
Not Quite My Tempo:
Matching Prefetches to Memory Access Times

Mark Sutherland Ajaykumar Kannan Natalie Enright Jerger
Dept. of Electrical and Computer Engineering, University of Toronto

{suther68,kannanaj,enright}@ece.utoronto.ca

Abstract
Modern prefetchers can generally be divided into two categories,

spatial and temporal, based on the type of correlations they at-
tempt to exploit. Although these two types have different advan-
tages, and perform well on different application sets, a design that
utilizes both types of information will be able to achieve greater
prefetch accuracy. We address the lack of temporal information in
the state-of-the-art Spatial Memory Streaming (SMS) prefetcher by
proposing Tempo, a novel banked implementation of SMS that fur-
ther classifies cache accesses within the same physical page based
on the repetitive miss latency, or tempo, present in the local ac-
cess stream. Evaluated on the SPEC CPU2006 benchmark suite,
Tempo reduces useless prefetches by 17.6%, and achieves 1.45%
and 2.57% increase in IPC on high and low bandwidth memory
configurations over a purely spatial SMS design.

1. Introduction
In a modern, energy-constrained design space, a good prefetcher
should prioritize improving IPC through accurate and timely
prefetches, rather than simply opting for a very aggressive con-
figuration that may pollute the on-chip caches and/or waste en-
ergy due to wrongly prefetching useless blocks. For example, the
seminal Stride prefetcher [1]captures a very common data access
pattern that often arises from tight loops in the instruction stream.
Due to its simplicity, it has been included in many commercial mi-
croarchitectures such as IBM’s POWER4 [12] and POWER5 [3].
However, Srinath et al. demonstrate the over-prediction inherent in
these simple prefetchers, proposing Feedback Directed Prefetching
(FDP) which increased performance by 6.5% and reduced mem-
ory bandwidth by 19% by dynamically monitoring cache pollution
and adjusting prefetch aggressiveness [11]. Sandbox prefetching is
another method that relies on dynamically tracking accuracy, with
the important addition of a Bloom filter that tracks prefetches pre-
viously confirmed as “useful” from 16 candidate prefetchers [7].

The Spatial Memory Streaming (SMS) prefetcher [9] partially
addresses the problem of over-prediction. Proposed to capture the
more complex memory behaviour present in commercial work-
loads, SMS exploits the spatial correlation oft present in the ac-
cess pattern of the same code fragment [4], and tracks these cor-
relations over large regions of memory (i.e., an operating system
page). However, the design of SMS lacks information about the
temporal characteristics of an application’s memory access stream.
This is a significant impediment to the performance of SMS on sci-
entific and engineering workloads, as their memory access patterns
can be more accurately predicted by temporally-ordered prefetch-
ers based on a Global History Buffer (GHB) [2, 6]. Later work aug-
ments SMS with temporal information also in the form of a GHB;
this STeMS prefetcher achieves approximately 3% speedup over
the original SMS design [10] and requires megabytes of off-chip
storage for its temporal metadata.

This paper presents Tempo, an improvement on the SMS
prefetcher, which is based on the observation that many applica-

Figure 1: Example of spatial correlation in a database page [9].

tions have memory access patterns that follow a repetitive tempo, or
time between cache accesses. Time-Aware Stride (TAS) prefetch-
ing embeds counters within a Stride prefetcher to distinguish be-
tween different access times [13]. With Tempo, we learn from their
insights and apply similar principles to selectively issue timely
prefetches, increasing performance while judiciously conserving
energy expended on off-chip accesses.

2. Spatial Memory Streaming Background
The SMS prefetcher tracks repeated access patterns within a vari-
able size region of memory, generally chosen to be one physical
page [9]. This can capture complex access patterns exhibited in
commercial and server workloads. Figure 1 shows an example of
these patterns occurring in a database’s buffer pool, where each
page will have specific elements that are always read before access-
ing and modifying the data. SMS captures these page-level access
patterns by storing bit vectors (referred to as spatial patterns) where
each set bit represents a block that was accessed and can apply to
any page at prefetch time. At prefetch time, the first access in any
spatial region (regardless of its location inside the page), is referred
to as the trigger access, and will generate prefetches for each block
whose bit is set in the pattern vector.

To learn the access patterns inside any spatial region, SMS
inspects the cache access stream and records each block that is
accessed in the current region inside the Active Generation Table
(AGT), which tags each entry with the upper page bits. Upon
evicting of any block in the current region being tracked, SMS
transfers the pattern history vector and its tag to the Pattern History
Table (PHT). This eviction serves as a delimiter for the current
spatial pattern being generated, due to the desire to have all of the
blocks accessed by one pattern simultaneously in the cache. Upon
seeing a new trigger access, SMS searches through the PHT for
a tagged entry matching the current PC. If a match is found, the
blocks in the spatial pattern are prefetched into the local cache.

