EXPLOITING INTERPOSER TECHNOLOGIES
TO DISINTEGRATE AND REINTEGRATE
MULTICORE PROCESSORS

THE AUTHORS EXPLOIT A SILICON INTERPOSER TO DISINTEGRATE A MULTICORE CPU CHIP

Ajaykumar Kannan
Natalie Enright Jerger
University of Toronto

Gabriel H. Loh
Advanced Micro Devices

INTO SMALLER CHIPS THAT COLLECTIVELY COST LESS TO MANUFACTURE THAN A SINGLE

LARGE CHIP. THEY STUDY THE PERFORMANCE-COST TRADEQFFS OF INTERPOSER-BASED,

MULTICHIP, MULTICORE SYSTEMS AND PROPOSE INTERPOSER NETWORK-ON-CHIP

ORGANIZATIONS TO MITIGATE THE PERFORMANCE CHALLENGES WHILE PRESERVING THE

COST BENEFITS. THIS ARTICLE ALSO PAVES THE WAY FOR VARIOUS RESEARCH PROBLEMS

IN' INTERPOSER-BASED DISINTEGRATED SYSTEMS.

e oo oo eMoores law has conventionally
enabled increasing integration; however, fun-
damental physical limitations have slowed
the rate of transition from one technology
node to the next, and the costs of new fabri-
cation facilities are skyrocketing. The matu-
ration of die stacking enables the continued
integration of system components in tradi-
tionally incompatible processes. A key appli-
cation of die-stacking is silicon-interposer-
based integration of multiple 3D stacks of
DRAM, shown in Figure la,' ™ potentially
providing several gigabytes of in-package
memory with bandwidths already starting at
128 Gbytes per second per stack.

The use of an interposer presents new
opportunities; in particular, if one has already
paid for the interposer for the purposes of
memory integration, any additional benefits
from exploiting the interposer could come at a
relatively small incremental cost. We study
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how the interposer can be used to address
(at least in part) the increasing costs of manu-
facturing chips in a leading-edge process tech-
nology. We propose to use the interposer to
“disintegrate” a large multicore chip into sev-
eral small chips, such as in Figure 1b. These
chips are less expensive to manufacture
because of a combination of higher yield and
better packing of the rectangular die on a
round wafer. Unfortunately, this approach
fragments the network on chip (NoC) such
that each chip contains only a piece of the
overall network, and communications between
chips must take additional hops through the
interposer. We explore how to disintegrate a
multicore processor on an interposer while

addressing the problem of a fragmented NoC.

Background and Motivation

To mitigate the rising costs of large multi-
cores, systems can comprise multiple smaller
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Figure 1. Potential organizations for interposer-based systems. (a) An example interposer-based
system integrating a 64-core processor chip with four 3D stacks of DRAM. (b) A 64-core system

composed of four 16-core processor chips.

chips. Various options exist for integrating
multiple chips, including multisocket sym-
metric multiprocessors (SMPs), multichip
modules (MCMs), 3D die stacking, and sili-
con interposers. The SMP and MCM
approaches are less desirable because they do
not provide adequate bandwidth for arbitrary
core-to-core cache coherence without expos-
ing significant nonuniform memory access
effects. 3D stacking by itself is a less-attractive
solution at this time because it is more expen-
sive and complicated, introduces potential
thermal issues, and can be an overkill in
terms of how much bandwidth it can pro-
vide. This leaves us with silicon interposers.
Having settled on silicon interposers as our
integration technology, the key contributions
of this work include a cost and yield analysis
to show the benefits of disintegration, the
potential for minimally active interposers,
novel NoC topologies, and the concept of
misaligned NoCs.

Cost and Yield

To reduce the cost of manufacturing a system
on a chip (SoC), we can reduce the chip’s
size. A larger chip’s cost comes from two
main sources. The first is geometry: fewer
larger chips fit on a wafer, and the smaller
chips can be packed more tightly (that is, uti-
lizing more of the area around the periphery
of the wafer). The second cost of a larger chip
is due to manufacturing defects. A defect that
renders a large die inoperable wastes more sil-
icon than one that kills a smaller die.
Although smaller chips result in lower costs,
the downside is that they also provide less
functionality (for example, half the area
yields half the cores). If we could manufac-
ture several smaller chips and combine them

together into a single system, we would be
able to have the functionality of a larger chip
while maintaining the economic advantages
of the smaller chips. Ignoring for the time
being exactly how multiple chips could be
combined back together, Table 1 summarizes
the impact of implementing a 64-core system
ranging from a conventional 64-core mono-
lithic chip all the way down to building it
from 16 separate quad-core chips. The last
column shows that using a collection of
quad-core chips to assemble a 64-core SoC
yields 29 percent more working parts than
the monolithic-die approach.

