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Abstract

Routing algorithms for networks-on-chip (NoCs) typi-
cally only have a small number of virtual channels (VCs)
at their disposal. Limited VCs pose several challenges to
the design of fully adaptive routing algorithms. First, fully
adaptive routing algorithms based on previous deadlock-
avoidance theories require a conservative VC re-allocation
scheme: a VC can only be re-allocated when it is emp-
ty, which limits performance. We propose a novel VC re-
allocation scheme, whole packet forwarding (WPF), which
allows a non-empty VC to be re-allocated. WPF leverages
the observation that the majority of packets in NoCs are
short. We prove that WPF does not induce deadlock if the
routing algorithm is deadlock-free using conservative VC
re-allocation. WPF is an important extension of previous
deadlock-avoidance theories. Second, to efficiently utilize
WPF in VC-limited networks, we design a novel fully adap-
tive routing algorithm which maintains packet adaptivity
without significant hardware cost. Compared with conser-
vative VC re-allocation, WPF achieves an average 88.9%
saturation throughput improvement in synthetic traffic pat-
terns and an average 21.3% and maximal 37.8% speedup
for PARSEC applications with heavy network loads. Our
design also offers higher performance than several partial-
ly adaptive and deterministic routing algorithms. 1

1 Introduction

Networks-on-chip (NoCs) have been proposed to meet

the communication requirements of many-core computing

platforms [7]. NoC performance is sensitive to the choice

of routing algorithm, as the routing algorithm defines not

only the packet transmission latency, but also the saturation

throughput a NoC can sustain. Many novel routing algo-

rithms have been proposed to deliver high performance in

NoCs [19, 21, 24, 28, 31, 43, 50].

1This research was carried out while Sheng Ma was a visiting interna-

tional student at the University of Toronto supported by a CSC scholarship.
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Figure 1. Single-flit packet ratio for the PARSEC bench-
marks. (Flit width is 16 bytes.)

In addition to performance considerations, the routing al-

gorithm has correctness implications for the network. Since

deadlock is unacceptable, any proposed routing algorithm

must be deadlock free, at both the network- and protocol-

level. The guarantee of network-level deadlock freedom

for a routing algorithm is generally based on deadlock-

avoidance theories. There are many theories for deadlock-

free fully adaptive [12, 13, 18, 29, 41, 48] and partially

adaptive routing algorithm design [4, 6, 19, 20]. Although

most theories were originally proposed for off-chip net-

works, they are widely used in today’s NoCs [19, 21, 24,

28, 31, 43, 50].

However, the characteristics of packets in NoCs are quite

different than those in off-chip networks. Abundant wiring

resources lead to wider flits which decreases the number of

flits per packet; short packets dominate traffic in NoCs. In

contrast, the wiring resources in off-chip networks are limit-

ed by the pin count. For example, the flit width of a typical

off-chip router is on the order of 32 bits (e.g. the Alpha

21364 router [35]), while the flit width of a NoC is typical-

ly between 128 [22] and 256 bits [10]. With such wide flits,

coherence messages carrying a memory address and control

information but no data can be encoded as single-flit packets

in NoCs. Figure 1 shows that on average 78.7% of packets

are single flits for PARSEC benchmarks [3]; the remaining

packets are 5 flits long and contain a full 64B cache line.
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Another noteworthy difference is that the buffer re-

sources in NoCs are more precious than in off-chip net-

works due to the tight area and power budgets [17, 23],

thus NoCs generally use flit-based wormhole flow con-

trol [9]. Although buffer resources are limited, several sep-

arate physical or virtual networks are leveraged for deliv-

ering different types of messages to avoid protocol-level

deadlock. Table 1 lists the number of separate physical and

virtual networks deployed in some industrial designs of off-

chip and on-chip networks. We also show the number of

required virtual networks for some cache coherence proto-

cols in the GEMS simulator [34]. Typically, four or five vir-

tual networks are needed to avoid protocol-level deadlock.

Considering the expense of buffers in NoCs, each virtual

network will be configured with a small number of VCs [5]

since more VCs require more buffers and a larger allocator.

For example, TILE64 [49] and TRIPS [22] have only one

VC per virtual network. Thus, a NoC routing algorithm is

generally running with a limited number of VCs.

In a VC-limited network with short packets dominat-

ing traffic, the design of fully adaptive routing algorithms

faces several new challenges. In a wormhole network,

fully adaptive routing algorithms based on existing theo-

ries require a conservative VC re-allocation scheme: a VC

can only be re-allocated to a new packet when it is emp-

ty [12, 13, 18, 29, 41, 48]. This conservative scheme pre-

vents network-level deadlock, but it is very restrictive re-

sulting in bandwidth and performance loss in the presence

of many back-to-back short packets [19]. Figure 2 illus-

trates the performance of three algorithms when each virtual

network is configured with two VCs2. Despite its flexibili-

ty and load-balancing capability, the fully adaptive routing

algorithm has even poorer performance than the determin-

istic and partially adaptive ones, since both the determinis-

tic and partially adaptive algorithms can apply an aggres-

sive VC re-allocation scheme. It is imperative to improve

deadlock-avoidance theories to enhance the performance of

fully adaptive routing algorithms in NoCs.

We propose a novel VC re-allocation scheme: whole

packet forwarding (WPF), for fully adaptive routing algo-

rithms. This scheme is summarized as follows: if a non-

empty VC has enough buffer slots to hold the whole pack-

et, then this VC can be re-allocated to the new packet even

though it is not empty. WPF can be viewed as applying

packet-based flow control in a wormhole network. This

hybrid flow control mechanism solves the shortcoming of

conservative VC re-allocation by allowing a VC to be re-

allocated before it is empty, which greatly improves the sat-

uration throughput of fully adaptive routing algorithms. We

prove that a fully adaptive routing algorithm using WPF is

deadlock-free if this routing algorithm is deadlock-free with

2See Section 5 for detailed experimental configuration and description

of the routing algorithms.
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Figure 2. Routing algorithms performance with bit re-
verse traffic. (PSF: fully adaptive routing, DOR: deter-
ministic routing; Odd-even: partially adaptive routing.)

conservative VC re-allocation. WPF is an important exten-

sion to previous deadlock-avoidance theories.

WPF enables the design of a fully adaptive routing algo-

rithm with superior performance in a VC-limited network.

Our novel routing algorithm achieves high VC utilization

and maximal routing flexibility. Compared with conserva-

tive VC re-allocation, WPF provides an average saturation

throughput improvement of 88.9% for synthetic traffic, and

achieves an average 21.3% and maximal 37.8% speedup for

PARSEC applications that heavily load the network. Our

design also offers higher performance than several partially

adaptive and deterministic routing algorithms. In summary,

this paper makes the following primary contributions:

• Proposes WPF, which greatly improves the perfor-

mance of fully adaptive routing algorithms, especially

with limited VC resources.

• Proves WPF can be used by most previous deadlock-

free fully adaptive routing algorithms; it is an impor-

tant extension to existing deadlock-avoidance theories.

• Demonstrates that in a VC-limited network, maintain-

ing packet adaptivity is very important and proposes

an efficient fully adaptive routing algorithm that takes

advantage of WPF.