2.1 Limitations of SMS
A disadvantage of using SMS is that it lacks temporal informa-
tion about the order of the blocks that are part of a spatial region
generation. This problem is exacerbated when we increase the spa-
tial region size, since a large number of bits may be set inside this

1



PHT:	  0001111001011110100101101	  

T1:	  0001100001000000000100101	   T2:	  000011000011110100001000	  

….. 

Figure 2: Decomposition of a PHT entry into multiple tempo-based
patterns.

pattern vector. Additionally, we observe that many applications ex-
hibit traversals of the same set of cache lines, but in a different
order than during the AGT training process. Note that during the
later traversals, although the same PC does access all the predicted
cache blocks recorded by SMS, the prefetcher does not have the
capability to predict the correct order to prefetch these blocks in.
Given that we do not want to saturate the memory system with
prefetch requests, significant performance gains could be attained
from a system that would enable SMS to only issue prefetch re-
quests for a timely subset of cache blocks that will be referenced in
the near future.

3. Tempo-Based SMS Prefetcher
The Tempo prefetcher further classifies the cache accesses within a
spatial region into multiple sets, based on a new timeliness compo-
nent. Adding this information during training gives the prefetcher
the capability to request the most timely or useful blocks at prefetch
time. Our notion of timeliness is similar to the TAS prefetcher, in
the form of a global miss counter that ticks whenever an L2 miss oc-
curs [13]. We define the cache time delta as the difference between
the global miss counter between two consecutive cache accesses.
By gathering memory traces and statistics from the applications
comprising SPEC CPU2006, we observe the same PC generating
misses in the L2 cache with varied cache time deltas, hereafter re-
ferred to as tempos. An example pattern might be PC A generat-
ing three cache misses to blocks A, A+5, and A+15 with the miss
counter equal to 2, 6, and 11; this access sequence has tempos of 4
and 5, respectively.

3.1 Implementing PC-Localized Tempo Filtering
Now that we have added temporal information to each memory
access, we can use this information while training the Tempo
prefetcher. In Figure 2, we show how a dense pattern representing
a large number of memory accesses can be filtered into multiple
pattern vectors, each representing a distinct access tempo. This
is implemented in hardware by splitting both the AGT and PHT
into multiple disjoint slices, where the AGT only sets the bits for
the cache accesses that were recorded by that PC with that par-
ticular tempo. Our tempo values are similar to those of the TAS
prefetcher [13]: a cache access tempo of less than 4 is classified as
fast, from 4-9 is medium, from 9-15 is slow, and over 15 is very
slow. We implement this filtering process in hardware by includ-
ing a small number of local tempo buffers (LTBs) in the Tempo
prefetcher, which are indexed by a strong hash of the PC and store
the last three tempos observed for that particular PC. Therefore,
during a new spatial region generation, each L2 cache access cal-
culates the average tempo inside its respective LTB, and sets the
correct bit in the AGT slice which corresponds to that LTB value.
Figure 3 shows this process. During training, each PC will hash
into one of 32 LTB’s, calculate the average of the last 3 observed
access tempos, and record the access to the current cache block
in the pattern vector that corresponds to this access tempo. Upon
observing an eviction to any cache block in this spatial region, all
slices of the AGT that are usable by this access tempo are sent to
the PHT. Usable slices are those which correspond to the access
tempo at eviction, including those with slower tempos.

4 2 5 

12 8 9 

1 3 1 
PC Hash 

LTB Age 

T0:00000010010	   T2:	  0100110010	  … 

AGT Slices 

Figure 3: Updating the AGT based on a hash of the local tempo
buffer.

3.2 Prefetching Based on Memory Tempo
The process of generating prefetch addresses is similar to how ad-
dresses are classified based on access tempo. We make the key ob-
servation that we can choose which address candidates to issue as
prefetches based on the current utilization of the memory system.
Tempo has already classified the blocks recorded during this spatial
generation into one of four distinct tempos, but that in itself is not
enough to ensure prefetch timeliness. This is because the memory
system may respond to our prefetches at different rates. For exam-
ple, if the memory controller is currently heavily loaded with many
outstanding requests, it will naturally respond to our demand ac-
cesses and prefetches more slowly, and vice versa if it has many
free resources to handle incoming requests.