Additional performance benefits can be
had by speed-binning the individual chips to
ensure that fast chips are stacked together on
the same interposer to maximize the number
of high-performance, high-margin parts pro-
duced. We used Monte Carlo simulations to
consider three scenarios:

e A 300-mm wafer is used to imple-
ment 162 monolithic good dies per
wafer (as per Table 1).

e The wafer is used to implement
3,353 quad-core chips, which are
then assembled without speed-
binning into 209 64-core systems.

e The individual dies from the same
wafer are sorted so that the 16 fastest
chips are assembled together, the next
fastest 16 are combined, and so on.

Figure 2 shows the number of 64-core sys-
tems per wafer in 100 MHz speed bins, aver-
aged across 100 wafer samples per scenario.
The monolithic 64-core chip and 16 quad-
core approaches have similar speed distribu-
tions. However, with speed-binning, we
avoid the situation wherein the overall system
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Table 1. Example yield analysis for different-sized multicore chips. A system on a chip (SoC) here is a 64-core
system, which might require combining multiple chips for the rows in the table corresponding to chips with

fewer than 64 cores each.

Cores per Chips per Chips per Area per Chip yield (%) Good dies Good SoCs
chip wafer package chip (mm?) per wafer per wafer

64 192 1 297.0 84.5 162 162

32 395 2 148.5 91.7 362 181

16 818 4 74.3 95.7 782 195

8 1,664 8 371 97.8 1,627 203

4 3,391 16 18.6 98.9 1858 209
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Figure 2. Average number of 64-core SoCs per wafer per 100 MHz bin from Monte Carlo
simulations of 100 wafers. Results are shown for a monolithic 64-core chip and systems with
16 quad-core chips. Using multiple chips allows speed binning, leading to higher clock rates

as shown in the sorted case.

speed is slowed down by the presence of a
single slow chip, resulting in significandy
faster average system speeds (the mean shifts
by approximately 400 MHz) and more sys-
tems in the highest speed-bins (which usually
carry the highest profit margins).

Minimally Active Interposers

The interposer is effectively a very large chip.
Current approaches use passive interposers>
in which the interposer has no devices, only
routing. This greatly reduces the interposer’s
critical area (Ag;) (that is, unless a defect
impacts a metal route, there are no transistors
that can be affected), resulting in high yields.
Based on our previous chip cost analysis, it
would seem prohibitively expensive to con-
sider an active interposer, but the flexibility of
placing routers on the interposer enables
many more interesting NoC organizations.

Although the interposer could be imple-

mented in an older process technology® that is
less expensive and more mature (that is, one
with lower defect rates), such a large chip, per-
haps near the reticle limit, still would not be
expected to be less expensive if the yield rates
remained low.

For regular chips, it typically is desirable
to maximize functionality by cramming in as
many transistors as possible into the chip-
area budget. However, making use of every
last mm? of the interposer would lead to a
very high fraction of the area being critical
(Frac,;) multiplied over a very large area
(Aic = chip area X Frace;), thereby lead-
ing to low yields and high costs. However,
there is no need to use the entire interposer:
its size is determined by the geometry of the
chips and memory stacked on it, and using
more or fewer devices has no impact on its
final size. As such, we advocate using a
minimally active interposer, which implements



the devices required for the system’s function-
ality (in our case, these would primarily be
routers and repeaters), but no more. This
results in a sparsely populated interposer with
a lower Fracy;, and therefore a lower cost.

We used the same yield model from our
earlier cost analysis to estimate the yields of
different interposer options: a passive inter-
poser, a minimally active interposer, and a
fully active interposer. The interposer size
assumed  throughout  this  work is
24 mm x 36 mm (864 mm”), and we
assume six metal layers in the interposer. For
a passive interposer, Fracei. for the logic is
zero (it remains nonzero for the metal layers).
For a fully active interposer (that is, if one fills
the entire interposer with transistors), we use
a Frac., for logic of 0.75 and Frac, for
wires of 0.2625. For a minimally active inter-
poser, we estimate the total interposer area
needed to implement our routers (logic) and
links (metal) to be only 1 percent of the total
interposer area. To be conservative, we also
consider a minimally active interposer in
which we pessimistically assume the router
logic consumes 10 times more area, although
the metal utilization is unchanged. Minimiz-
ing utlization of the interposer for active
devices also minimizes the potential for
undesirable thermal interactions resulting
from stacking highly active CPU chips on
top of the interposer.