2 Background

In this section, we discuss related work in deadlock-

avoidance theories and design methodologies for fully

adaptive routing algorithms.

2.1 Deadlock Avoidance Theories

Since NoCs typically use wormhole flow control [9] to

reduce buffering requirements [7, 33, 39], we focus on the-

ories for wormhole networks. Dally and Seitz proposed a

seminal deadlock avoidance theory [6] which can be used

to design partially adaptive and deterministic routing al-

gorithms. Duato introduced the concept of a routing sub-

function, and gave an efficient design methodology [12, 13].

Lin et al. [29] leveraged the message flow model, and

Schwiebert and Jayasimha [41] utilized the channel waiting



Table 1. Number of physical/virtual networks. (PN: physical network; VN: virtual network)
Industrial products Cache coherence protocols in GEMS simulator [34]

Alpha 21364 [35] TILE64 [49] TRIPS [22] MESI directory MOESI directory MOESI token

1 PN (7 VNs) 5 PNs (1 VN/PN) 2 PNs (4 VNs for OCN, 1 VN for OPN) 5 VNs 4 VNs 4 VNs

graph to analyze deadlock properties. Recently, Verbeek

and Schmaltz [47, 48] proposed a necessary and sufficient

condition for deadlock-free routing based on static condi-

tions. These theories [12, 13, 18, 29, 41, 48] can be used to

design fully adaptive routing algorithms.

A limitation of these theories for fully adaptive routing

is that they all require that a VC be re-allocated only when

it is empty [12, 13, 18, 29, 41, 48]. This requirement guar-

antees that all blocked packets can reach the head of a VC

to gain access to the ‘deadlock-free’ path at every router.

However, considering the large fraction of short packets in

NoCs, strict adherence to this requirement strongly limits

performance, especially when the number of VCs is small.

To address this issue, some deadlock-recovery based de-

signs [1] or theories [15] are proposed, which remove the

constraint of conservative VC re-allocation. They allow

the formation of deadlocks, and then apply some recov-

ery mechanism [1, 15]. In contrast, WPF extends existing

deadlock-avoidance theories which prohibit the formation

of deadlock. To the best of our knowledge, WPF is the first

proposal which allows multiple packets to reside in a VC

concurrently for routing algorithms based on these previous

deadlock-avoidance theories [12, 13, 18, 29, 41, 48].

Several partially adaptive algorithms based on the turn

model have been proposed: negative-first, north-last, west-

first [20] and odd-even [4]. The Abacus turn model

is a dynamically reconfigurable routing algorithm [19].

These partially adaptive algorithms allow aggressive VC re-

allocation: a VC can be re-allocated as soon as the tail flit

of the last packet arrives [8]. This property can be directly

deduced from Dally and Seitz’s theory [6] since the channel

dependency graphs of these algorithms are acyclic. How-

ever, they all suffer from limited adaptivity: packets cannot

use all minimal paths between the source and destination,

while fully adaptive ones can use all minimal paths.

2.2 Fully Adaptive Routing Algorithms

Duato’s theory [12, 13] is widely used in the design of

fully adaptive routing algorithms. In this theory, VCs are

classified into two types: escape and adaptive. In the event

of deadlock among the adaptive VCs, packets must have

the opportunity to ‘escape’ to a deadlock-free set of VCs,

known as escape VCs. Escape VCs are kept deadlock free

by applying a more restrictive routing algorithm; dimension

order routing (DOR) is typically used. An escape VC can

only be used by a packet whose output port selection corre-

sponds to a DOR path.

Many algorithms based on Duato’s theory [21, 31, 35,

50] are composed of two parts: the routing function and se-

lection strategy. If the selection strategy selects one output

port, the packet can only request VCs that belong to the cho-

sen output port. This requirement imposes a limitation on

these algorithms: once a packet enters an escape VC, it can

only use escape VCs until it is delivered. Otherwise, the es-

cape VC may be involved in deadlock. In a VC-limited net-

work, such as a cache-coherent NoC, this limitation easily

results in adaptivity loss. However, Duato’s theory supports

the design of algorithms which can use an adaptive VC after

using an escape VC if packets are always guaranteed to be

able to use escape VCs [12, 13]. Based on these observa-

tions, we propose a design which maintains high adaptivity

for packet routing, works well in a VC-limited environment

and has low hardware overhead.

3 Motivation

In this section, we analyze the requirements of fully

adaptive routing algorithms. We also illustrate how these

requirements negatively affect performance.

3.1 VC Re-allocation Scheme

One limitation of fully adaptive routing algorithms is that

at any time, a VC can hold at most one packet; a VC can

only be re-allocated when it is empty. This is a reasonable

requirement since fully adaptive routing algorithms put no

limitation on the routing of some VCs and allow a cycle

to form among VCs. For example, in routing algorithms

based on Duato’s theory, the adaptive VCs can be arbitrar-

ily used [12, 13]. If multiple packets are allowed to reside

in the same VC, a deadlock configuration is easily formed.

Figure 3 illustrates a deadlock configuration [15]. Here each

VN is configured with two VCs: an adaptive VC (AVC) and

an escape VC (EVC). Configuring more VCs cannot elimi-

nate this deadlock scenario since cycles are allowed to ex-

isted among adaptive VCs.

Eight packets are involved in this deadlock: P0 - P7. The

head flit of P0 is behind the tail flit of P1 in AV C1. The

same is true for P1, P2, P4, P5 and P6. Although the head

flits of P3 and P7 are at the head of AV C3 and AV C6, they

cannot move forward as the two valid output VCs, AV C0

and EV C0, are both occupied by other packets. No packet

can move forward. This deadlock is due to that some head

flits are not at the VC heads, resulting some packets unable

to gain access to the ‘deadlock-free’ path. Also, the tail flits

of these packets resides in other VCs, prohibiting follow-

ing packets to reach the head of these VCs or even utilize

these VCs. The following packets then may cyclically block

aforementioned packets. For example, the tail flit of P0 re-

sides in AV C0, blocking P3 from utilizing this VC, which

cyclically blocks the routing of P0.
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Figure 3. Deadlock in a fully adaptive routing algorithm if
multiple packets are allowed to reside in one VC. (AVC:
adaptive VC; EVC: escape VC; Pi(H), Pi(B) and Pi(T):
the header, body and tail flit of Packet Pi, respectively;
Dest(Pi): the destination of Packet Pi.)
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If the packet length is greater than the VC depth, allow-

ing multiple packets to reside in one VC easily results in

deadlock. When a long packet enters a non-empty VC,

its header flit is not at the head of a VC, while its tail flit

blocks the head of another VC. However, due to the abun-

dant wiring on chip, NoC traffic is dominated by short pack-

ets. With many short or single-flit packets, strictly adher-

ing to the requirement that a VC can only hold one packet

reduces throughput and results in VC underutilization. In

Figure 4, neither EV C2 nor AV C2 are available for re-

allocation; P1 must wait in AV C1 until either EV C2 of

AV C2 becomes empty. However, since P1 consists of only

two flits, and both EV C2 and AV C2 have enough slots to

hold this packet, forwarding P1 into these VCs will not pre-

vent following packets from getting to the head of AV C1,

as was the case in Figure 3. This is an opportunity for per-

formance optimization. We will prove that P1 can be for-

warded into EV C2 or AV C2 without leading to deadlock.

