols and directory-
based protocols. Both classes exhibit problems for emerging
many-core chip multiprocessors. Broadcast protocols do not
scale well in performance and power since they rely on a
central ordering point for all coherence requests and flood
the interconnect with broadcast requests. Directory protocols
provide greater scalability by distributing the ordering points to
various directories; but latency penalties are paid for traveling

This research was supported in part by the NSF under grants CCR-0133437,
CCF-0429854, CCF-0702272, CNS-0509402, the MARCO Gigascale Systems
Research Center, an IBM PhD Fellowship, as well as grants and equipment do-
nations from IBM and Intel. The authors would like to thank Ravi Rajwar and
the anonymous reviewers for their comments and suggestions on improving
this work.

Princeton University
Princeton, NJ 08544
Email: peh@princeton.edu

University of Wisconsin-Madison
Madison, WI 53706
Email: mikko@engrwisc.edu

to and accessing these ordering points. In large multi-chip
multiprocessor systems, it is fairly easy to add extra bits to
memory for directory storage and use directories to build
scalable coherence protocols. However, to make performance
acceptable for on-chip usage, directory information must be
stored on-chip (not as part of off-chip memory as is done in
distributed systems). Caching directory information on chip
represents substantial overhead; this additional area could
be better utilized for other CMP components, such as the
processing cores.

In [22], significant directory cache miss rates were ob-
served for commercial workloads (up to 74%). Directory cache
miss rates will become an even more significant performance
problem with server consolidation workloads. Multiple server
workloads sharing the same resources on chip will touch
large amounts of memory, placing enormous pressure on these
directory caches. So, while directory protocols do provide
designers with scalability; they do so with significant perfor-
mance degradations when directory indirections and directory
misses are factored in.

Even with hundreds to thousands of cores on-chip, in
the common case, only a few processors need to observe
a given coherence request. With the single-writer, multiple-
reader protocol invariant, only cores that are actively caching
a block need to be made aware of a pending write to that block.
Since providing global coherence, such as a broadcast, across
thousands of nodes is impractical from both a performance and
a power standpoint, a logical solution is to maintain coherence
amongst just the current subset of readers. Infrequently, it will
be the case that every core on-chip does need to observe a
coherence request; this case must be handled correctly but not
necessarily quickly.

In short, to address these key shortcomings of broadcast and
directory-based protocols, the desirable properties for scalable
on-chip coherence are:

o Limit coherence actions to the necessary subset of
nodes: This will reduce power consumption and inter-
connect pressure.

« Fast cache-to-cache transfers: Send request to sharers
as quickly as possible avoiding overheads of directory
indirections.

« Limited bandwidth overhead: Limit unnecessary broad-
casts to entire chip; only communicate amongst the subset
of sharers where coherence needs to be maintained.

« Limited storage overhead: Make efficient use of on-chip
directory cache storage and cache tag array storage.

The need for scalable coherence is not a new one; however,

the tight integration and the abundance of on-chip resources
provide a new set of opportunities in which to explore this
significant challenge. The tight coupling and integration of
dozens of computation elements on-chip necessitates the co-
design of various components of the memory hierarchy. This
work specifically leverages the important interplay of the on-
chip interconnection network and the cache coherence protocol
to achieve scalable on-chip coherence.

Specifically, in this paper, we propose Virtual Tree Coher-
ence (VTC), which targets and achieves each of the above
attributes of an ideal scalable on-chip coherence protocol:

Limit coherence actions to the necessary subset of nodes:
We use virtual trees to connect and order sharers, with requests
multicast through these virtual trees so coherence actions are
limited to true sharers and not broadcast to all nodes. These
virtual trees are the virtual circuit trees recently proposed to
support efficient multicasting in on-chip networks [14] and
can be mapped onto any unordered interconnect, thus enabling
scaling to many-core chips.

Fast cache-to-cache transfers: The root of each virtual tree
is used as the ordering point where all requests are first sent to
and ordered, much like the home node of a vanilla directory
protocol. However, as the root is one of the sharers and not a
statically mapped home node that may be far away, the cost
of indirection is reduced considerably.

Limited bandwidth overhead: By multicasting coherence
only to the current sharers, VTC avoids the bandwidth over-
head of broadcast-based protocols, while approaching their
benefit of fast cache-to-cache transfers.

Limited storage overhead: VTC allocates virtual trees for
sharers of coarse-grained regions [9], [26], rather than per
cache line. The sharers of each region are tracked in local
structures and are guaranteed to completely capture all current
sharers of a region. Tracking on a coarse granularity allows
VTC to reduce the state that needs to be maintained, and limits
storage overhead.

We show that VTC improves performance by an average
of 25% (16-core) and 31% (64-core) over a directory protocol
and reduces interconnect bandwidth by an average of 35% (16-
core) and 68% (64-core) over a broadcast protocol.

The rest of this paper is organized as follows: background
information on the underlying interconnection network and
recent coarse grain optimizations is provided in Section 2.
The proposed coherence ordering mechanism, Virtual Tree
Coherence is explained in Section 3 with its implementation
details discussed in Section 4. Results are presented in Section
5 followed by related work in Section 6. Finally the paper is
concluded in Section 7.

2. Background

Two key considerations for a coherence protocol are the
network and the storage of state information. In this section,
we provide background on the use of coarse grain tracking of
coherence state as well as the multicast network design that
we leverage for Virtual Tree Coherence.

2.1. Regions

In conventional systems, information about cache coherence
is maintained on a per-block granularity. However, by tracking
coherence information across multiple contiguous addresses (a
region), more optimizations can be enabled. A region is defined

as a contiguous portion of memory consisting of a power of
two number of cache blocks. A cache line address maps to one
and only one region and will map to the same region for all
processors.

Coarse Grain Coherence Tracking (CGCT) [9] has been
proposed to eliminate unnecessary broadcasts in order to
improve the scalability of broadcast-based systems. Requests
to non-shared regions of the address space can send a request
directly to the memory controller rather than order their request
on the broadcast bus which is a precious and limited resource.
Tracking sharing patterns on a coarser granularity than cache
lines can take advantage of spatial locality and reduce the
storage overhead associated with maintaining this information.
RegionScout [26] makes similar observations about the benefits
of tracking information on a coarse granularity for coherence
purposes.

Tracking coherence state on a region granularity has several
benefits. If a processor holds a region exclusively, it can
upgrade any cache line in that region to a modified state
without sending a request to other processors. If a processor
knows no other core is caching a region, it can send its cache
miss directly to memory without snooping those caches. The
CGCT work tracks if other cores are caching a region; we
expand this to encompass not only if but who is caching each
region.

The structures required by CGCT and RegionScout have
been generalized in RegionTracker [37] to scalably incorporate
additional functionality. Specifically, RegionTracker replaces a
conventional tag array with region tracking structures, and is
shown to achieve comparable performance to a conventional
fine-grained tag array with the same area budget. With Region-
Tracker, one structure is used to encompass the functionality of
both the fine-grained tags of a conventional cache and maintain
additional information about larger regions. For details on how
RegionTracker achieves this low overhead, we refer the reader
to [37].

Further distinguishing this work from previous proposals
that used region tracking structures to filter away unnec-
essary broadcasts [9], [26], perform DRAM-speculation [3],
and prefetching [10], Virtual Tree Coherence leverages these
structures to keep track of the current set of sharers of a region.
Additional bits are thus added to the Region Vector Array
(RVA) of RegionTracker to track the current region sharers
and the region root node (these additions will be discussed in
Section 3). The low overhead design of RegionTracker allows
us to optimize for region based sharing with only a very modest
area increase over a conventional L2 cache design.