Considering an example defect rate of
2,000 defects per m? (from Table 1), we find
that the passive interposer has a nonperfect
yield rate of 94.1 percent because it still uses
metal layers that can be rendered faulty by
manufacturing defects. At the other extreme
is a fully active interposer with very low yields
of 61.5 percent. This is not surprising given
that a defect almost anywhere on the inter-
poser could render it a loss. This is the pri-
mary reason why one would likely be
skeptical of active interposers. However,
when using only the minimum amount of
active area necessary on the interposer, the
yield rates are not very different from the pas-
sive interposer—93.9 percent for 1 percent
active and 92.4 percent for 10 percent active.
The vast majority of the interposer is not
being used for devices; defects that occur in
these white-space regions do not impact the
interposer’s functionality. As a result, we
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Figure 3. Normalized cost and execution time (lower is better for both) for
different multichip configurations. Sixty-four cores per chip corresponds to
single monolithic 64-core die, and four cores per chip corresponds to 16
chips, each with four cores. Cost is shown for different defect densities (in

a

defects/m?), and the average message latency is normalized to the 16 quad-

core configuration.

believe that augmenting an otherwise passive
interposer with just enough logic to do what
is needed has the potential to be economi-
cally viable, and it should be sufficient for
NoC-on-interposer applications.

Taking the cost argument alone to its logi-
cal limit would lead one to falsely conclude
that a large chip should be disintegrated into
an infinite number of infinitesimally small
dies. The countervailing force is perform-
ance: although breaking a large system into
smaller pieces could improve overall yield,
going to a larger number of smaller chips
increases the amount of chip-to-chip com-
munication that must be routed through the
interposer. In an interposer-based multicore
system with a NoC distributed across chips
and the interposer, smaller chips create a
more fragmented NoC, resulting in more
core-to-core traffic routing across the inter-
poser, which eventually becomes a perform-
ance bottleneck. Figure 3 shows the cost
reduction for three example defect rates, all
showing the relative cost benefit of disinte-
gration. The figure also shows the relative
impact on performance. So, although more
aggressive levels of disintegration provide bet-
ter cost savings, they are directly offset by a
reduction in performance.

In the rest of this article, we explore the
problem of how one can get the cost benefits
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Figure 4. Perspective and side/cross-sectional views of (a) 4-to-1 concentration from cores to
interposer routers aligned beneath the CPU chips, and (b) 4-to-1 concentration misaligned
such that some interposer routers are placed in between neighboring CPU chips. The cross-
sectional view also illustrates the flow of example coherence (C) and memory (M) messages.

of a disintegrated chip organization while
providing a NoC architecture that, while
physically fragmented across multiple chips,
still behaves (performance-wise) at least as
well as one implemented on a single mono-

lichic chip.

Architecting the NoC for Multichip
Interposers

The analysis in the preceding section shows
that there are economic incentives for disinte-
grating a large multicore chip into smaller
dies, but that doing so induces performance
challenges with respect to the interconnect.
We now discuss how to address these issues.

We propose the concept of misalignment.
With conventional topologies such as a con-
centrated Folded Torus, links that cross the
bisection between the two halves of the inter-
poser still carry a higher amount of traffic
and continue to be a bottleneck for the sys-
tem. For concentrated topologies in which
one router connects to four cores, every four
CPU coresina 2 x 2 grid share an interposer
router that was placed in between them, as
shown in both the perspective and side/cross-
sectional views in Figure 4a.

Our misaligned interposer network offsets
the location of the interposer routers. Cores
on the edge of one chip now share a router

with cores on the edge of the adjacent chip
(see Figure 4b). The change is subtle but
important: with an “aligned” interposer
NoC, the key resources shared between chip-
to-chip coherence and memory traffic are the
links crossing the bisection. If both a mem-
ory-bound message (M) and a core-to-core
coherence message (C) wish to traverse the
link, one must wait as it serializes behind the
other. With misaligned topologies, the shared
resource is now the router. As the bottom of
Figure 4b shows, this simple shift allows
chip-to-chip and memory traffic o flow
through a router simultaneously, thereby
reducing queuing delays for messages to tra-
verse the network bisection.