3.2 Packet Adaptivity

In this section, we focus on maintaining packet adaptiv-

ity in VC-limited environments. Many fully adaptive rout-

ing algorithms based on Duato’s theory are composed of
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two parts: routing function and selection strategy [21, 31,

35, 50]. The routing function computes all available output

ports, then the selection strategy selects one of them. Once

the selection strategy makes a choice, the packet can only

request VCs for this particular port. This type of routing al-

gorithm is called port-selection-first. Assuming a separable

VC allocator consisting of two stages of arbiters [2, 36, 40],

a port-selection-first algorithm only requires V : 1 arbiters

in the first stage as shown in Figure 5(a).

A limitation of these algorithms is that once a packet en-

ters an escape VC, it must continue to use escape VCs; the

packet will lose adaptivity in subsequent hops. Violating

this limitation results in deadlock as shown in Figure 6. In

this example, both south and east ports are available for P1

and P2. If the selection strategy chooses the south port,

P1 and P2 can only apply for AV C2. They cannot request

EV C2 because escape VCs can be only used when the cho-

sen port adheres to DOR. Similarly, the selection strategy

chooses the north port for P4 and P5; they can only apply

for AV C0. No packet can move forward. Thus, the limita-

tion that once a packet enters an escape VC, it can only use

escape VCs until delivered is necessary for port-selection-

first algorithms. However, this requirement results in signif-

icant adaptivity loss with limited VCs, since packets have a

high probability of going into escape VCs.

Duato’s theory supports the design of algorithms which

allows a packet to use adaptive VCs after using escape VCs,



if it satisfies the following condition: a packet must be able

to request an escape VC at any time. Once satisfy this con-

dition, packets can always find a path whose VCs are not

involved into cyclic dependencies since the extended chan-

nel dependency graph of escape VCs is acyclic [12, 13]. To

achieve this target, a packet could be allowed to request all

available output VCs, since at least one output port must ad-

here to DOR and the packet can use the escape VC of this

port [12, 13]. However, this naive design results in addi-

tional hardware overhead. As shown in Figure 5(b), the VC

allocator must use 2V : 1 arbiters in the first stage to cover

the at most two available output ports for minimal routing

algorithms. Based on these observations, we propose a nov-

el design which maintains significant packet adaptivity with

only minor additional hardware.

4 Whole Packet Forwarding and Fully Adap-
tive Routing

In this section, we present our whole packet forward-

ing scheme and prove it is deadlock-free. Next, we de-

sign a routing algorithm which maintains packet adaptivity

without significant hardware costs. Finally, we describe the

hardware design and overhead.

4.1 Whole Packet Forwarding

As described in Section 3.1, existing fully adaptive rout-

ing algorithms use conservative VC re-allocation to prevent

deadlock. However, this results in poor VC utilization.

Therefore, we propose a novel VC re-allocation scheme:

whole packet forwarding, which greatly improves VC uti-

lization while not inducing deadlock. Suppose a packet Pk

with length of length(Pk) currently resides in V Ci, and

V Cj is downstream of V Ci. Assume that the routing al-

gorithm allows packet Pk to use V Cj . With conservative

VC re-allocation, V Cj can be re-allocated to Pk only if

the tail flit of its most recently allocated packet has been

sent out, i.e., it is currently empty [8]. For our proposed

VC re-allocation scheme, V Cj can be re-allocated if it al-

ready holds the tail flit of the most recently allocated pack-

et, and the current free buffer count (free slots(V Cj)) is

greater than or equal to length(Pk). If free slots(V Cj) ≥
length(Pk), then all flits of Pk are guaranteed to be sent to

V Cj after a limited time3. We call this VC re-allocation

scheme whole packet forwarding (WPF).
Figure 7 shows a WPF example. Here, the routing al-

gorithm allows P1 to use V C2. V C2 has already received

the tail flit of P2 and its free buffer count is two; this spa-

ce is sufficient to hold the whole packet P1 which consists

of two flits. As a result, if we use WPF to re-allocate

V C2 to P1, all flits of P1 will be sent to V C2 in a lim-

ited time. WPF forwards a packet into a non-empty VC

3The time to send all flits of Pk to V Cj will be determined by the con-

gestion and switch allocation but all flits of Pk are guaranteed to advance.
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Figure 7. An example of whole packet forwarding.

if it has enough free buffers to hold the whole packet. In

this case, WPF works similarly to packet-based flow con-

trols such as store-and-forward (SAF) [16] and virtual cut-

through (VCT) [26]. However, if the downstream VC is

empty, we still use wormhole flow control, which does not

require the empty VC to have enough slots to hold the who-

le packet; this reduces the buffering requirements compared

to SAF and VCT. WPF can be viewed as applying packet-

based flow control in a wormhole network. This hybrid flow

control mechanism solves the shortcoming of conservative

VC re-allocation for fully adaptive routing algorithms.

Our contention is that if the routing algorithm with con-

servative VC re-allocation is deadlock-free, then applying

WPF to forward packets into non-empty VCs will not lead

to deadlock. If the VC depth is larger than the maximum

packet length, and the network applies packet-based flow

controls, multiple packets are allowed to reside in one VC

for fully adaptive routing algorithms [14]. However, for the

wormhole network, a blocking packet may reside in multi-

ple VCs, introducing two additional dependencies, indirect

and cross indirect dependency, between non-neighboring

channels [12, 13, 14]. With these additional dependencies,

it is difficult to prove the deadlock-free property of WPF

based on existing theories.

We first give a qualitative proof for algorithms based on

Duato’s theory: using WPF will never allow a packet to

get stuck ‘mid-way’ between two routers, as packets will

always either be able to be fully transmitted to non-empty

VCs or otherwise they will be able to use the escape VCs.

However, the ‘escape VC’ is only defined in Duato’s theo-

ry, and other theories may not have this definition. Thus, we

provide a general proof. For convention, we label the rout-

ing algorithm with conservative VC re-allocation as Alg;

Alg+WPF is Alg with WPF applied to allow forwarding

of entire packets to non-empty VCs.

Theorem 1: If Alg is deadlock-free, then Alg + WPF is

also deadlock-free.

Informal Description: Our proof is by contradiction. We

prove that if there is a deadlock configuration for Alg +
WPF , then there is a deadlock configuration for Alg as

well. Using the deadlock configuration Config0 shown in

Figure 8 as an example, we remove these packets whose

head flits are not at the heads of VCs, and get a new config-

uration Config1. We prove that Alg can achieve Config1,

and Config1 is a deadlock configuration. However, Alg is
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on Config0 of Alg +WPF .

deadlock-free, thus there is no such configuration.

Proof : By contradiction. If Alg + WPF is not deadlock-

free, then there is a deadlock configuration (Config0) in

which a set of packets, Pset0 are waiting on VCs held by

other packets in Pset0 . We prove that a deadlock configura-

tion also exists for Alg. Our proof consists of three steps.

Step 1: We build a new configuration based on Config0.