2.2. Virtual circuit tree multicasting (VCTM)

To reduce bandwidth overhead, Virtual Tree Coherence
utilizes multicasting to send requests to sharers within a region,
rather than broadcasting to all nodes. However, as state-of-the-
art on-chip networks do not support multicasting (due to the
high hardware overhead of providing such support), multicast
functionality has to be synthesized by sending multiple uni-
cast messages destined for multiple nodes. This creates high
bandwidth overheads which translate to high interconnect delay
and power, reducing the attractiveness of multicast coherence
protocols such as Virtual Tree Coherence.

Recently, a lightweight multicast network design, Virtual

Circuit Tree Multicasting (VCTM), that can be implemented
within the tight delay, area and power budgets of on-chip
networks has been proposed [14]. VCTM makes multicast co-
herence protocols such as the Virtual Tree Coherence proposed
here viable for CMPs.

VCTM essentially overlays virtual multicast trees on any
unordered interconnect (e.g. mesh, torus, hierarchical meshes).
Figure 1(a) illustrates how a multicast message will have to
be realized with multiple unicasts in a network that does not
support multicasting. VCTM observes that it is much more
efficient (in both power and bandwidth) to only replicate the
messages at forks in the tree. In this example, a message is
thus sent from A to the closest nodes B and C and then those
messages are in turn forwarded to the remaining leaves (Figure
1b). Finally, in Figure lc, it is shown how VCTM maps the
logical tree to an underlying mesh network.

Each tree is associated with a fixed tree route from the
source to the destinations in the multicast destination set. This
tree route is set up upon the first multicast to a set, with
setup packets snaking through the network to build up the
tree. The tree route information is then stored in virtual circuit
tree (VCT) tables at each router along the path. Subsequent
multicasts to the same set of sharers reuse this tree route by
looking it up in VCT tables. At each intermediate router in
the network, the packet follows the predetermined tree route,
while network resources (virtual channels [12] and buffers)
are granted on a per-hop basis so as to maintain high network
bandwidth.

As may be evident from this brief description of VCTM, its
performance improvement and power savings are predicated
on reuse of the multicast tree, as tree reuse amortizes the
setup time of the tree route, and reduces the size of the
VCT table needed. This makes a VCTM network particularly
suited for VTC: VTC use a multicast tree per coarse-grained
region, and reuses this multicast tree for all requests to sharers
of this region. In the rest of this paper, we will discuss
how Virtual Tree Coherence leverages VCTM to lower its
bandwidth overhead, and how VCTM needs to be modified
to support the ordering properties required by VTC.

3. Virtual Tree Coherence

Most cache coherence protocols rely on an ordering point
to maintain correctness. In directory-based protocols, the di-
rectories serve as an ordering point for requests. With bus-
based protocols, the bus serves as the ordering point for
requests. Recently several proposals have leveraged the partial
ordering properties of a ring to facilitate cache coherence [24],
[31], [32]. Exploiting the partial ordering properties of a ring
eliminates some of the disadvantages of using a bus; however,
there are some downsides. A ring is a significantly less
scalable topology than a mesh or torus. Logically embedding
a ring into a mesh topology [32] provides a higher bandwidth
communication for data but still suffers from large hop counts
and lower bandwidth for ordering requests.

Virtual Tree Coherence observes that ordering can be
achieved through structures other than a ring or a bus, in
particular, through a tree. Specifically, rather than realizing
ordering through a physical tree interconnect [16], Virtual
Tree Coherence maintains coherence through virtual trees.
These trees are embedded into a physical network of arbitrary
topology by VCTM, with a virtual tree connecting the sharers

of a region. The root of this virtual tree now serves as the
ordering point in place of a directory protocol’s home node.

Virtual Tree Coherence is a hierarchical protocol. At the first
level, snooping is achieved through logical trees. At the second
level of the protocol, the coarse directories provide the caches
with information about which processors must be involved in
first level snooping.

In a nutshell, every request is first sent to its virtual tree root
node (obtained from the local region tracking structure). This
root node orders the requests in order of receipt, then multicasts
requests to all sharers of the region through a VCTM virtual
tree for that region. The above works for all current sharers.
New sharers, however, need to take a 2-level approach: they
have to first go to the directory home node to obtain the root
node. This new sharer will then be updated into the local region
tracking structure and added incrementally into the virtual tree.

Virtual Tree Coherence results in several benefits. First,
the root node can be strategically selected to be one of the
sharers to cut down on latency, especially when sharers are
physically clustered close by. In a conventional directory, the
directory home node for an address is statically defined given
an address, and is thus not necessarily a sharer. Second,
latency is low, comparable to a broadcast-based protocol, since
we do not need to collect acknowledgments nor wait for a
directory lookup; messages that reach the root node begin their
tree traversal immediately. Third, bandwidth overhead is low
compared to a broadcast-based protocol, as only the current
sharers are involved in the multicast, not all nodes.

3.1. Walk-through Example

TABLE 1
STEPS CORRESPONDING TO FIGURE 2

[6)) Both A and B issue requests to the root to modify the same
block owned by F with A,B,E,F caching this region, E is the
root node for this region

(2a) | E receives B’s root request and it becomes ordered.
(2b) | E receives A’s root request, it becomes ordered after B

3) E forwards B’s request to all leaf nodes of the region tree

A sees B’s request has been ordered prior to its own request
A knows it will receive data from B after B has completed

A must invalidate its existing copy so as not to read stale data

(@) E forwards A’s request to all leaf nodes of the region tree

B sees its own request forwarded from E. B knows its request
has been ordered. B does not need to wait for acknowledgments
F sees B’s request and responds with the Data

%) B receives the Data response from F and completes its
transition to Modified State. A,B,F see A’s ordered request

6) B invalidates its Modified copy and sends the data to A

(@) A receives the data from B and completes its transition to
Modified State

An example of Virtual Tree Coherence is illustrated in
Figure 2 with the corresponding step descriptions presented
in Table 1. In this example, Node E is the root of this region’s
tree; as such, all requests to addresses within that region must
be ordered through Node E.

In the example, A and F are initially caching the block
in question (A has the block in shared state and F has the
block in owned state). Both invalidate their blocks when they
see B’s request from the root node. This prevents A from
reading a stale copy of the block after B has written it.
Invalidation acknowledgments are unnecessary with VTC for
writes to complete since the virtual trees are snoop-based. This

A O T

(a) Multicast message from A to
B-G realized as multiple unicasts

(b) Logical multicast tree

O

()
O

(c) VCTM: Logical multicast tree
mapped to mesh

Figure 1. VCTM Overview

@

(a) Time 1-2

Figure 2.

Za® @R;@QD

(b) Time 3-5

7-m M-

(c) Time 4-7

Virtual Tree Coherence Example: This example illustrates two exclusive requesters to the same address

in the tree-order protocol. Dashed and curved arrows represent messages originating at or intended for B, solid and
straight arrows represent messages originating at or intended for A. E is the root node for the region being accessed.

is analogous to the lack of acknowledgments in a snooping bus
protocol. With VTC, a write can complete when it sees its own
request returned from the root node.

Currently we use a first touch assignment policy to deter-
mine the root node. When the first system-wide request for a
region is made to the directory, the requester will become the
root node. The directory stores the identity of the root node
as well as the sharing vector for each region block. Other root
assignment policies could be employed; however, the impact
of these policies as well as root migration is left for future
work.