For interposer-based NoCs, providing
sufficient bisection bandwidth is critical. One
straightforward way to provide more bisec-
tion bandwidth is to add more links. How-
ever, if this is not done carefully, it can cause
the routers to need more ports (higher
degree), which increases area and power, and
can decrease the router’s maximum clock
speed. By combining different topological
aspects of both the Butterfly and Folded
Torus topologies into our novel ButterDonut
topology, we can further increase the inter-
poser NoC bisection bandwidth without
impacting the router complexity. We main-
tain the advantages of long express links of



ButterDonut
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Figure 5. Our ButterDonut topology. The (a) aligned and (b) misaligned ButterDonut
topologies combine topological elements from both the Double Butterfly and Folded Torus.

the butterfly and exploit folded ring networks
in the X-dimension (from the Folded Torus).
This increases the bisection bandwidth and
leads to low hop counts for both coherence
and memory traffic, as shown in Figure 5a.
The ButterDonut can also be misaligned to
provide even higher throughput across the
bisection, as shown in Figure 5b.

We can compare topologies among several
different metrics. Table 2 shows all of the con-
centrated topologies considered in this article,
along with several key network and graph
properties. The metrics listed correspond only
to the interposer’s portion of the NoC (for
example, nodes on the CPU chips are not
included), and the link counts exclude connec-
tions both to the CPU cores as well as to the
memory channels (this is constant across all
configurations, with 64 links for the CPUs
and 16 for the memory channels). Misaligned
topologies are annotated with their misalign-
ment dimension in parentheses; for example,
the Folded Torus misaligned in the X-dimen-
sion is shown as “Folded Torus (X).” Misalign-
ment can change the number of nodes
(routers) in the network (see, for example,
Figure 5). From the perspective of building
minimally active interposers, we favor topolo-
gies that minimize the number of nodes and
links to keep the interposer’s A, as low as pos-
sible. At the same time, we want to keep the
network diameter and average hop count low
(to minimize expected latencies of requests)
while maintaining high bisection bandwidth
(for network throughput). Overall, the
X-misaligned ButterDonut topology has the
best properties out of all of the topologies except

for the link count, for which it is a close second
behind Double Butterfly (X). ButterDonut (X)
combines the best of all of the other non-But-
terDonut topologies, while providing 50 per-
cent more east-west bisection bandwidth.

Methodology
For the yield and relative cost figures, we use
analytical yield models, a fixed cost-per-wafer
assumption, and automated tools for comput-
ing die-per-wafer,” and we consider a range of
defect densities. All analyses assume a 300-mm
wafer. Our baseline monolithic 64-core die
size is 16.5 mm X 18 mm (the same assump-
tdon as used in a recent interposer-NoC
paper”). Smaller-sized chips are derived by
halving the longer of the two dimensions (for
example, a 32-core chip is 16.5 mm X 9 mm).
The yield rate for individual chips is estimated
using a simple classic model.®

For the speed binning results given earlier,
we simulate a wafer’s yield by starting with
the good-die-per-wafer based on the desired
chip’s geometry (see Table 1). For each quad-
core chip, we randomly select its speed using
a normal distribution (mean: 2,400 MHz;
standard deviation: 250 MHz). Our simpli-
fied model treats a 64-core chip as the com-
position of 16 adjacent (4 x 4) quad-core
clusters, with the speed of each cluster chosen
from the same distribution as the individual
quad-core chips. Therefore, the 64-core
chips clock speed is the minimum from
among its constituent 16 clusters. For each
configuration, we simulate 100 different
wafers’ worth of parts and take the average
over the 100 wafers. Similar to the yield

MAy/June 2016



TOP PICKS

Table 2. Comparison of the different interposer NoC topologies studied in this article. In the node column,
(n x m) indicates the organization of router nodes. Bisection links are the number of links crossing the vertical
bisection cut.