Consider each packet Pi in Pset0 . If Pi is a packet whose

header flit is not at the head of a VC, then this VC was allo-

cated to Pi using WPF; therefore, all flits of Pi must reside

in this VC in Config0. We remove Pi from the network

and label these removed packets as Psubset0 . We label the

new configuration as Config1, and the set of packets re-

maining in this configuration as Psubset1 .

Step 2: We prove that when the network is routed by Alg,

all packets in Psubset1 can be forwarded into their current

VCs in Config1. We consider each packet Pj in Psubset1 .

We further consider each hop hopk of Pj when the network

is routed by Alg + WPF . Without loss of generality, we

assume the head flit of Pj is forwarded from V Ck to V Ck+1

during hopk. There are two situations for V Ck+1.

2.1) V Ck+1 is empty when the head flit of Pj is forward-

ed into it; therefore, V Ck+1 is allocated to Pj using conser-

vative VC re-allocation. Thus, if the network is routed by

Alg, Pj can use V Ck+1.

2.2) V Ck+1 is not empty when the head flit of Pj is for-

warded into it, thus V Ck+1 is allocated to Pj using WPF.

Since Pj can be forwarded into V Ck+1, the routing algo-

rithm allows Pj to use V Ck+1. However, if the network is

routed by Alg, Pj cannot be forwarded into V Ck+1 until it

is empty. Since Alg is deadlock-free, the packet currently

residing in V Ck+1 must be sent out in a limited time. Then

V Ck+1 can be re-allocated to Pj using conservative VC re-

allocation. Thus, if the network is routed by Alg, Pj can

use V Ck+1.

Considering 2.1) and 2.2) together, for each hop, if a VC

is used by Pj when the network is routed by Alg +WPF ,

this VC can be also used by Pj when the network is rout-

ed by Alg. Thus, Pj can be routed to its current VC(s) in

Config1 by Alg.

Step 3: We prove that Config1 is a deadlock configura-

tion for Alg. For each Pi in the removed packet set Psubset0 ,

all flits of Pi reside in one VC but the head flit of Pi is not

at the head of its VC. Thus, removing Pi from the network

does not create an empty VC; each VC now holds flits of

only one packet. Alg utilizes conservative VC re-allocation

which only allows empty VCs to be re-allocated. Therefore

all packets in the remaining packet set Psubset1 still wait for

VCs held by other packets in Psubset1 . Thus, Config1 is a

deadlock configuration for Alg, but Alg is deadlock-free, so

there is no such deadlock configuration. Thus, Alg+WPF
is deadlock-free as well.

Note that our proof does not make any assumption about

the routing algorithm; WPF can be utilized with any fully

adaptive routing algorithm if it is deadlock-free using con-

servative VC re-allocation. WPF removes the constraints

of conservative VC re-allocation. Thus, it is an important

extension of these theories.

4.2 Fully Adaptive Routing Algorithm

As demonstrated in Section 1, fully adaptive routing al-

gorithms can yield worse performance than deterministic

and partially adaptive ones in VC-limited networks. To

combat this problem, we leverage WPF to design a novel

fully adaptive routing algorithm with superior performance.

Our design is based on Duato’s theory [12, 13]. In a VC-

limited NoC, the routing algorithm should maintain maxi-

mum routing flexibility; it should allow the use of adaptive

VCs after using escape VCs. Otherwise, once a packet goes

into escape VCs, it loses adaptivity in subsequent routing.

The design must guarantee that at any time a packet is able

to request an escape VC [12, 13].

We make a simple modification. In port-selection-first

algorithms, the only time a packet cannot use an escape VC

is when the selection strategy chooses an port that violates

DOR. Our design allows the packet to violate the selection

in this case; the packet can apply for the escape VC of the

other port that was not selected in addition to adaptive VCs

of the selected one. Using P1 in Figure 6 as an example, if

the selection strategy chooses the south port, our algorithm

allows P1 to request the escape VC of the east output port

as well. If there is only one available port, this port must

adhere to DOR, and the packet can request its escape VC.

Our design guarantees that a packet always has an opportu-

nity to use an escape VC. Thus, it allows a packet to move

back into an adaptive VC after using an escape VC. It only

needs V : 1 arbiters in the first stage of the VC allocator.

Large arbiters result in more hardware overhead and intro-

duce additional delay on the critical path.

4.3 Router Microarchitecture

The pipeline of a canonical NoC Router [8, 16, 36, 40]

consists of four stages: routing computation (RC), VC al-

location (VA), switch allocation (SA) and switch traver-

sal (ST). Several optimizations are applied to achieve high

baseline performance. The speculative switch allocation is

used to parallelize VA and SA [40]. Look-ahead routing

removes RC from the critical path; the adaptive routing al-



gorithm calculates at most two available output ports one

hop ahead and applies a selection strategy to choose an op-

timal one [21, 27, 31]. The delay of the baseline router is 2

cycles plus an additional cycle for link traversal.

Both WPF and our routing algorithm only require simple

modifications to the baseline VC allocator. They can be

used with any type of VC allocator; we assume a separable

VC allocator which is widely used due to its low complexity

and high frequency [2, 36, 40]. In a separable VC allocator,

each input VC determines which output VC of the selected

output port to bid on in the first stage. The winning requests

from the first stage then arbitrate for an output VC in the

second stage. We modify the first stage arbiters.

First, we need to monitor whether a downstream VC is

free to be re-allocated with WPF. The criterion is that the

downstream VC holds the tail flit of its most recently al-

located packet and still has enough free slots to hold the

entire new packet. Calculating whether there are enough

free buffer slots for a new packet introduces some hardware

overhead. However, considering that cache coherence pack-

ets exhibit a bimodal distribution and long packets are gen-

erally longer that the VC depth, we focus on applying WPF

to single-flit packets. Thus, if a downstream VC receives

the tail flit of the most recently allocated packet, and it still

has free slots, it can be re-allocated to a single-flit packet.

Figure 9 depicts our proposed VC allocator. Reg0
records if a downstream VC is free to be re-allocated with

conservative re-allocation; the downstream VC is current-

ly empty. An additional register Reg1 is needed to record

whether a downstream VC is free to be re-allocated with

WPF. Based on the incoming packet type, Reg0 or Reg1 is

chosen as the input to MUX0. If the incoming packet is a

single-flit packet, we apply WPF, choosing the contents of

Reg1 as the input for MUX1. Otherwise, the contents of

Reg0 are sent to MUX0. Updates to Reg0 and Reg1 are off

the critical path since a router monitors the status of down-

stream VCs using credits [8]. The only increase in delay for

WPF is an additional 2-input multiplexer: MUX0.

To support our new fully adaptive routing algorithm,

we modify MUX1 and DEMUX1, as shown in Figure 9.

MUX1 needs two additional input signals: DOR and the
other output port. The DOR signal indicates if the chosen

optimal output port obeys DOR or not. The other output
port signal records the available output port that was not

chosen. The routing computation logic produces these two

signals. If the DOR signal is ‘0’, then the selected output

port violates DOR path. In this case, the status of the escape

VC for the other output port rather than the chosen optimal

one will be sent to the V : 1 arbiter. This is accomplished

with a 2-input multiplexer whose select signal is DOR. DE-

MUX1 also needs these two additional signals. If the DOR
signal is ‘0’, the result of V : 1 arbiter is de-multiplexed

to the second stage arbiter for the escape VC of the other
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Figure 9. The proposed VC allocator for one VN.