3.2. Ordering

Virtual Tree Coherence provides the following ordering
invariants:

 Ordering Point: Each region is mapped to a single order-
ing point so all requests to the same address will go to
the same ordering point. This is achieved by assigning
a single virtual tree per region, and having the root of
that virtual tree as the ordering point. Requests are then
unicast to the tree root. This is similar to the use of a
directory as an ordering point.

o Sharers observe the same ordering of requests: requests
multicast from the root node must arrive at leaf nodes in
the same order. Logically, the tree needs to maintain the
ordering of a bus: sending a request to the root node of
the tree is equivalent to arbitrating for the bus (observing

the forwarding of one’s request from the root node is
equivalent to gaining access to the bus). All requests sent
out from the root of the tree will be in a total order. In
other words, requests on the same virtual tree must not be
reordered by the underlying physical interconnect. This is
achieved by modifying VCTM to ensure that each virtual
tree is tied to a single virtual channel.

Cores caching a block must see all coherence requests to
that block: A multicast must contain all current sharers.
Additional non-sharing cores can be included but never
fewer. This is achieved with the second-level directory
always having a complete list of the sharers. When a non-
sharer requests a block, it must first get the sharing list
from the directory and be added to the sharing list at
that time. Then when the Tree Root multicasts the new
sharer’s request to all sharers, the current sharers will add
the requester to their sharing list so that region sharing
lists at the L2 cache are kept up-to-date.

Write serialization: Ordering through the root node serial-
izes all writes to the same address region. In Section 4.2,
we discuss how that write order is preserved through the
network from the root to all leaf nodes. Requests to the
same virtual tree maintain a total order. Since write order
is maintained from the ordering point to the leaf nodes,
invalidation acknowledgments are not necessary.

Write propagation: A write can complete once it sees
its ordered request returned from the root node; this

guarantees that any subsequent request to that cache block
by any processor will receive the new value written. It is
essential that all cores caching the region be involved in
the virtual tree; stale values are invalidated when the root
forwards the write request to all leaf nodes.

3.3. Coherence States, Requests, Actions

Coherence information is maintained at the processor at
two granularities. The local last-level cache (L2) maintains
coherence state information on a cache block granularity.
Coherence information is then maintained by RegionTracker,
encompassing multiple contiguous cache blocks. On a per-
region granularity, we track which external cores are caching
the region and the location of the root node for this region.

CGCT was first proposed for SMP systems; on clean-shared
misses a request would go directly to the memory controller
rather than waste precious bus bandwidth. Since our work deals
with a many-core CMP, we want requests to stay on-chip to
save miss latency. Therefore, clean-shared misses are multicast
to other cores caching the region. Table 2 gives an overview
of the steps taken based on the region state for loads, stores
and upgrades. Numbers with multiple parts (e.g. 1a and 1b)
indicate actions that occur in parallel.

When a core replaces a region, it notifies the root node for
that region to remove it from the sharing list. The root node
will then construct a new tree for that region with one fewer
leaf node. The other cores caching the region do not need
to be notified since only the root is responsible for sending
coherence requests to all sharers.

3.4. Relationship between trees and regions

To maintain coherence, all cores caching a region must see
coherence requests to that region. A single tree is maintained
at the root node for that region. Remember, an address maps
to only one region; so that address participates in a single
tree connecting all sharers. All requests use this tree; it is not
possible for a single region to map to multiple trees. If that
is allowed, it would mean that different cores had different
sharing lists for that region and incoherence would result.
Multiple regions can map to the same tree; this simply means
that multiple regions are being shared by the same set of
processors with the same root node. If all cores are caching
a region (for example, a lock variable), a single tree will be
constructed at the root node with all cores as leaf nodes.

4. Implementation

The following section details issues related to the hardware
implementation of Virtual Tree Coherence. Specifically, we
first present high-level changes to the system architecture. Next
we discuss the requirements placed on the underlying intercon-
nection network to preserve coherence ordering. Finally, we
discuss the area overheads of additional structures.

4.1. High level Architecture

Figure 3 presents a high level diagram of the architecture
we are proposing. Each node consists of a core, private L1
instruction and data caches. Modifications are made starting at
the private L2 cache; the key structures for this architecture are
highlighted with bold borders. A RegionTracker sits alongside
the Level 2 cache and maintains sharing lists for currently
cached address regions; this structure also encompasses the

L2 Cache
Data Array

Region [Coarse
Tracker Dir

Router

AIIocatorsI
(110
| <
VCT Table |

Core +L11/D
Cache

Figure 3. Hardware Architecture Diagram

functionality of the Level 2 tags, thus resulting in very small
area overhead. The directory at each node is coarse grained
and also contains sharing lists but is decoupled from the private
L2 cache as regions are distributed across all the directories
in the system. Upon a miss in the RegionTracker, a request
has to go to the directory to obtain the current sharing lists,
thereby refreshing the RegionTracker. Entries are evicted from
the RegionTracker in an LRU fashion. The packet-switched
router has been modified to include VCTM extensions, in
particular the virtual circuit tree (VCT) table. For details about
the VCT overheads, we refer the readers to [14].

4.2. Network design

Virtual tree construction. VCTM maintains a small con-
tent addressable memory (CAM) of currently active trees at
the network interface of each node. RegionTracker provides
the destination set required for the coherence request to the
network interface controller which then searches the CAM to
determine if there exists an active tree for this destination set. If
a tree exists, the CAM returns the Virtual Circuit Tree Id which
is used to index into the VCT lookup tables at each router. If
no match is found in the CAM, a new tree must be setup; this
is done with low overhead, per the VCTM mechanisms.

When a sharer has been added to a region, this will result in
a new destination set being provided to the network interface
controller. This will likely trigger a new tree setup unless that
destination set is being actively used by another region. Region
sharing lists are decoupled from Virtual Circuit Trees; multiple
regions can map to a single tree.

Preserving order in the network. We modify VCTM to
restrict virtual channel allocation so as to maintain the ordering
invariants associated with a tree. Specifically, requests must not
be reordered from the time they depart the root node to the time
they arrive at each leaf node. An unrestricted virtual channel
allocation policy would permit such a reordering, leading to a
leaf node seeing a different order than other leaves. As such,
each region is assigned a single virtual channel. All requests
for that region must use the same virtual channel and cannot
change virtual channels at intermediate nodes in the network. It
should be noted that here, ordering only needs to be maintained
within a single virtual tree, not across the entire network.
Hence, different regions and different trees can be assigned
to different virtual channels, which will avoid degrading the
network performance.

Scalability. As the number of nodes in the network grows,
VCTM requires additional storage for multicast trees. Each
node in the network is allocated a portion of the Virtual

TABLE 2
VIRTUAL TREE COHERENCE

Region State Cache Miss | VTC Coherence Actions

Invalid: Load/Store
no information
about remote

copies of region

1. Request Region Destination Set Information from Directory

2. Directory responds with region sharing list

3. Region state set to Exclusive/Modified if sharing list is null
else Region State is set to shared

4. Load/Store actions performed according to steps below

Shared:

Other cores are
caching the region
(may be clean/dirty)

Load

la. Send Read Request to Root Node

1b. Request data from memory: speculative memory request (partially overlap mem. latency w/ ordering)
2. Request is ordered by Root Node and forwarded to region sharers

3. Observe own request - ordered w.r.t. other requests to this address

4. Multicast sharers caching data, respond to Read Request with Data

5. If data not on chip, wait for memory response.

Store

. Observe own request

(Y R SNV)

Ta. Send Store Request to Root Node
1b. Request data from memory: speculative memory request
. Request is ordered by Root Node and forwarded to region sharers

. Region sharers caching data, response to Store Req. w/ Data and invalidate own copy
. Receive data from multicast sharer or wait for memory response if not cached on chip
Once observed own request and received cache line, it is safe to perform store