Topology Nodes Links Diameter Average hop Bisection links

Concentrated Mesh 24 (6 x 4) 38 8 &.33 4
Double Butterfly 24 (6 x 4) 40 5 2.70 8
Folded Torus 24 (6 x 4) 48 5 2.61 8
ButterDonut 24 (6 x 4) 44 4 2.51 12
Folded Torus (X)* 20(5 x 4) 40 4 2.32 8
Double Butterfly (X)* 20(5 x 4) 32 4 2.59 8
Folded Torus (XY)* 25(5 x 5) 50 4 2.50 10
ButterDonut (X)* 20 (5 x 4) 36 4 2.32 12
*Misaligned.
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results, the exact distribution of per-chip
clock speeds is not so critical: so long as there
exists a spread in chip speeds, binning and
reintegration via an interposer can be benefi-
cial for the final product speed distribution.
To evaluate the performance of various
interposer NoC topologies for our disinte-
grated systems, we use a cycle-level network
simulator.” To evaluate the baseline and pro-
posed NoC designs, we use both synthetic traf-
fic patterns and SynFull traffic models'’; these
two evaluation approaches cover a wide range
of network utilization scenarios and exercise
both cache-coherence and memory traffic. For
the SynFull workloads, we run multiprog-
rammed combinations composed of four 16-
way multithreaded applications from Parsec.''
The application’s threads are distributed across
the 64 cores, and they share all 16 memory
channels. We construct workload combina-
tions based on their memory traffic intensity.

Evaluation

We evaluated the performance, power, and cost
of our disintegrated multicore architecture con-
sidering different chip sizes and NoC topolo-
gies. We compared our proposed misaligned
and ButterDonut topologies against more con-
ventional topologies, such as a Mesh, Concen-
trated Mesh (CMesh), and Folded Torus. To
evaluate the baseline and proposed NoC
designs, we considered several traffic workloads
to cover a wide range of network utilization sce-
narios. We used synthetic traffic patterns to
stress our proposed network and realistic appli-

cation workloads to evaluate NoC perform-
ance. Figure 6 shows average packet latency
results when the system executes multiprog-
rammed SynFull workloads. The results are for
a system consisting of four 16-core CPU chips.
These workloads exercise a diverse set of routes
highlighting differences among the topologies.
Across the workloads, the misaligned Butter-
Donut (X) and misaligned Folded Torus (XY)
consistently perform the best.

Our evaluations show that the proposed
NoC architecture outperforms the baseline
Mesh and CMesh. Misaligned topologies
provide the best performance by reducing
bisection pressure through isolating chip-to-
chip coherence traffic from interposer mem-
ory traffic. Having this traffic share a router
but not a link provides substantial through-
put improvements. The ButterDonut topol-
ogies generally provide the best performance
by optimizing both east-west memory traffic
through long links and chip-to-chip coher-
ence traffic through reduced diameter from
the folded rings along the X dimension.

Higher levels of disintegration (smaller
chips) can result in lower overall cost based on
our analysis, due to better yields and more chips
per wafer. The smaller chips could decrease
interconnect performance because the NoC is
fragmented, but the finer-grained binning also
increases average CPU clock speeds. To put itall
together, we consider a figure of merit (FOM)
based on cost and performance, or “delay” for
brevity. Our FOM is delay®, which provides a
greater emphasis on performance (see Figure 7).
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Figure 6. Average packet latency results for different multiprogrammmed SynFull workloads
with varying network load intensities. Aligned and misaligned topologies are compared
against the Mesh and CMesh, with the misaligned ButterDonut having the lowest average

latency in most cases.

The rationale for the performance-heavy FOM
is that for high-end servers, even relatvely
smaller performance differentiations at the high
end can translate into substandally higher selling
prices and margins.

Figure 7 shows our FOM. For a basic
Mesh on the interposer, the performance loss
due to disintegration actually hurts more
than the cost reductions help until one gets
down to using eight-core chips or smaller.
CMesh provides an initial benefit with two
32-core chips, but its lower bisection band-
width is too much of a drag on performance,
and further disintegration is unhelpful. The
FOM results show that the remaining topol-
ogies can ward off the performance degrada-
tions of the fragmented NoC sufficiently well
such that the combination of binning-based
improvements and continued cost reductions
allow more aggressive levels of disintegration.

With different FOMs, the exact tradeoff
points will shift, but our FOM illustrates that
simple disintegration (using Mesh or CMesh)
alone might not be sufficient to provide a
compelling solution for both cost and per-
formance. However, interposer-based disinte-
gration appears promising when coupled
with an appropriate redesign of the interposer

NoC topology.

he combination of 2.5D and 3D stack-
ing technologies enabled through silicon-
interposer-based integration will significandy

change the hardware organization of many
future systems. We believe that the general
framework of silicon-interposer-based integra-
tion for the physical organization and assembly
of future SoCs will become common, and one
of the key goals of this article is to raise aware-
ness of and evangelize for new research efforts
in this broad area considering impacts on cost,
performance, power, and functionality.