Table 2. The critical path delay and area results.
Design Delay (ns) Area (μm2)

Port-selection-first (Figure 5(a)) 1.78 49437.4

Naive design (Figure 5(b)) 1.92 56045.4

Proposed design (Figure 9) 1.79 49512.6

output port instead of the chosen port. A 2-input demul-

tiplexer implements this function. The increased delay for

our new fully adaptive routing algorithm is an additional 2-

input multiplexer and demultiplexer.

To analyze the hardware overhead, we implement the

three VC allocators (Figures 5 and 9) in RTL Verilog for

an open-source NoC router [2] and synthesize in Synopsys

Design Compiler with a TSMC 65nm standard cell library.

The designs operate at 500 MHz under normal conditions

(1.2V, 25◦C). We use simple round-robin arbiters [8]. This

router has 5 ports (P = 5) and supports 4 VNs; each VN has

2 VCs (V = 2). Table 2 presents the area and critical path

delay estimates. The naive design uses 4:1 arbiters in the

first stage, resulting in a 7.9% longer critical path and 13.4%

more area than the port-selection-first design. Our design

uses 2:1 arbiters in the first stage and only increases the crit-

ical path by 0.5% and area by 0.2%. An allocator’s power

consumption is largely decided by the arbiter size [2, 50];

given the small arbiters in our design, there should be negli-

gible power overhead compared with the port-selection-first

design. However, we omit a detailed power evaluation as it

depends on the activity factor of each signal.

5 Evaluation

We modify the cycle-accurate Booksim simulator [8] to

model the microarchitecture discussed in Section 4. We

compare the performance of our proposed fully adaptive

routing algorithm with conservative VC re-allocation (FUL-

LY) and with WPF (FULLY+WPF) against several routing

algorithms. We implement a port-selection-first fully adap-

tive routing algorithm with conservative VC re-allocation

(PSF) and with WPF (PSF+WPF). The deterministic rout-

ing algorithm is DOR. West-first, negative-first and odd-

even represent partially adaptive algorithms. Since the de-

sign of selection strategy is orthogonal to this paper, we use

a local selection strategy for all adaptive algorithms; when

there are two available output ports, the selection strategy



Table 3. Baseline configuration and variations.
Characteristic Baseline Variations
Topology (mesh) 4×4 8×8

VCs/VN 2 4

Flit buffers/VC 4 3, 2

Packet length (flits) long: 5, short: 1 -

SFP ratio 80% 60%, 40%

Warmup cycles, Total Cycles 10000, 100000 -

Table 4. Full system simulation configuration.
# of cores 16

L1 cache (D & I) private, 4-way, 32KB each

L2 cache private, 8-way, 512KB each

Cache coherence MOESI distributed directory

Topology 4×4 Mesh

chooses the port with more free buffers.

We evaluate both synthetic traffic and real applications.

For synthetic traffic patterns, we use one VN since each VN

is independent. Our baseline configuration uses a 4×4 mesh

with 2 VCs that are each 4 flits deep. The packet lengths ex-

hibit a bimodal distribution; there are single-flit and five-flit

packets. The baseline single-flit packet (SFP) ratio is 80%.

Table 3 summarizes the baseline network configuration and

the variations used in the sensitivity studies.

To measure full-system performance, we leverage two

simulation frameworks: FeS2 [37] for x86 simulation and

BookSim for NoC simulation. FeS2 is a timing-first, multi-

processor, x86 simulator, implemented as a module for Vir-

tutech Simics [32]. We run PARSEC benchmarks [3] with

16 threads on a 16-core CMP. We assume cores optimized

for clock frequency; they are clocked at a frequency 5×
higher than the network. Prior research shows the frequen-

cy of simple cores in many-core platform can be optimized

to 5∼10 GHZ, while the frequency of NoC router are limit-

ed by the allocator speed with a large number of VCs [11].

As we consider several VNs, more VCs are needed. Thus,

it is reasonable to assume cores will be clocked faster than

the network. Each core is connected to private, inclusive L1

and L2 caches. Cache lines are 64 bytes; long packets are

5 flits wide with a 16-byte flit width. We use a distributed,

directory-based MOESI coherence protocol which needs 4

VNs for protocol-level deadlock freedom. Each VN has 2

VCs; each VC is 4 flits deep. All benchmarks use the sims-
mall input sets to reduce simulation time. The total runtime

is used as the metric for full-system performance. Table 4

presents the system configuration.

5.1 Performance of synthetic workloads

Figure 10 illustrates the performance of several routing

algorithms in our baseline configuration using four synthet-

ic traffic patterns: bit reverse, hotspot and 2 transpose pat-

terns. Across these four patterns, the fully adaptive rout-

ing algorithms (PSF and FULLY) show the poorest perfor-

mance. Although PSF and FULLY offers adaptiveness for

all traffic, conservative VC re-allocation significantly limits

their performance. In contrast, DOR and partially adap-

tive routing algorithms use aggressive VC re-allocation. For

all four patterns, PSF’s performance is worse than FULLY.

PSF’s performance is further limited by its poor flexibility:

once a packet enters an escape VC, the packet can only be

routed by DOR using escape VCs in subsequent hops.

For bit reverse traffic, a source node with bit address

{s3, s2, s1, s0} sends traffic to destination {s0, s1, s2, s3}.

62.5% of this traffic is between the north-east and south-

west quadrants; negative-first offers adaptiveness for this

traffic. Only 37.5% of the traffic is eastbound; west-first of-

fers adaptiveness for this traffic, which leads to poorer per-

formance than negative-first. The adaptiveness offered by

odd-even is lower than negative-first, thus its performance

is worse than negative-first. Although WPF improves the

VC utilization for PSF+WPF, its saturation throughput is

lower than odd-even and negative-first. PSF+WPF is still

limited by its poor flexibility. FULLY+WPF provides high

VC utilization and significant routing flexibility leading to

the highest saturation throughput4.

For transpose-1, a node (i, j) sends messages to node

(3 − j, 3 − i). Negative-first deteriorates to DOR for this

pattern. West-first still offer adaptiveness for 37.5% of the

traffic, thus it has better performance than negative-first.

Odd-even offers greater adaptiveness than the other two

partially adaptive algorithms and has higher performance.

FULLY+WPF offers adaptiveness for all traffic, achieving

15.7% higher saturation throughput than odd-even.

Transpose-2 is a favorable pattern for negative-first; a no-

de (i, j) sends messages to node (j, i). Negative-first offers

adaptiveness for all traffic in this pattern and has the highest

performance. Although FULLY+WPF offers adaptiveness

for all packets as well, its performance is limited by the re-

striction on usage of the escape VCs: only if the output port

adheres to DOR, can the escape VC be used. The perfor-

mance of FULLY+WPF and odd-even with transpose-2 are

very close to their performance with transpose-1 since the

two transpose patterns are symmetric and these two algo-

rithms offer the same adaptiveness for them.