Therefore, as we defined the notion of the current access tempo
for a particular PC, we also define the memory tempo by storing
a checkpoint of the global miss counter (Section 3) in every L2
MSHR when it is allocated for a new demand request. When a
demand request is filled into the cache and the MSHR is freed, we
calculate the delta between the current miss counter and the value
returned from the MSHR. This memory tempo is stored in a single
global tempo buffer (GTB) which tracks the last seven observed
memory tempos. We use this memory tempo information when
Tempo observes a trigger access; the current local access tempo
(from the LTB’s) is compared against the current tempo of the
memory system (in the GTB), allowing us to make an informed
decision about which slices of the current spatial region that we
wish to use for prefetching. Figure 4 further explains this process
with a step by step walkthrough:

1. The current PC sees a demand request to address B+2.

2. We look up the current tempo for this PC in the LTB, and get
an average tempo of 6.

3. All elements of the GTB are averaged to obtain a memory
tempo of 11.

4. Therefore, the PC is rushing ahead of the tempo at which the
memory is returning demand requests, making it likely that if
we issue aggressive prefetches from the fast and medium slices,
they will not return in time to cover the incoming demand miss.

5. Tempo therefore chooses to issue prefetches from the slow and
very slow slices of the PHT, since it is likely that these cache
blocks will be returned to the L2 cache in time to cover demand
misses.

Also note that the inverse is true for the case where the GTB is
returning requests faster than the current PC is issuing them (this
is referred to as the PC dragging behind the memory’s tempo). In
this case, we can issue prefetches more aggressively from the faster
tempo slices, knowing that the memory system will likely return
these blocks in time for the upcoming demand accesses.

What differentiates the Tempo prefetcher from other existing
priority schemes is the fact that our priority scheme is proactive

2



Tempo	  
Decoder	  PC: Load [B+2] 

6 

LTB Age 

8 4 
6 

1 2 

10 
GTB Age 

12 9 14 14 9 10 
12 

3 

T2:00000010010	   T3:	  0100110010	  
AGT Slices 

…. 4 

Prefetch “Slow & V. Slow” 5 

Figure 4: Tempo Prefetching Walkthrough

Data Structure Components (each en-
try)

Budget

AGT (64 entries, 4 slices)
2-way Assoc

Tags: 64b addr - 12
Pattern Vectors: 63
Offset: 12
PC:14

36096b × 2 =
72192 bits

PHT (256 entries, 4
slices) 2-way Assoc

Tags: 14b PC
Pattern Vectors: 63

78848b × 2 =
157696 bits

MSHR Structures (16) Tags: 64b addr - 12
Valid: 1
Time Counter: 10
Cycle Counter: 64b

2032 bits

Local Tempo Buffers(32) Each: 3-wide
Time Counter: 10b

960 bits

Global Tempo Buffer (1) Buffer: 7-wide
Time Counter: 10b

70 bits

AMAT Registers(2) Cycle Counters: 64b 128 bits
Total Bits: 233,078 bits

Table 1: Hardware Storage Breakdown for Tempo

rather than retroactive. Feedback Directed Prefetching [11] relies
heavily on statistics such as prefetch accuracy and cache pollution
to dynamically throttle its stream-based prefetcher based on the
characteristics of the memory system. Although we do include
a very simple throttling mechanism in Tempo based on average
memory access time, the defining characteristic of our prefetcher
is how we actively measure the access and memory tempos during
training, and use that information to decide which prefetches to
issue. This scheme is also in contrast to the filtering method of
sandbox prefetching, which testing prefetches for accuracy and
then issues only accurate prefetches during the next PC traversal
of that respective cache region [7].

3.3 Hardware Storage Budget
Table 1 breaks down the hardware budget for Tempo. For sim-
plicity’s sake, we have chosen to implement each Tempo slice by
replicating each of the SMS structures four times. However, we
could represent each slice more economically by using a three bit
counter for every cache block, where different values would rep-
resent this cache block being accessed by different tempos, saving
25% of the storage. We also include an extra 32-bit cycle counter in
each MSHR to facilitate our simple throttling mechanism which is
based on the average memory access time (AMAT). However, our
experiments show less than 2% overall IPC impact from dynamic
throttling, so this is an optional level of complexity.

4. Evaluation
Using the Pin [5] tool provided in the DPC-2 framework [8], we
generate traces for SPEC CPU2006, compiled with GCC 4.0. We
fast forward each benchmark for 10 billion instructions into the re-
gion of interest, before gathering a trace of 100 million instructions.
The DPC-2 framework models an aggressive 6-wide pipeline that
can issue two loads and one store per every cycle, as well as a three
level cache hierarchy, with the following characteristics:

• 16kB, 8-way L1 cache, with 8 outstanding requests to the L2.
• 128kB, 8-way L2, with 10 cycle access latency to the tag array.

The L2 can have 16 outstanding requests to the L3.
• 1 MB, 16-way LLC.

Our prefetcher trains on the L2 access stream, prefetches into the
L2 cache, and can request its prefetches to be filled to the LLC if
the MSHR occupancy is greater than 10 out of the 16 available.