Upgrade

BN~

. Sent Upgrade Request to Root Node
. Root Node Forward Upgrade to all sharers
. Region sharers caching data observe upgrade request and invalidate cache block
. If Observe other store/upgrade request, another request ordered before own
Invalidate cache line, now request that was ordered prior to mine will supply fresh data
. else if Observe own request, Upgrade complete

Exclusive Load

or Modified:

. No other cores caching region - request does not need to be ordered
. Send Read Request to Memory

No other core Store

caching region

. No other cores caching region - request does not need to be ordered
. Send Store Request to Memory

. Can upgrade without sending message

—[= o = b0 —[L

Upgrade
Replace -

2b. Notify root of invalidation

. Invalidate all copies cached in region
2a. Send Region Invalidate Acknowledgment to Directory

3. Directory removes sharer from sharing list for region

Circuit Tree tables located in each router. If 64 trees are
allocated to each core, in a sixteen node system, this will
result in 1024 entries in each VCT table. With 64 cores in
the system, this grows to 4096 entries. (Note: the size of
each VCT entry remains the same, with Destination Set CAM
entries widened to account added destinations). As the system
grows, so do the number of unique trees; however, server
consolidation workloads will not realistically access a large
percentage of trees. To better scale the VCTM mechanism,
we propose replacing the original Destination CAM (used to
track active trees at the network interface controller) with a
Ternary CAM (TCAM). A TCAM allows us to collapse similar
trees by specifying “don’t care” bits in the search for an active
tree. This will allow us to £if on an active tree that includes
all necessary destinations for our request with some extra
unnecessary destinations included in the tree. To prevent the
use of tree collapsing from driving up bandwidth, we restrict
the maximum size of a similar tree to be within 2 links of the
original tree. As a result, 8 trees per core can achieve the same
performance and hit rates as 64 trees per core, greatly reducing
the storage requirements at each router. Additionally trees with
many destinations can map to a single broadcast tree as well.
4.3. Storage overheads

The storage overheads of Virtual Tree Coherence stem
largely from three components: (1) the RegionTracker structure
in each core, (2) the second-level coarse-grained directory
cache in each core, both adding to the storage overhead,
but (3) as RegionTracker obviates the need for L2 tags, L2
tag array storage overhead is saved. Additionally, the second-
level coarse-grained directory cache replaces the fine-grained
directory cache required for the baseline directory protocol.

7
c
L 6
1]
()
Ep°
584 —
5 & 3 W 64B
a v 2 -
[1KB
E 1
z = 4KB
2 ¢ F = ¢ 5 2 8
g2 s £ & 38E
g o F B @ ©O T 3
v oG x o«
Figure 4. Characterization of Sharers by Region Size

The sizes of these three components clearly depend on the
size of a region, R.

To arrive at R, we perform a characterization study across
our suite of benchmarks. In Figure 4, we present the sharing
patterns for a variety of scientific and commercial workloads
based on various region sizes. Similar to what has been
previously observed [7], [19], the number of sharers for a
cache block (cache block size = 64B) is small. As the region
size increases (16 and 64 cache lines), the number of sharers
increases slightly; this increase is a result of false sharing.
Sending multicasts to an increased number of cores will utilize
additional bandwidth but at a substantial area savings for
tracking this information. Previous work leveraging regions
has used a 1KB region size; similarly, we believe this is a
good trade-off between area overhead and multicast sharing
information.

The original RegionTracker proposal consumes area compa-

rable to a conventional L2 tag array assuming 1KB regions and
an 8MB data array. We’ve added additional bits of information,
specifically 16 bits to track the multicast sharing vector and 4
bits to track the multicast root node, for 16 cores. The region
array size per core is determined by Equation 1 in terms of N,
number of cores and region geometry (e.g. RSets, number
of sets in Region, RegSize, size of each region, RWays,
the associativity of the region array). Each entry contains
the Region Tag, 3 bits of state, IV bits for the multicast
sharing vector, logs(N) bits to identify the root and 4 bits
of state per cache line (validbit + way) in the region. This
design includes per-region storage for both the root node
and the sharing vector; however, only the root node needs
to be responsible for maintaining the current sharing vector,
while each sharer can just maintain the identity of the root
node. Storage requirements could be reduced by removing
the sharing vector from the RegionTracker and employing a
second structure for the root node to look up the sharing vector
associated with that region.

RegionArraySize = (Tag + 3 + N + loga(N)+
(RegSize/CacheLineSize) x 4) x RSets x RWays

For example, assuming a 50 bit address, 1KB regions, 1024
region sets, and 8 region ways, we find the region array size
to be 113 KB. Our simulation parameters assume a L2 cache
of 1MB, where the size of conventional cache tags would be
74 KB.

The second level directories also consume area; however,
compared to a conventional fine-grained directory, coarse-
grained directories have significantly greater memory reach
which improves performance by reducing the directory miss
rate. Computing the directory size (in bits) is done using
Equation 2, assuming each directory entry contains /N bits for
the sharing vector and logs (V) bits to identify the owner node
(in a conventional directory) or log2 (V) bits to identify the tree
root with VTC. Directory sizes assuming 1024 directory sets
and 16 directory ways are presented in Table 3.

(1

DSize = (Tag + N + loga(N) + 3) x DirSets x DirWays
2
Bit requirements for the baseline configuration (a conven-
tional L2 + fine-grained directory cache) are compared against
the RegionTracker + coarse-grained directories in Table 3, with
the parameters detailed above. We see VTC has a 21% storage
overhead over the baseline directory-based protocol.
However, this storage overhead can be tuned by reducing
the size of the coarse-grained directories, since a single entry
in the coarse-grained directory covers 16 times more memory
than a corresponding entry in a fine-grained directory, with a
region size that is 16 times a cache line size. So, we can reduce
the coarse-grained storage to trade off the storage overhead of
RegionTrackers, while still being able to cache and cover more
memory than conventional fine-grained directories. Setting the
number of bits of the fine-grained directory + conventional
L2 tag array = coarse-grained directory + RegionTracker, we
have enough bits for a smaller coarse grain directory composed
of 690 sets and 16 ways. With 690 sets and 16 ways, the small
(area-equivalent) coarse-grained directory can cache 11MB of
memory versus 1MB of memory that is cacheable with the
fine-grained directory.

Using the same number of sets and ways in both the fine-
and coarse-grained directories, the coarse-grained directory +
RegionTracker configuration consumes 21% more bits. More
geometries could be explored to find additional area and
memory-reach trade-offs.

TABLE 3
STORAGE COMPARISONS IN KBITS

Conventional Directory-Based Protocol
Conventional L2 Tag Array [592
Fine-Grained Directory | 896
Virtual Tree Coherence

RegionTracker 904
Coarse-Grained Directory 864
Area-equivalent Coarse-Grained Directory | 582

(a) Storage Breakdown

Conventional L2 Tag Array + Fine-Grained Directory 1488
RegionTracker + Coarse-Grained Directory 1768
RegionTracker + Area-equivalent Coarse-Grained Directory | 1486

(b) KBit Totals

4.3.1 Scalability. In Section 4.2, we discussed a TCAM tech-
nique to improve the scalability of VCTM for larger systems.
For other added hardware discussed in this section, we consider
scalability issues as the number of cores in the system grows.
First, we expect that much larger regions will provide benefit
for systems running server consolidation workloads. Coarse
address regions will include more false sharing but will still
keep virtual machines isolated from one another providing
performance benefits and scalability.

A concentrated mesh (CMESH) [5] has been proposed for
large systems. A CMESH groups four cores to one single
router; so a 64-core system would require a 4x4 mesh. This
clustering can be applied to our storage structures as well; 4
cores can share a region array, last level caches and a coarse
grain directory to reduce the amount of required storage. A
CMESH will also reduce pressure on the VCTM hardware;
multicasts can be routed to network nodes and then broadcast
to the 4 tiles connected to each router.