With hotspot traffic, four nodes are chosen as hot spots

and receive an extra 20% traffic in addition to the uniform

random traffic. This pattern mimics memory controllers re-

ceiving a disproportionate amount of traffic. FULLY+WPF

and odd-even algorithms show higher performance than

negative-first and west-first ones, because they can offer

greater adaptiveness. Due to the more limited adaptiveness

offered by odd-even, its performance is worse than FUL-

LY+WPF. DOR has better performance than negative-first

and west-first, since DOR more evenly distributes uniform

traffic which is used as the background in this pattern.

In summary, with conservative VC re-allocation, the ful-

ly adaptive algorithm has the worst performance. Negative-

4The saturation point is measured as the injection rate at which the

average latency is 3 times the zero load latency.
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Figure 10. Routing algorithm performance for the baseline configuration.

Table 5. Average saturation throughput improvement.
Algorithm Improvement Algorithm Improvement
FULLY 88.9% Odd-even 16.3%

DOR 64.5% PSF 130.9%

West-first 58.6% PSF+WPF 31.3%

Negative-first 26.6%

first and west-first offer uneven adaptiveness for different

patterns. For example, although negative-first achieves high

performance for transpose-2, it deteriorates to DOR for

transpose-1. As the traffic in NoCs changes throughout

runtime and different VNs may run different traffic pat-

terns, these partially adaptive routing algorithms are unsuit-

able. Odd-even offers limited adaptiveness for all traffic

patterns. WPF improves VC utilization for fully adaptive

routing algorithms. In a VC-limited environment, routing

flexibility must also be considered to fully leverage WPF.

PSF+WPF does not provide enough routing flexibility re-

sulting in lower performance than some partially adaptive

algorithms. FULLY+WPF provides high VC utilization and

routing flexibility, leading to the best performance. Ta-

ble 5 gives the average saturation throughput improvement

of FULLY+WPF over the other algorithms across all four

patterns. The 88.9% saturation throughput gap between

FULLY+WPF and FULLY reflects the effect of WPF. The

gap between FULLY+WPF and PSF+WPF represents of the

effect of routing flexibility; sufficient flexibility leads to an

average saturation throughput improvement of 31.3%.

5.2 Performance of PARSEC benchmarks

Figure 11 shows the speedups relative to PSF for the

PARSEC workloads. We divide the 10 applications into 2

classes. For blackscholes, fluidanimate, raytrace and

swaptions, different routing algorithms have similar per-

formance. The working sets of these applications fit in-

to the caches leading to a lightly loaded network. Their

system performance is unaffected by techniques that im-

prove throughput, such as sophisticated routing algorithms.

However, the routing algorithm influences the performance

of the remaining 6 applications; they exhibit bursty com-

munication and have heavier loads. Their system perfor-

mance is sensitive to network optimizations; routing algo-

rithms with higher saturation throughputs improve perfor-

mance. For example, FULLY+WPF has 48.5% and 43.0%

speedup over PSF for facesim and streamcluster. West-

first has the best performance for vips because most of

its bursty communication is eastbound. For facesim and

streamcluster, negative-first offers higher adaptiveness

than odd-even for bursty communication, thus achieving

higher performance. For all heavy load applications except

vips, FULLY+WPF has the best performance. Across these

applications, FULLY+WPF achieves an average of 21.3%

and maximum 37.8% speedup over FULLY. With suffici-

ent flexibility, FULLY+WPF has an average 12.1% speedup

over PSF+WPF. The average speedups of FULLY+WPF are

29.3%, 15.0%, 10.1%, 9.9% and 10.4% over PSF, DOR,

west-first, negative-first and odd-even, respectively. Our de-

sign supports higher saturation throughput; if higher satura-

tion throughput is not required, WPF can benefit the NoC

by reducing network resources such as reducing the buffer

resources and reducing the channel width.

6 Sensitivity to Network Design

Individual network implementations are likely to vary

from our baseline configuration, depending on the needs of

the system. We explore variations for further insight. Ex-

cept for the analyzed parameter, the other parameters are

the same as the baseline (Table 3).

Single-flit packet ratios. Single-flit packet (SFP) ratios

depend on the running application, the cache hierarchy and

the coherence protocol. To test the robustness of WPF, we

evaluate 60% and 40% SFP ratios for transpose-1 traffic. As

illustrated in Figure 12, DOR, west-first, negative-first and

odd-even exhibit nearly identical performance for different

SFP ratios. Since they apply aggressive VC re-allocation,

their performance is not sensitive to packet length. How-

ever, the performance of PSF and FULLY improves as the

SFP ratio shrinks. The conservative VC re-allocation used

by PSF and FULLY favors long packets since they utilize

buffers more efficiently than short ones. As the SFP ratio

decreases so does the possibility of applying WPF. Thus,

the performance gap between FULLY+WPF and FULLY

(or PSF+WPF and PSF) decreases. However, even with a

40% SFP ratio, FULLY+WPF achieves a 53.1% saturation

throughput improvement over FULLY. For these different

SFP ratios, FULLY+WPF has the best performance.

VC depth. Different NoCs may use different VC depths.
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Figure 12. The performance with different SFP ratios.

To test the flexibility of WPF, we further evaluate 3- and 2-

flit deep VCs. Comparing 4 flits/VC (Figure 10(a)) and 3

flits/VC (Figure 13(a)), the performance of DOR and west-

first remain almost constant, while FULLY and PSF exhibit

minor performance degradation. DOR and west-first offer

no or very limited adaptiveness which is a major factor in

their performance. Thus, reducing the VC depth from 4 to

3 has little effect. The bottleneck of FULLY and PSF is

conservative VC re-allocation. Considering the majority of

single-flit packets, reducing the VC depth from 4 to 3 only

affects performance slightly. However, the performance of

FULLY+WPF, PSF+WPF, odd-even and negative-first de-

clines with shallower VCs since the VC depth is a bottle-

neck for them. Shallow VCs increase the number of hops

that a blocked packet spans, which increases the effect of

chained blocking [46].

Comparing 3 and 2 flits/VC, performance drops for all

algorithms. FULLY has better performance than DOR and

west-first with 2 flits/VC. As VC depth decreases, the differ-

ence between aggressive and conservative VC re-allocation

declines. FULLY has a relative performance improvement.

However, even with only 2 flits/VC, WPF still optimizes the

performance since short packets dominate traffic. In Fig-

ure 13(b), FULLY+WPF has a 46.2% saturation throughput

improvement over FULLY. Applying WPF on fully adap-

tive routing algorithms leads to superior performance even

with half of the buffer resources; enabling the design of a

very low-cost NoC. With 2 flits/VC (Figure 13(b)), FUL-

LY+WPF achieves a saturation throughput of 40.3%, while

the saturation throughput of FULLY is 32.3% with 4 flit-

s/VC (Figure 10(a)). The same is true for PSF+WPF with 2

flits/VC and PSF with 4 flits/VC.

