
Texture Cache Approximation on GPUs
Mark Sutherland Joshua San Miguel Natalie Enright Jerger

Dept. of Electrical and Computer Engineering, University of Toronto
{suther68,enright}@ece.utoronto.ca, joshua.sanmiguel@mail.utoronto.ca

Abstract
We present texture cache approximation as a method for using ex-
isting hardware on GPUs to eliminate costly global memory ac-
cesses. We develop a technique for using a GPU’s texture fetch units
to generate approximate values, and argue that this technique is ap-
plicable to a wide variety of GPU kernels. Applying texture cache
approximation to an image blur kernel on an NVIDIA 780GTX, we
obtain a 12% reduction in kernel execution time while only intro-
ducing 0.4% output error in the final image.

1. Introduction
Applications from domains such as computer vision and machine
learning are highly amenable to approximate computing; they op-
erate on noisy data and produce outputs whose precision can be re-
duced without noticeable impact on output quality [2, 3]. Such ap-
plications are also well-suited for the massive parallelism of graph-
ics processing units (GPUs). While approximation techniques have
already been proposed for GPUs [6, 7], we observe that these tech-
niques do not fully utilize the existing hardware capabilities of the
GPU, specifically, the texture hardware. We believe that this hard-
ware is well-suited to load value approximation, a technique that
approximates data values to avoid costly memory accesses [8]. This
paper proposes texture cache approximation on GPUs as a means
of eliminating global memory accesses and improving performance
with low application error.

2. Texture Hardware Background
Modern GPUs dedicate an increasing fraction of their resources
to a fast and flexible memory system. For example, NVIDIA’s
Fermi microarchitecture now includes a CPU-like multi-level cache
hierarchy, where each streaming multiprocessor (SM) has its own
private L1 cache, backed by a write-back shared L2 that services all
loads and stores to global memory. In this work, we primarily focus
on the 12kB private texture cache associated with each SM; each
SM also has 4 texture fetch units which are designed to exploit the
spatial locality of rendering 2D/3D textures and surfaces [4].

Textures are special objects that contain colour information
meant to give an on-screen object a particular appearance. Al-
though support for texture rendering is not strictly necessary, us-
ing a texture allows graphics artists to draw an entire object us-
ing far fewer polygons, saving critical draw time. The texture fetch
units that interface between threads and the on-chip texture cache
have the following advanced functionality that we utilize in this pa-
per: the ability to interpolate between two or more adjacent cache
entries, and automatic wrap-around for accesses that are out-of-
bounds. Interpolation is the most important feature in this work,
as it allows us to use floating point data as indexes for the texture
cache. Without the ability to interpolate in hardware, we would be
restricted to only integer benchmarks.

3. Texture Cache Approximation
Building on our previous work on load value approximation [8],
this paper proposes to use the texture hardware to generate approx-
imate values, which replace the exact values read from global mem-
ory and speed up execution by reducing memory stalls. Although

Figure 1: Texture cache approximation example using a local his-
tory buffer.

many types of approximations are possible (such as taking the last
value, or the average of the last N values), we choose to use delta
approximations, as they provide the best output accuracy. In this
work, we define a delta approximation as the difference observed
between two consecutively read global memory values; this stems
from our observation that input data that is either temporally or
spatially correlated also exhibits strong value locality. The approx-
imate value Xapx is the sum of the last exact data value and a delta
approximation read from the texture cache: Xlast+Dapx. Since the
Kepler memory architecture defines texture memory as read-only,
we cannot update any delta approximations at runtime; therefore
we pre-load the texture cache with a training set of delta approxi-
mations that is generated by analyzing the data access patterns of
each thread.