5. Evaluation

In the following sections, we present our evaluation method-
ology as well as detailed information regarding the baseline
systems, followed by results.

5.1. Methodology

We use PHARMSsim, a full system multiprocessor simulator
[8], [18] built on SIMOS-PPC. Included in our simulation
infrastructure is a cycle-accurate network model including
pipelined routers, buffers, virtual channels and allocators for
both the baseline packet-switched mesh and the routers aug-
mented with VCTM. Our simulation parameters are given
in Table 4. Results are presented for the following commer-
cial workloads: TPC-H and TPC-W [33], SPECweb99 and
SPECjbb2000 [30] and several Splash2 workloads [36]. Details
for each workload are presented in Table 5. We compare
Virtual Tree Coherence against two baselines, a directory pro-
tocol and a greedy-order protocol which are explained below.

TABLE 4
SIMULATION PARAMETERS

TABLE 6
STEPS CORRESPONDING TO FIGURE 5

Cores [16 in-order & 64 in-order cores |

Memory System |

L1 I/D Caches (lat)
Private L2 Caches

32 KB 2 way set assoc. (1 cycle)

1 MB (16 MB total) 8-way set assoc.
(6 cycles), 64 Byte lines

1024 sets, 8 ways, 1KB regions

RegionTracker
(associated with each L2)
Memory Latency

500 cycles
Interconnect |
Packet Switched Mesh

3 Pipeline Stages
8 VCs w/4 Buffers per VC
64 Trees per source node (1024 total)

VCTM

Statistical simulation is used to quantify overall performance
with 95% confidence intervals [4].

We have configured our simulation environment to support
server consolidation workloads [15], [25] for up to 64 cores.
For the server consolidation workloads, we create homoge-
neous combinations of each of the commercial workloads listed
in Table 5; e.g. we run 4 copies of SPECjbb to create a 64-
core workload. Each virtual machine is scheduled to maintain
affinity among the threads of its workload.

TABLE 5
BENCHMARK DESCRIPTIONS

[Bench. | Description |

SPECjbb Standard java server workload utilizing 24 warehouses,
executing 200 requests

SPECweb | Zeus Web Server 3.3.7 servicing 300 HTTP requests

TPC-W TPC’s Web e-commerce benchmark, DB Tier

TPC-H TPC’s Decision Support System Benchmark, IBM DB2 v6.1
running query 12 w/ 512MB database, 1GB of memory

Barnes 8K particles, full end-to-end run including initialization

Ocean 514x514 full end-to-end run (parallel phase only)

Radiosity -room -batch -ae 5000 -en .050 -bf .10 (parallel phase only)

Raytrace car input (parallel phase only)

5.1.1 Baselinel: Directory-based Coherence. The first base-
line we evaluate VTC against is a standard Directory protocol
modeled after the SGI-Origin protocol [17]. This protocol suf-
fers from the latency overheads associated with an indirection
through a directory on each cache miss. Additionally, to make
this protocol amenable for a many-core architecture, directory
caches must be used. Misses to these directory caches suffer
the latency overhead of going off-chip to memory and can be
quite frequent for server workloads and even more frequent
for server consolidation workloads. For a set of commercial
workloads, miss rates between 22 and 74% have been observed
[22].

5.1.2 Baselinell: Greedy order region coherence. Greedy
order protocols have been proposed for ring interconnects [6],
[24], [29] and overlaid atop unordered interconnects [32]. Here,
as a second baseline, we map and optimize a greedy order
protocol that can leverage the region tracking structures and
multicast network that VTC uses. The key difference is that
VTC relies on the virtual tree for ordering, while greedy order
does not.

In greedy order protocols, requests are ordered by the current

M
@
3)
@

Both A and B issue requests to all processors caching region

to modify a block owned by F with A,B,E,F caching this region
A’s request reaches B and is replicated and forwarded to E and
F. B’s request reaches E and F

A’s request reaches F

B’s request reached F (Owner) first, so B’s request will win

E and F respond with acknowledgments to A and B’s request.
B gets an owner acknowledgment from F

F transitions from owned to invalid

A receives E’s acknowledgment, B receives E’s acknowledgment
A receives F’s acknowledgment, B receives F’s owner
acknowledgment

B knows its Modified request will succeed, it sends a negative
acknowledgment to A

A receives a negative acknowledgment from B, it has now
collected all acknowledgments and did not succeed so it will
acknowledge B’s request and it must retry its own request

B collects its final acknowledgment from A and successfully
transitions to Modified State.

®)
(©)

@)
®

©)

owner. Requests are live as soon as they leave the requester; in
other words, they do not need to arbitrate for a shared resource
such as a bus or pass through a central ordering point such as
a directory. A request becomes ordered when it reaches the
owner of the cache block (another cache or memory). In the
common case when no race occurs, these requests are serviced
very quickly because they do not require the additional latency
of an indirection through a directory. In [24], requests complete
after they have observed the combined snoop response that
trails the request on a ring. Based on the combined response,
a request is successful or must retry.

Mapping and extending Greedy-Order protocols onto an un-
ordered interconnect such as a mesh requires acknowledgments
to be collected from all relevant processors. Also, extending
to regions rather than individual cache lines mean that ac-
knowledgments have to be collected only from cores that are
caching that particular address region rather than all cores. So,
the number of acknowledgments that are expected is derived
from the sharing vector in the region cache. The collection of
acknowledgments is similar to the combined response on the
ring but requires more messages. This is also similar to the
process of collecting invalidates in a directory protocol. The
owner sends an owner acknowledgment signifying the transfer
of ownership. If no owner acknowledgment is received, then
another request was ordered before this one and this request
must retry. Greedy-Order can be applied in a broadcast fashion
as well, where no sharers are tracked and acknowledgments are
gathered from every processor. An example of Greedy-Order
is depicted in Figure 5 and walked through in Table 6.

5.2. Results

In the following sections, we present quantitative perfor-
mance results comparing Virtual Tree Coherence against our
two baselines. Additionally, we present a comparison between
Virtual Tree-Multicast (VT-M) and Virtual Tree-Broadcast
(VT-B). With VT-B, a virtual tree connects all nodes; however,
regions are used to designate the root node so that there is not
a single root bottleneck. Significant network bandwidth and
dynamic power can be saved by limiting coherence actions to
multicasts instead of broadcasts.

In Figure 6, results are presented for Greedy-Order Mul-
ticasting, Virtual Tree Broadcast and Virtual Tree Multicast

(a) Time 1-3

(b) Time 4-6

9. Retry 8. Success!

(c) Time 7-8

Figure 5. Greedy Order Example: This example illustrates two exclusive requesters in the greedy-order region protocol.
Dashed and curved arrows represent messages originating at or intended for B, Solid and straight arrows represent
messages originating at or intended for A. Time is progressing from left to right in the figure.

Coherence. All results are normalized to Baselinel: Directory
Coherence. Overall, significant performance gains are achieved
by VT-B and VT-M, up to 39% and 38% respectively (19% and
25% on average) when compared to the directory protocol. Vir-
tual Tree Coherence outperforms Greedy-Order by up to 31%
with an average improvement of 11%. In a 4x4 system, the
differences between VT-B and VT-M are minor; however, as
systems scale, the difference between these two become much
more pronounced with favorable results for VI-M (Figure 6b).