VC count. As semiconductor scaling continues, a VN

may be configured with more VCs. Coherence protocols
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Figure 13. The performance with different VC depths.

may be optimized to reduce the number of required VNs al-

lowing more VCs per VN. Comparing Figure 14(a) (4 VC-

s/VN) and Figure 10(a) (2 VCs/VN), the performance of

DOR, west-first and odd-even is almost the same. These

algorithms offer limited adaptiveness; although additional

experimental results show increasing the VC count from 1

to 2 improves performance, increasing the VC count from

2 to 4 cannot reduce the congestion for physical paths and

does not further improve performance. Negative-first has a

modest performance improvement. In contrast, PSF, FUL-

LY, PSF+WPF and FULLY+WPF all have significant im-

provement; more VCs mitigate the negative effects of con-

servative VC re-allocation. The performance difference be-

tween PSF and FULLY (or PSF+WPF and FULLY+WPF)

decreases with more VCs; more VCs reduce the possibility

of using escape VCs in PSF which limits the packets that

lose adaptivity.

Figure 14(b) shows the performance of transpose-2,

which is a favorable pattern for negative-first. FUL-

LY+WPF achieves almost the same performance as

negative-first; with more VCs, the effect of restricting the

use of escape VCs in FULLY+WPF declines. With more

VCs, the gap between FULLY and FULLY+WPF (or PSF

and PSF+WPF) diminishes. More VCs improves the possi-

bility of a packet being forwarded into an empty VC, thus

improving the performance of FULLY (or PSF). Further-

more, using WPF to forward a new packet into a non-empty

VC may result in head-of-line congestion [8] and degrade

the performance of FULLY+WPF (or PSF+WPF). Never-

theless, FULLY+WPF still shows an average 19.8% satu-

ration throughput improvement over FULLY for these two

patterns with 4 VCs; providing high VC utilization strong-

ly outweighs the negative effect of HoL blocking in a VC-

limited environment. Yet, additional experimental results
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Figure 14. The performance with 4 VCs/VN.

show that WPF results in minor performance degradation

with 8 VCs/VN for some traffic patterns. Similarly, aggres-

sive VC re-allocation slightly degrades the performance of

deterministic and partially adaptive algorithms compred to

conservative VC re-allocation with 8 VCs/VN for some pat-

terns. With abundant VCs, the HoL blocking outweighs the

positive effect of high VC utilization. Similar to VC depth,

with only 2 VCs, FULLY+WPF offers near or even better

performance (Figures 10(a) and 10(b)) than FULLY with 4

VCs (Figure 14) across these two patterns; WPF provides

similar or higher performance with half as many VCs.

Network size. Figure 15 explores the scalability of our

design for an 8×8 mesh. The trends across different al-

gorithms are the same as with the 4×4 mesh (Figure 10).

Communication is determined by the traffic pattern not the

network size. Since larger networks lead to higher average

hop counts [31], a larger network puts more pressure on

VCs than a smaller one. WPF achieves greater performance

improvement in a larger network. The average saturation

throughput improvement for these two patterns of FUL-

LY+WPF over FULLY is 108.2%, while in a 4×4 mesh,

it is 93.1%. As packets must travel more hops in a larger

network, the possibility of entering an escape VC increases.

For PSF and PSF+WPF, once the packet enters an escape

VC, it loses adaptivity in subsequent hops. Therefore the

performance gap between FULLY+WPF and PSF+WPF (or

FULLY and PSF) increases with a larger network; provid-

ing routing flexibility becomes more important with a larger

network.

In summary, although the effect of WPF decreases with

smaller SFP ratios, shallower VC depths or more VCs, ap-

plying WPF with fully adaptive routing still improves per-

formance significantly. The effect of WPF as well as routing

flexibility increases with a larger network. Applying WPF

to fully adaptive routing algorithms provides similar or even

better performance with half of the buffer resources or VCs

as a network that does not employ WPF.

7 Further Discussion and Future Work

Packet length and VC depth. Packet lengths for cache co-

herence traffic typically have a bimodal distribution. How-

ever, optimizations such as cache line compression [11, 25]
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Figure 15. The performance for an 8×8 mesh network.

create packet distributions that are not bimodal; the packet

length may be distributed between a single flit and the maxi-

mum flits per packet supported by the architecture. To apply

WPF on such NoCs, more downstream VC status registers

are needed for the first-stage arbiters shown in Figure 9.

An important consideration is how many different packet

lengths to apply WPF to. The longest packet length that can

use WPF is one flit shorter than the VC depth. Designers

can ignore long packets, since they have few opportunities

to apply WPF. This tradeoff depends on the packet length

distribution, VC depth, hardware overhead and the expected

performance gain. Delving into this tradeoff is left for fu-

ture work. In this paper, we assume the VC depth is shorter

than the maximum packet length. If the VC depth exceeds

the maximum packet length, conservative VC re-allocation

results in poorer VC utilization for wormhole than VCT,

and applying WPF in this case behaves the same as VCT.

The contribution of WPF is that it allows multiple packets

to reside in one VC while allowing the VC depth to be short-

er than the maximum packet length, thus giving designers

more flexibility.

DAMQ and hybrid flow controls. Previous research pro-

posed the dynamically allocated multi-queue (DAMQ) de-

signs for both off-chip [45] and on-chip networks [38, 50]

to improve the VC utilization. Even with DAMQ, allowing

multiple packets to reside in one VC may lead to a deadlock

configuration similar to Figure 3 for fully adaptive routing

algorithms in a wormhole network. WPF is complimentary

to DAMQ as it ensures deadlock-freedom and improves the

design flexibility. WPF can viewed as a hybrid mechanism

combining wormhole and VCT. There are some previous

hybrid flow controls [42, 44, 30]. Hybrid switching [42]

and buffered wormhole [44] remove a blocked wormhole

packet to release held physical channels by utilizing either

the processing node memory [42] or a central buffer [44].

Layered switching divides the long wormhole packets into

several groups and tries to keep the switch allocation grants

for a whole group [30]. The purpose of WPF is quite d-

ifferent; we focus on improving the performance for fully

adaptive routing algorithms in wormhole networks.



8 Conclusion
Whole packet forwarding is a novel VC re-allocation

scheme for fully adaptive routing algorithms in wormhole

networks. This scheme allows multiple packets to reside

in one VC concurrently; it greatly improves VC utiliza-

tion in VC-limited networks where short packets dominate

traffic. We prove that WPF does not lead to deadlock if

the algorithm is deadlock-free with conservative VC re-

allocation. Thus, WPF is an important extension to ex-

isting deadlock-avoidance theories. We further propose a

novel fully adaptive routing algorithm that exploits WPF

and provides routing flexibility with modest hardware over-

head. Compared with conservative VC re-allocation, WPF

improves the saturation throughput by 88.9% on average in

synthetic traffic patterns and achieves up to 37.8% (21.3%

average) full-system speedup for network-intensive PAR-

SEC benchmarks, and offers similar or even better perfor-

mance with half of the buffer resources or VCs.

Acknowledgments
We thank the anonymous reviewers for their helpful sugges-

tions and members of Prof. Enright Jerger’s group for feedback.
We also thank Daniel Becker of Stanford for his explanation on
the open-source router implementation. This work is support-
ed by the University of Toronto, NSERC of Canada, the Con-
naught Fund, 863 Program of China (2012AA010302), NSFC
(61070037, 61025009, 60903039, 61103016), China Edu. Fund.
(20094307120012), Hunan Prov. Innov. Fund. For PostGrad.
(CX2010B032).