3.1 Offline Training
To generate our training set, we analyze the different deltas that
appear throughout the lifetime of one thread. We give each thread
its own local history buffer (LHB) in shared memory that stores
the last m values read from global memory in FIFO fashion. Upon
observing a memory access, we record the delta between the two
most recent elements in the LHB, paired with the delta between the
most recent LHB element and the value returned by the observed
memory access. Figure 1 illustrates this process for an image pro-
cessing kernel, where each thread reads a central pixel and the 8
pixels surrounding it. The current pixel under consideration is P4;
assuming that it has a value of 4, then the previous delta (between
the most recent LHB elements), would be 3 - 5 = -2, and the new
delta would be 4 - 3 = 1.

The use of delta approximations provides good accuracy for ap-
plications whose data tends to be distributed inside a fixed range;
if the input’s data range is unbounded, it is possible for the train-
ing set to contain very large delta approximations that may in-
troduce significant fluctuations in the final output. Our approach
works well when the application target naturally exhibits data-level
parallelism, where each thread processes independent items such
as pixels in an image or synapses in a neural network. Data-parallel
applications are naturally more error-robust as there is very little
value sharing between threads. This prevents the case where a small
number of poor approximations have a ripple effect on the data ac-
cessed by a large number of future computations. In general, tex-
ture cache approximation is well suited to data-intensive workloads
such as image processing, physics and computational simulations,

1



(a) precise (b) approximate

Figure 2: Comparison of precise and approximate blur filter outputs
(replacing 40% of global memory accesses).

0.80

0.85

0.90

0.95

1.00

1.05

baseline texture-20% texture-40% texture-60%

n
o

rm
al

iz
ed

 r
u

n
ti

m
e 

Figure 3: Runtime using texture approximations, normalized to
precise execution baseline.

neural networks, and large graph queries. It is not recommended
for applications that require exact solutions (eg. dense matrix op-
erations), since a small discrepancy in the values of a matrix may
result in an unsolveable problem and incorrect application control
flow.

3.2 Online Approximations
In this work, we focus on kernels that contain a characteristic loop,
which is the outermost loop that defines an identical operation be-
ing performed on separate members of the input set. For example,
a financial options pricing benchmark might have a characteristic
loop that solves the same equation for many different option param-
eters. We manually peel off N iterations of the characteristic loop
to create an epilogue loop, in which all global memory accesses are
replaced with approximate values generated via the texture cache.
All iterations of the original characteristic loop that remain serve
as a warmup period where the local history buffers are populated
before generating approximations.

During the online execution of the approximate kernel, we keep
the LHB in shared memory; the LHB stores the past values ob-
served by this thread. On a texture cache reference, the index is
calculated from the most recent two values in the LHB, and nor-
malized to the minimum delta present in the training set. The tex-
ture cache is then accessed with this index, Dapx is returned, and
then used to generate an approximate value. Our approach makes
use of the fact that the texture cache index does not have to exactly
match one contained in the training set, due to linear interpolation
inside the fetch units. From the example in Figure 1, each time that
a previous delta of -2 is observed, a thread loads the next delta as
1 from texture memory and adds this delta to the most recent LHB
value to generate the value used in place of a global memory read.

4. Evaluation
As a proof of concept that texture cache approximation can be suc-
cessful applied on real hardware, we explore its use in a blur kernel
derived from the San Diego CV Benchmark Suite [9], executing
on an NVIDIA 780GTX. Our input was 16 HD frames (resolution
1920×1080), taken from a short stock film clip [1]. To obtain the
kernel’s execution time, we use the NVIDIA CUDA Toolkit Pro-
filer [5], and obtain the number of cycles the kernel executed on

0.8

0.9

1

1.1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

er
ro

r 
(m

ea
n

 p
ix

el
 d

if
f)

 

frame 

Figure 4: Per-frame error using texture approximations for 40% of
global memory accesses.

an SM. Figure 3 displays the execution time (normalized to a pre-
cise kernel) of our approximate blur kernel, varying the number of
texture cache approximations, while Figure 4 shows the per-frame
error when we use the training set generated from the first frame
to process all 16 images. We used mean pixel difference across all
3 RGB channels as our error metric, which has been used in prior
work on approximation-induced image error [6].