In a couple of instances, notably, TPC-H and SPEC;jbb,
VT-B outperforms VT-M. With larger memory footprints, and
irregular access patterns, these workloads experience much
larger region miss rates which incur additional overhead to
re-fetch region information from the second-level directory.
For SPECjbb and TPC-H, 21% and 18% of L2 misses also
result in region misses; the rest of the workloads experience
region miss rates of less than 10%. SPECweb sees only a small
performance improvement from VTC (5%); SPECweb sees
the sharpest increase in traffic which limits the performance
improvement. Techniques to improve the region hit rate and
lower the number of false-sharers will lead to performance
improvements for SPECweb.

In Figure 6b, the difference between VT-B and VT-M
becomes more pronounced, VI-M outperforms VT-B by an
average of 11% and up to 16%. With a 64-core system,
broadcasting becomes more expensive (both in performance
and power). VI-M provides more isolation for the virtual
machines; coherence requests are only sent to nodes involved
in sharing. VT-B sends broadcasts to all nodes (across multiple
virtual machines).

In Figure 6, Greedy-Order, VI-B and VT-M, all leverage
the benefits of VCTM. On a non-VCTM packet-switched
mesh, the peformance of VI-M degrades by an average of
15%. Greedy-Order which places significant pressure on the
interconnect due to retries sees performance degradations of
48% when VCTM is removed. VCTM simplifies ordering
of coherence requests in the network and is essential for
performance improvements and scalability. Without VCTM,
in a 64-core system, VI-B sends out 63 coherence packets
for each cache miss which saturates the network.

Both VTC and directory protocols require the indirection
to the ordering point for coherence requests. VTC derives
performance benefit in part from reducing the cost of these
indirections. With VTC, the hop count to the ordering point

13
g 12
= 11
1
S 0.9 M Greedy-Order
[. .
< 08 Multicast
o 0.7 B
E 0.6 ~ EmVT-B
®© 0.5 B
€ o4
) VT-M
z 2§38 % 3 ¢ 5§28 %
O 2 g o £ g g8 g&c0C
w O & a c 2 2 & g
a w [= o O % Z E
“oa S e
(a) Performance of single workloads on 16 cores
o 1.2
£ 11
€ 1
2 09 B Greedy Order
T 08 - Multicast
N 0.7 A
T 06 - mVT-B
E .
5 0.5 - -
Z 04 - VT-M

SPECjbb
SPECweb
TPC-H
TPC-W
Average

(b) Performance of 64-core server consolidation workloads

Figure 6. Performance of Coherence Protocols.

is reduced by 15% for 16-core and 50% for 64-core since the
root node is a region sharer. Furthermore, on average 4.2z
more coherence requests are ordered in zero hops with VTC
than with the directory protocol.

The interplay between region size and the efficiency of a
VCTM network is an interesting motivation for the need to co-
design the coherence protocol and the interconnect. Choosing
small regions results in a much larger number of unique trees
that are needed; this large number of unique trees causes the
virtual circuit trees to thrash in the network. The virtual circuit
tree hit rate in the interconnect ranges from 78% to 99%
for 1KB regions; the hit rate drops to 65% to 95% for 64B
regions as depicted in Figure 7. With a lower hit rate there

£ 1
€ 095
o
T 0.9 4
@ 0.85 -
Y 08 64
S
= 075
3 07 - 1024
E 065 -
S e 4096
£ 2 ¢ I 3 8 § Z 8
= o 2 @) d c] Q e
> b S a & 5] o =]
& o = = o O T Z
(%] & o o
Figure 7. Impact of Region Size on Virtual Circuit Tree

Hit Rate (16 cores)

are more tree setups in the network; recall from the original
VCTM proposal, tree setup requires replication of the multicast
message into many unicasts resulting in a short burst of traffic
during the setup phase which impacts interconnect latency
and throughput. As a result, 1KB region which suffers from
a modest amount of false sharing compared to 64B regions,
actually has 3% less interconnect traffic by making better
use of virtual circuit trees. With 4KB regions, performance
is similar to 1KB regions; with slight degradations observed
for SPECweb and Ocean.

Restricting a virtual tree to a single virtual channel is
neccesary to maintain in network order; however with a
large number of available trees, we are able to use network
bandwidth efficiently and only see a degradation of 3% in end-
to-end network latency (versus an unrestricted virtual channel
allocation).

5.2.1 Activity Comparisons. Figure 8 shows the network
activity (based on link traversals by flits) for each coherence
protocol relative to directory coherence. Of course, directory
coherence has the lowest interconnect traffic since nearly all
of the messages are of a unicast (point to point) nature (in-
validation requests from the directory are the exception). Data
traffic is similar for each protocol; the main difference lies in
the required coherence traffic. Greedy-Order requires the most
interconnect bandwidth of all the protocols, averaging 3.8z
the number of link traversals as the directory protocol. VT-
M consumes less network bandwidth than VT-B, 35% usage
reduction on average, with the most significant reductions of
68% for SPECjbb and 40% for Ocean. A large fraction of
Ocean’s references are memory misses; VI-M will optimize
and go directly to memory if no other cores are caching the
region. These memory misses are broadcast to all cores in
VT-B resulting in a bandwidth spike when compared to VT-M
and Greedy-Order. The interconnect traffic difference between
VT-B and VT-M grows from 35% with 16 cores to 68% with
64 cores. VI-M requires 1.6x more traffic than a directory
protocol for 64 cores.

Network activity is only part of the story for power con-
sumption differences in VI-B and VT-M. VT-B will consume
significantly more power since all caches will snoop all coher-
ence requests; VT-M eliminates a significant fraction of cache
accesses required with VT-B. The retries in Greedy-Order also
increase the number of cache accesses required.

2 7 D
t
=§ 6 ata
Eos B Coherence
@
c 4 + u
c
g3
[
E 2 T il
- 1 B -
= ° ol |Z|D ° ° ° =] = T 1| =
I B R R R R
(U] (] o (U] o (U] (] o
SPECjbb ‘SPECweb TPC-H ‘ TPC-W Barnes | Ocean |Radiosity|Raytrace
Figure 8. Interconnect Traffic Comparison Normalized

to Directory for 16 cores (measured in link traversals by
flits)

5.3. Discussion

In the previous sections, we illustrated that VTC could pro-
vide substantial performance improvements over a directory-
based protocol. VIC Broadcast performs well without the
need to track multicast sharing groups; however, the broadcast
protocol places heavy demands on the interconnection network
and consumes significant unnecessary power limiting its ability
to scale.

VTC largely out-performs Greedy-Order, but there are a
few benchmarks where Greedy-Order does slightly better. The
key downside to Greedy-Order protocols is that they can have
an unbounded number of retries when certain race conditions
occur (which can lead to starvation). In practice, we found
the number of retries to be small (fewer than 10 retries per
1000 L2 misses) with a few exceptions: Radiosity and TPC-
H exhibit large numbers of retries, 696 and 327 for 1000 L2
misses, which accounts for the large spike in traffic for Greedy-
Order. An additional downside of a Greedy-Order protocol on
a mesh as compared to its use on a ring, is the additional
messages required. With no combined snoop response, there
is a significant increase in acknowledgment messages placing
high bandwidth demands on the interconnect.

In addition to the problem of retries, the Greedy-Order
protocol makes no use of the implicit ordering properties of the
underlying network functionality. Greedy-Order only utilizes
the virtual multicast trees to overcome the overhead associated
with multicasting on a mesh network. Greedy-Order also places
substantially more pressure on the VCTM hardware; with
VTC, each region has at most one tree. With Greedy-Order,
each region sharer creates its own tree resulting in a forest of
trees for widely shared variables.

In Section 1, we posited 4 key features of a scalable coher-
ence protocol for many-core architectures. Here we examine
how well VTC achieves these goals.