4.1 Results
To evaluate the performance of Tempo, we compare its performance
against a 32kB SMS prefetcher with pattern rotation using IPC,
cache miss rate and the number of useless prefetches. In Figure 5,
we compare the absolute IPCs achieved by Tempo and SMS, both
compared to a baseline that does not include any prefetching. These
results are for the “normal” configuration with a large LLC and a
memory bandwidth of 1600 MT/s. We have omitted comparisons
for gromacs, namd, soplex, povray, calculix, and omnetpp, as we
see essentially no variation in IPC for these applications. Tempo
achieves an average IPC increase of 1.45% over SMS for these
applications, with a 20.4% benefit on the most memory intensive
benchmark, mcf.

In Figure 7, we plot the number of useless prefetches issued by
Tempo, normalized to the baseline SMS prefetcher (values greater
than 1 correspond to an increase). Useless prefetches are undesir-
able for two reasons: they may simply never be referenced by the
processor, which wastes energy in moving an unused block into a
higher level cache, or potentially cause harmful cache pollution by
evicting cache blocks which are still useful. We find that our re-
ductions in useless prefetches are primarily due to the elimination
of prefetch requests from the faster tempo slices, particularly when
the memory is operating in the very slow tempo range.

However, we notice that in two benchmarks (libquantum and
omnetpp), the number of useless prefetches actually increases. In
both applications, Tempo issues a far greater number of prefetches
than SMS due to the fact that AGT and PHT entries have a poten-
tially longer lifetime than in an equally sized SMS prefetcher. In
Tempo, each of the AGT and PHT slices can individually remain
active as long as this PC is still generating requests at the match-
ing tempo, where SMS evicts the entire pattern vector on the first
eviction in the AGT, or tag conflict in the PHT. This discrepancy of
how pattern vectors are managed between the two prefetchers gives
Tempo the potential for more prefetch-generating PHT hits over
time. Figure 6 compares the performance of Tempo and SMS in
DPC-2’s low memory bandwidth configuration of 400 MT/s. When
operating in this restricted memory system, Tempo attains an IPC
increase of 2.57% over SMS for these benchmarks, due to the fact
that it judiciously issues more timely prefetches than SMS.

3



Figure 5: IPC for selected SPEC CPU2006 benchmarks.

Figure 6: IPC for selected SPEC CPU2006 benchmarks, measured in low bandwidth mode.

Figure 7: Reduction in useless prefetches for Tempo.

5. Conclusion
In this paper, we have described Tempo, an improvement to the
Spatial Memory Streaming prefetcher. Tempo makes use of the
observation that similar PCs tend to access the cache with regular
frequency to temporally classify spatial patterns within physical
memory pages, and significantly reduces untimely prefetches when
compared against a baseline SMS design.

References
[1] T.-F. Chen and J.-L. Baer. Effective hardware-based data prefetching

for high-performance processors. IEEE Tr. on Comp, 1999.

[2] M. Dimitrov and H. Zhou. Combining local and global history for
high performance data prefetching. JILP 13, 2006.

[3] R. Kalla, B. Sinharoy, and J. M. Tendler. IBM Power5 chip: A dual-
core multithreaded processor. IEEE Micro, 2004.

[4] S. Kumar and C. Wilkerson. Exploiting spatial locality in data caches
using spatial footprints. In Proc. of. ISCA, 1998.

[5] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: Building customized pro-
gram analysis tools with dynamic instrumentation. In Proc. of PLDI,
2005.

[6] K. Nesbit, A. Dhodapkar, and J. Smith. AC/DC: an adaptive data cache
prefetcher. In Proc. of PACT, 2004.

[7] S. Pugsley, Z. Chishti, C. Wilkerson, P.-F. Chuang, R. Scott, A. Jaleel,
S.-L. Lu, K. Chow, and R. Balasubramonian. Sandbox prefetching:
Safe run-time evaluation of aggressive prefetchers. In Proc. of HPCA,
2014.

[8] S. Pugsley et al. Dpc-2 simulation framework, 2015. URL http:
//comparch-conf.gatech.edu/dpc2/.

[9] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos.
Spatial memory streaming. In Proc. of ISCA, 2006.

[10] S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsafi. Spatio-
temporal memory streaming. In Proc. of ISCA, 2009.

[11] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedback directed
prefetching: Improving the performance and bandwidth-efficiency of
hardware prefetchers. In Proc. of HPCA, 2007.

[12] J. M. Tendler, J. S. Dodson, J. S. Fields, H. Le, and B. Sinharoy.
Power4 system microarchitecture. IBM Journ. Res. Dev., 2002.

[13] H. Zhu, Y. Chen, and X.-H. Sun. Timing local streams: Improving
timeliness in data prefetching. In Proc. of ICS, 2010.

4