By replacing 40% of the global memory accesses with texture
cache approximations, we obtain a 12% decrease in kernel execu-
tion time, with a mean pixel error of 0.4%. This corresponds to
a maximum mean pixel difference of 1.1 out of a maximum 8-bit
channel value of 255. We observe errors of 0.1% and 1.3% when
replacing 20% and 60% of memory accesses respectively. The av-
erage texture cache hit rate exceeds 99%, demonstrating that our
training set is small enough to reside in the 12kB texture cache of
each SM while still resulting in accurate images. Figure 2 com-
pares the visual output of precise and approximate blur kernels to
show that our technique generates output that appears consistent
with precise kernel execution.

Since we use the same training set for all 16 frames, the mean
pixel error increases for frames further away from the frame used
to generate the training set as shown in Figure 4. Therefore, a
real-time algorithm would necessitate re-training when the output
error exceeds a certain threshold. Generating the new training sets
could be easily overlapped with already executing kernels to avoid
stalling the GPU.

Speedup is also possible by simply using a blur kernel that
has less coefficients, without using our texture cache approach.
However, depending on the application, it is possible that the output
would change by a much greater degree than the slight errors in
accuracy conceded by using value approximation. Additionally,
this approach would not be valid for a more complex access pattern,
such as those appearing in computational fluid dynamics, where
many differential equations must be solved for each unit volume
in the region of interest. Hardware value approximation is in fact
harmonious with reduced precision algorithms, and ultimately the
choice to use one instead of the other depends on the application
and the goals of the systems designer.

5. Conclusion
In this paper, we present texture cache approximation, a technique
that utilizes the on-chip texture cache to speed up general-purpose
GPU workloads. By evaluating a specific image processing kernel,
we show that the features of the texture cache are well-suited to the
generation of approximate values. This implementation allows us
to accelerate a standard image blur by 12%, with low output error
despite the fact that we use the same training set for all frames in
the application. Our work demonstrates that existing underutilized
hardware structures on GPUs are suitable for use in approximation;
with minor modifications, these structures can further support the
approximate computing paradigm with little to no additional cost.

2



References
[1] Nature stock footage archive. http://downloadnatureclip.

blogspot.ca/p/download-links.html. Accessed: 2015-03-28.
[2] V. Chippa, S. Chakradhar, K. Roy, and A. Raghunathan. Analysis

and characterization of inherent application resilience for approximate
computing. In Design Automation Conference (DAC), 2013.

[3] J. Meng, S. Chakradhar, and A. Raghunathan. Best-effort parallel
execution framework for recognition and mining applications. In IEEE
International Symposium on Parallel Distributed Processing, 2009.

[4] NVIDIA Cuda C Programming Guide. NVIDIA Corp., . URL http:
//docs.nvidia.com/cuda/cuda-c-programming-guide/.

[5] NVIDIA nvprof Users Guide. NVIDIA Corp., . URL http://docs.
nvidia.com/cuda/profiler-users-guide/nvprof-overview.

[6] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke. SAGE:
Self-tuning approximation for graphics engines. In Proceedings of the
46th Annual IEEE/ACM International Symposium on Microarchitec-
ture, MICRO-46, 2013.

[7] M. Samadi, J. Lee, D. A. Jamshidi, and S. Mahlke. Paraprox: pattern-
based approximation for data parallel applications. In Proc. of the
Int. Conf. on Architectural Support for Programming Languages and
Operating Systems, 2014.

[8] J. San Miguel, M. Badr, and N. Enright Jerger. Load value approxi-
mation. In Proceedings of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO-47, 2014.

[9] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia, S. Be-
longie, and M. B. Taylor. SD-VBS: The San Diego vision benchmark
suite. In Proceedings of the IEEE International Symposium on Work-
load Characterization, 2009.

3