« Limit coherence actions to the necessary subset of
nodes: Coherence requests are seen by an average of 4
cores with 1KB region sizes. Increasing the region size
trades off storage overhead at the expense of more un-
necessary cores becoming involved in coherence requests.
For example, with a region size of 4KB, on average 10%
more cores see a coherence requests.

« Fast cache-to-cache transfers: The ordering point, the
virtual tree root is located at one of the region sharers
reducing the latency of ordering a request. Virtual Tree

Coherence outperforms Directory Coherence by 25% on
average, a direct result of fast cache-to-cache transfers.
VTC out-performs Greedy-Order by an average of 11%
by avoiding retries.

o Limited bandwidth overhead: VTC reduces on-chip
bandwidth utilization by an average of 35% over a broad-
cast protocol and 45% over a greedy protocol. We increase
on-chip bandwidth utilization by a factor of 2.1z over
a directory protocol. Only in one instance (SPECweb)
did this bandwidth increase result in limited performance
improvement.

o Limited storage overhead: In our modified system Re-
gionTracker + Coarse-Grain Directories consume 21%
more area than the baseline L2 tags + Fine-Grain Di-
rectories. However, with this increase in area comes
significantly more reach for our directories. The coarse
directories are able to touch 16x more memory with
1KB regions and the same number of directory entries.
Additionally, with a fixed area budget (baseline: L2 Tags
+ Fine-Grain Directories, VTC: RegionTracker + Coarse-
Grain Directories), the Coarse Grain Directories have a
4% lower directory cache miss rate than the Fine-Grain
Directories. Considerable performance improvement is
possible with VTC without incurring large area overheads.

o Scalability: With a 64-core system, VTC outperforms
both a directory protocol and VT-B by an average of 31%
and 15% respectively.

6. Related Work

Cache coherence research has been of significant interest
in both single and multi-chip multiprocessor systems. A vari-
ety of protocols have been proposed/implemented to achieve
performance and scalability on both ordered and unordered
interconnects. We contrast these prior works with Virtual Tree
Coherence in the following sections.

6.1. Ordered Interconnect

Multicast snooping and destination set prediction [7], [19]
use prediction mechanisms to determine which processors will
likely need to see a coherence request. In contrast, our work
determines exactly who must be included in a multicast. Extra
cores might be contained in the destination set but never
fewer cores than necessary. These protocols rely on a totally
ordered interconnect for sending out multicast requests. Our
design relaxes this constraint, permitting a higher performance
interconnect. Requests to the same address region use the
same virtual tree and are restricted to using the same virtual
channel as prior requests to the same address region. This
virtual channel restriction prevents messages from becoming
reordered with respect to each other in the network.

Bandwidth Adaptive Snooping [21] employs a hybrid proto-
col that achieves the latency of broadcasting when bandwidth
is plentiful but converts to a directory style protocol when
bandwidth is limited. This work relies on a totally ordered
interconnect but overcomes some of the pressure that large
snooping systems can place on the interconnect.
6.2. Unordered Interconnect

Token coherence provides the token abstraction to decou-
ple performance from correctness [20]. Several variants of
Token Coherence have been proposed including one based
on broadcasts and one on directories. TokenB, the broadcast

Token protocol requires more bandwidth than multicasting with
Virtual Tree Coherence. Extensions have been proposed for
multi-chip CMP based systems in [23].

Virtual hierarchies [25] propose cache coherence variations
targeting server consolidation workloads running on chip mul-
tiprocessors. One proposal utilizes two levels of directories
to provide fast local coherence and correct (and substantially
slower) global coherence (with the observation that global co-
herence is rare). The other proposal still utilizes local directo-
ries for fast coherence within a server application and a backing
broadcast protocol for global coherence. The alternative of
utilizing a local broadcast backed by a global directory protocol
is mentioned but not explored. The coherence mechanism
in this work is similar to the latter case. First of all, we
examine a different hierarchy than what is proposed in Virtual
Hierarchies. As such, we do not provide a direct quantitative
comparison; however, we do provide some points that further
distinguish our proposal.

Some of the performance improvements of Virtual Hierar-
chies are predicated on the ability of the scheduler to provide
locality between communicating and sharing cores or threads.
Virtual Hierarchies will work when locality is not preserved,
however, we believe that the coupling of multicast coherence
with a fast multicast substrate (VCTM) results in superior
performance. Virtual Tree Coherence will support flexible
placement and scheduling of communicating threads, whereas
the benefits achieved with Virtual Hierarchies are predicated
on physical proximity.

The actions of the second level directories in Virtual Tree
Coherence are very simple unlike directories in other hier-
archical protocols. Virtual Hierarchies requires a very large
number of states and transitions in the coherence protocol to
accommodate two levels of directories; this is not the case for
Virtual Tree Coherence. The directories contains the sharing
list of each region that is cached anywhere on chip, the identity
of the tree root for that region, and whether a block is owned
on-chip or if memory is the owner.

In-Network Cache Coherence [13] replaces directories by
embedding sharing information in tree structures within the
network. These virtual trees (different from VTC’s virtual
circuit trees) are used to locate data on-chip. When a request
is en-route to the directory, it can bump into a tree which will
redirect the request to the appropriate core that is sharing the
cache block. This optimization targets the directory indirection
latency and can lead to fewer interconnect hops to find a valid
cache line.

However, with In-Network Coherence, depending on the
route taken by a request, a sharer may be nearby, but the
request may miss it and still have to make its way the whole
stretch to the directory. In such scenarios, VTC will perform
better. Cache misses that do bump into a tree in In-Network
Coherence will be satisfied more quickly than requests that
have to travel significant distance to the root node in VTC.
It should be noted though that in VTC, it is always the case
that the root node is a sharer of the region, which may be
closer than the statically-mapped directory node in In-Network
Coherence. Also, VTC utilizes coarse-grained tracking which
requires less storage overhead than the per-line, per-hop storage
needed in In-Network Coherence.

UnCorq [32] broadcasts coherence requests on an unordered

interconnect (e.g. a mesh) and then orders snoop responses via
a logical ring. Similarly, we utilize the ordering implied by
logical trees to maintain coherence; however, we order requests
via virtual trees rather than responses. An additional difference
is the use of multicasting instead of the full broadcast used
by UnCorq. Greedy-Order bears some similarity to UnCorq;
requests are sent to sharers quickly without regard to order.
UnCorq then orders responses via a logical ring, whereas
Greedy-Order uses the owner to order requests.

Trees have also been leveraged in previous proposals to build
more scalable directories for large distributed shared memory
machines [11], [28]. These trees are used to reduce storage
overhead but the directories still serve as the ordering point.

6.3. Network Designs Cognizant of Cache Coherence

In addition to relevant work in the domain of cache co-
herence protocols, VIC also examines the requirements that
are placed on the interconnect to maintain correctness. These
requirements have also been examined in prior work.

The Rotary Router [1], [2] provides mechanisms to maintain
the ordering of coherence requests in the network and prevent
coherence deadlock within the interconnect. Buffer resource
allocation is divided up between dependent messages to pre-
vent dependent messages from deadlocking in the network due
to unavailable resources. In-order delivery is guaranteed by
forcing ordered messages to traverse the same path.

Another common solution to avoiding deadlock and prevent-
ing message reordering is to dedicate a separate virtual network
to each class of coherence message (e.g. requests vs responses),
where each virtual network has distinct virtual channels. This
technique is employed by the Alpha 21364 [27]. VTC forces
the underlying network to deliver coherence requests in order
by restricting a virtual tree to use a single virtual channel.