References
[1] K. Anjan and T. Pinkston. An efficient, fully adaptive deadlock re-

covery scheme: Disha. In ISCA 1995.
[2] D. Becker and W. Dally. Allocator implementations for network-on-

chip routers. In SC 2009.
[3] C. Bienia et al. The parsec benchmark suite: characterization and

architectural implications. In PACT 2008.
[4] G.-M. Chiu. The odd-even turn model for adaptive routing. IEEE

Trans. Parallel Distrib. Syst., 11(7):729 –738, July 2000.
[5] W. Dally. Virtual-channel flow control. IEEE Trans. Parallel Distrib.

Syst., 3(2):194 –205, Mar 1992.
[6] W. Dally and C. Seitz. Deadlock-free message routing in multipro-

cessor interconnection networks. IEEE Trans. Comp., C-36(5):547
–553, May 1987.

[7] W. Dally and B. Towles. Route packets, not wires: on-chip intercon-
nection networks. In DAC 2001.

[8] W. Dally and B. Towles. Principles and Practices of Interconnection
Networks. Morgan Kaufmann, San Francisco, CA, USA, 2003.

[9] W. Dally and C. Seitz. The Torus routing chip. Distributed Comput-
ing, 1:187–196, 1986.

[10] R. Das et al. Design and evaluation of a hierarchical on-chip inter-
connect for next-generation CMPs. In HPCA 2009.

[11] R. Das et al. Performance and power optimization through data com-
pression in network-on-chip architectures. In HPCA 2008.

[12] J. Duato. A new theory of deadlock-free adaptive routing in worm-
hole networks. IEEE Trans. Parallel Distrib. Syst., 4(12):1320 –
1331, December 1993.

[13] J. Duato. A necessary and sufficient condition for deadlock-free
adaptive routing in wormhole networks. IEEE Trans. Parallel Dis-
trib. Syst., 6(10):1055 –1067, 1995.

[14] J. Duato. A necessary and sufficient condition for deadlock-free rout-
ing in cut-through and store-and-forward networks. IEEE Trans. Par-
allel Distrib. Syst., 7(8):841 –854, August 1996.

[15] J. Duato and T. Pinkston. A general theory for deadlock-free adaptive
routing using a mixed set of resources. IEEE Trans. Parallel Distrib.
Syst., 12(12):1219 –1235, dec 2001.

[16] N. Enright Jerger and L. Peh. On-Chip Networks. Morgan and Clay-
pool Publishers, 2009.

[17] C. Fallin et al. CHIPPER: A low-complexity bufferless deflection
router. In HPCA 2011.

[18] E. Fleury and P. Fraigniaud. A general theory for deadlock avoidance
in wormhole-routed networks. IEEE Trans. Parallel Distrib. Syst.,
9:626–638, July 1998.

[19] B. Fu et al. An abacus turn model for time/space-efficient reconfig-
urable routing. In ISCA 2011.

[20] C. Glass and L. Ni. The turn model for adaptive routing. In ISCA
1992.

[21] P. Gratz, B. Grot, and S. Keckler. Regional congestion awareness for
load balance in networks-on-chip. In HPCA 2008.

[22] P. Gratz et al. On-chip interconnection networks of the TRIPS chip.
Micro, IEEE, 27(5):41 –50, Sept.-Oct. 2007.

[23] M. Hayenga et al. SCARAB: A single cycle adaptive routing and
bufferless network. In MICRO 2009.

[24] J. Hu and R. Marculescu. DyAD - smart routing for networks-on-
chip. In DAC 2004.

[25] Y. Jin et al. Adaptive data compression for high-performance low-
power on-chip networks. In MICRO 2008.

[26] P. Kermani and L. Kleinrock. Virtual cut-through: a new computer
communication switching technique. Computer Networks, 1979.

[27] J. Kim et al. A low latency router supporting adaptivity for on-chip
interconnects. In DAC 2005.

[28] M. Li et al. DyXY - a proximity congestion-aware deadlock-free
dynamic routing method for network on chip. In DAC 2006.

[29] X. Lin et al. The message flow model for routing in wormhole-
routed networks. IEEE Trans. Parallel Distrib. Syst., 6(7):755 –760,
Jul 1995.

[30] Z. Lu et al. Layered switching for networks on chip. In DAC 2007.
[31] S. Ma et al. DBAR: an efficient routing algorithm to support multiple

concurrent applications in networks-on-chip. In ISCA 2011.
[32] P. S. Magnusson et al. Simics: A full system simulation platform.

Computer, 35:50–58, February 2002.
[33] R. Marculescu et al. Outstanding research problems in NoC design:

system, microarchitecture, and circuit perspectives. IEEE Trans.
Comp.-Aided Des. Integ. Cir. Sys., 28:3–21, January 2009.

[34] M. M. K. Martin et al. Multifacet’s general execution-driven mul-
tiprocessor simulator (gems) toolset. SIGARCH Comput. Archit.
News, 33:92–99, November 2005.

[35] S. Mukherjee et al. The Alpha 21364 network architecture. In Hot
Interconnects 2001.

[36] R. Mullins et al. Low-latency virtual-channel routers for on-chip
networks. In ISCA 2004.

[37] N. Neelakantam et al. FeS2: A full-system execution-driven simula-
tor for x86. In Poster presented at ASPLOS 2008.

[38] C. Nicopoulos et al. ViChar: A dynamic virtual channel regulator
for network-on-chip routers. In MICRO 2006.

[39] U. Y. Ogras et al. Key research problems in noc design: a holistic
perspective. In CODES+ISSS 2005.

[40] L.-S. Peh and W. Dally. A delay model and speculative architecture
for pipelined routers. In HPCA 2001.

[41] L. Schwiebert and D. N. Jayasimha. A necessary and sufficient con-
dition for deadlock-free wormhole routing. J. Parallel Distrib. Com-
put., 32:103–117, January 1996.

[42] K. Shin and S. Daniel. Analysis and implementation of hybrid
switching. In ISCA 1995.

[43] A. Singh et al. GOAL: a load-balanced adaptive routing algorithm
for torus networks. In ISCA 2003.

[44] C. B. Stunkel et al. The SP2 high-performance switch. IBM Syst. J.,
34:185–204, April 1995.

[45] Y. Tamir and G. Frazier. High-performance multiqueue buffers for
VLSI communication switches. In ISCA 1988.

[46] A. Vaidya et al. Impact of virtual channels and adaptive routing
on application performance. IEEE Trans. Parallel Distrib. Syst.,
12(2):223 –237, Feb 2001.

[47] F. Verbeek and J. Schmaltz. A comment on “a necessary and suffi-
cient condition for deadlock-free adaptive routing in wormhole net-
works”. IEEE Trans. Parallel Distrib. Syst., 22(10):1775 –1776, oct.
2011

[48] F. Verbeek and J. Schmaltz. On necessary and sufficient conditions
for deadlock-free routing in wormhole networks. IEEE Trans. Par-
allel Distrib. Syst., 22(12):2022 –2032, dec. 2011.

[49] D. Wentzlaff et al. On-chip interconnection architecture of the TILE
processor. Micro, IEEE, 27(5):15 –31, Sept.-Oct. 2007.

[50] Y. Xu et al. Simple virtual channel allocation for high throughput
and high frequency on-chip routers. In HPCA 2010.