We focused on a homogeneous disinte-
grated multicore system using 2.5D stacking
to connect processors to 3D stacks of memory.
Although we focused on interconnect issues to
reintegrate homogeneous multicore chips, we
anticipate broader interest and new research
around  silicon-interposer-based systems in
general. The interposer simply provides a
mechanical and electrical substrate for the
integration of multiple disparate chips. Multi-
ple computing chips (such as the CPU and
GPU) can be 2.5D stacked on the interposer
with the DRAM. Separate chips for logic and
analog devices, possibly in different process
technology nodes, can be independently man-
ufactured and 2.5D stacked. Having a solid
framework for integrating these disparate
components enables a wide range of systems
and prompts new research questions.

We focused on enabling cost-effective,
large multicore designs. However, this is a
rich platform for many exciting new systems
that could become more economically viable.
Consider, for example, new accelerators that
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might not be applicable across all market seg-
ments. Without interposer-based integration,
a new accelerator would likely need to be
directly incorporated into the same mono-
lithic SoC silicon as the other commodity
components (for example, the CPUs and
memory controllers). This saddles the overall
SoC with the cost of the accelerator, even for
products that do not benefit from accelera-
tion, or forces the manufacturer to pay for
additional engineering to develop two separate
SoC designs (that is, with and without the
accelerator). With interposer-based integra-
tion, the manufacturer can separately design a
stand-alone CPU and accelerator chips, and
then individual SoC designs can choose which
chips to stack. Although generic, our proposed
interconnect designs offer sufficienty rich
connectivity to enable efficient routing of
chip-to-chip and chip-to-memory traffic
regardless of the different SoC components.

Our approach could dramatically acceler-
ate the adoption of accelerator-based technol-
ogies. This in turn motivates new research in
general system architectures to support a wide
range of accelerators in a way that enables
plug-and-play at the system level with respect
to shared virtual memory, cache coherency
between conventional computing and acceler-
ators, work/task scheduling, and more.

We proposed the use of a minimally active
interposer. We estimate that only 1 percent of
the interposer area must be devoted to intercon-
nect logic. Devoting this minimal amount of

area to active logic has a very small impact on
interposer yield. Although cramming the inter-
poser full of transistors would be prohibitively
expensive, we believe that some additional area
can be spent on new interposer-based logic.
Indeed, our results suggest that even devoting
10 percent of interposer area to active logic
could still be practical. The cost-effective nature
of such minimally active interposers opens
many interesting research opportunities as we
decide what to put on the interposers and how
best to use the devices and routing there.
Beyond the interconnect, the interposer could
house all manner of system monitoring and
online profiling (“introspection”) mechanisms,
auxiliary computing devices, and security fea-
tures. The opportunities to reimagine computer
architectures are wide open.

Given the value of interposer-based sys-
tems, a key open question is exactly how to
interconnect the individual chips, memory
stacks, and interposer. We take a first step in
exploring possible topologies to effectively
route both coherence and memory traffic
across a disintegrated CPU, but we expect
much follow-on work from the community.
A key contribution is the advocacy of general
approaches to interposer-based interconnect
design. Future interposer-based systems will
likely span a large range of sizes, functional-
ities, and physical arrangements of chips and
memory stacks. Our approach to interposer-
based NoCs, while illustrated with a specific
example system, extends across a broad range
of heterogeneous designs. Common ground
must be found across this wide range of sys-
tems to design a generic interconnect that can
effectively reintegrate a limitless range of future
systems. Our focus on low diameter and mis-
alignment to avoid bisection-link bottlenecks
are a step in this direction, but new research is
needed to understand the impact of traffic pat-
terns in these different systems and re-envision
the NoC accordingly. Our work provides a
stepping-stone for these designs.

This work assumes that all core dies are
identical. This creates new physical design
and layout challenges as each die must imple-
ment a symmetric interface since each die
must correctly interface with the interposer
regardless of the mounting position. Conven-
tional SoCs have no such requirements for
their layouts. This extends beyond functional



interfaces to issues such as power delivery and
thermal management. Many of these chal-
lenges fall more in the domains of physical
design, CAD, and electronic design automa-
tion. However, our work demonstrates the
cost and performance potential for these sys-
tems, which in turn motivates new research
in the physical design realm to support such
disintegrated systems. Both the architecture
and the larger ecosystem require additional
research to make these compelling systems a

reality.
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