7. Conclusion

This work proposes a new coherence protocol for many-
core architectures, Virtual Tree Coherence. Unordered inter-
connection network topologies such as a mesh or a torus can
be overlaid with an ordering invariant to more easily facilitate
cache coherence mechanisms. We utilize one such network,
Virtual Circuit Tree Multicasting to realize Virtual Tree Co-
herence as a scalable on-chip cache coherence solution that
improves performance by an average of 25% over a directory-
based protocol. By relying on coarse-grained region coherence
state, we reduce the on-chip storage overhead for coherence
state substantially, without the expected negative side effects
of false sharing and coherence thrashing. Instead, we employ
efficient on-chip multicasting to reach all nodes in the sharing
set, and maintain a total order of messages to the same region
by restricting each tree to single virtual channel. Virtual Tree
Coherence is simple in concept and implementation since it
relies on a straightforward ordering invariant based on a logical
tree. In summary, we have extended the fruitful space of
region-based optimizations to include a scalable multicasting
protocol. Extending Virtual Tree Coherence to the domain of
server consolidation workloads [15], where sharing is generally
limited to within a virtual machine and to subsets of cores
within that VM results in even more substantial benefits with
an average improvement of 31%.

References

(1]
(2]
(3]
(4]
(5]
(6]
(7]

(8]

(9]
[10]
(1]
[12]
[13]
[14]

[15]
[16]

[17]
(18]

[19]

[20] M.

(21]
[22]
(23]

[24]
[25]
[26]
[27]

(28]
[29]

[30]
[31]

[32]

[33]
[34]

[33]

[36]

[37]

P. Abad, V. Puente, and J. Gregorio, “Reducing the interconnection
network cost of chip multiprocessors,” in NOCS, 2008.
P. Abad, V. Puente, J. Gregorio, and P. Prieto, “Rotary router: an efficient
architecture for cmp interconnection networks,” in 7SCA4, 2007.
N. Aggarwal, J. Cantin, M. Lipasti, and J. E. Smith, “Power-Aware
DRAM Speculation,” in HPCA-12, 2008.
A. R. Alameldeen and D. A. Wood, “Variability in architectural simula-
tions of multi-threaded workloads,” in Proceedings of HPCA-9, 2003.
J. Balfour and W. Dally, “Design tradeoffs for tiled cmp on-chip
networks,” in International Conference on Supercomputing, 2006.
L. A. Barroso and M. Dubois, “The performance of cache-coherent ring-
based multiprocessors,” in ISCA-20, 1993.
E. Bilir, R. Dickson, Y. Hu, M. Plakal, D. Sorin, M. Hill, and D. Wood,
“Multicast snooping: A new coherence method using a multicast address
network,” in Proc. of ISCA, May 1999.
H. Cain, K. Lepak, B. Schwarz, and M. H. Lipasti, “Precise and
accurate processor simulation,” in Workshop On Computer Architecture
Evaluation using Commercial Workloads, 2002.
J. F. Cantin, M. H. Lipasti, and J. E. Smith, “Improving multiprocessor
performance with coarse-grain coherence tracking,” in ISCA-32, 2005.
, “Stealth prefetching,” in International Conference on Architectural
Support for Prugrammmg Languages and Operating Systems, 2006.
Y. Chang and L. N. Bhuyan, “An efficient tree cache coherence protocol
for dlstrlbuted shared memory multiprocessors,” IEEE Transactions on
Computers, vol. 48, no. 3, 1998.
W. J. Dally, “Virtual-channel flow control,” in ISCA, 1990.
N. Eisley, L.-S. Peh, and L. Shang, “In-network cache coherence,” in
International Symposium on Microarchitecture, 2006.
N. Enright Jerger, L.-S. Peh, and M. H. Lipasti, “Virtual crrcuit tree mul-
ticasting: A case for on-chip hardware multicast support,” in Proceedings
of ISCA-35, 2008.
N. Enright Jerger D. Vanatrease, and M. Lipasti, “An evaluation of server
consolidation workloads for multi-core desrgns in /[ISWC, 2007.
K. Gharachorloo, M. Sharma, S. Steely, and S. V. Doren, “Architecture
and design of AlphaServer GS320,” in Architectural Support for Pro-
gramming Languages and Operating Systems, 2000.
J. Laudon and D. Lenoski, “The SGI Origin: a ccNUMA highly scalable
server,” in ISCA-24, 1997.
K. M. Lepak, H. W. Cain, and M. H. Lipasti, “Redeeming IPC as a
performance metric for multithreaded programs,” in Proceeding of 12th
PACT, 2003, pp. 232-243.
M. M. K. Martin, P. J. Harper, D. J. Sorin, M. D. Hill, and D. A. Wood,
“Using destination-set prediction to improve the latency/bandwidth trade-
off in shared-memory multiprocessors,” in Proceedings of the 30th ISCA,
June 2003.

M. K. Martin, M. D. Hill, and D. A. Wood, Token coherence:
Decoupling performance and correctness,” in ISCA-30, 2003.
M. M. K. Martin, D. J. Sorin, M. D. H111 and D. A. Wood “Bandwidth
adaptive snooping,” in HPCA—8, 2002.
M. R. Marty, “Cache coherence techniques for multicore processors,” in
PhD Dissertation, University of Wisconsin - Madison, 2008.
M. R. Marty, J. D. Bingham, M. D. Hill, A. J. Hu, M. M. K. Martin, and
D. A. Wood, “Improving multiple-cmp systems using token coherenece,”
in HPCA, February 2005.
M. R. Marty and M. D. Hill, “Coherence ordering for ring-based chip
multiprocessors,” in MICRO-39, December 2006

, “Virtual hierarchies to support server consolidation,

2007

A. Moshovos, “Regionscout: Exploiting coarse grain sharing in snoop-
based coherence.” in ISCA- 32, 2005.

S. S. Mukherjee, P. Bannon, S. Lang A. Spink, and D. Webb, “The
Alpha 21364 network architecture,” IEEE Micro, vol. 22, no. 1, pp. 26—
35, 2002.

H. Nilsson and P. Stenstrom, “The scalable tree protocol - a cache
coherence approach for large-scale multiprocessors,” in /PDPS, 1992.
B. Sinharoy, R. Kalla, J. Tendler, R. Eickemeyer, and J. Joyner, “Power5
system mlcroarchitecture IBM Journal of Research and Development,
vol. 49, no. 4, 2005.

SPEC, “SPEC benchmarks,” http://www.spec.org.

K. Strauss X. Shen, and J. Torrellas, “Flexible snooping: Adaptive
forwarding and ﬁltering of snoops in embedded ring multiprocessors,”
in International Symposium on Computer Architecture, 2000.

, “Uncorq: Unconstrained snoop request delivery in embedded-ring
multiprocessors,” in MICRO-40, 2007.

TPC, “TPC benchmarks,” http://www.tpc.org.

S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan,
P. Iyer, A. Singh, T. Jacob, S. Jain, S. Venkataraman, Y. Hoskote, and
N. Borkar, “An 80-tile 1.28 tflops network-on-chip in 65nm cmos,” in
IEEE International Solid State Circuit Conference, 2007.

D. Wentzlaff, P. Griffin, H. Hoffman, L. Bao, B. Edwards C. Ramey,
M. Mattina, C.-C. Miao J. B. 111, and A Agarwal “On- chip intercon-
nection architecture of the tile processor,” IEEE Micro, pp. 15-31, 2007.
S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The SPLASH—2
programs: Characterization and methodological considerations,” in I/SCA-
22, June 1995.

J. Zebchuk, E. Safi, and A. Moshovos, “A framework for coarse-grain
optimizations in the on-chip memory hierarchy,” in MICRO-40, 2007.

” in ISCA-34,

