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When a computational task tolerates a relaxation of its specification or when an algorithm tolerates the effects
of noise in its execution, hardware, system software, and programming language compilers or their runtime
systems can trade deviations from correct behavior for lower resource usage. We present, for the first time,
a synthesis of research results on computing systems that only make as many errors as their end-to-end
applications can tolerate. The results span the disciplines of computer-aided design of circuits, digital system
design, computer architecture, programming languages, operating systems, and information theory. Rather
than over-provisioning the resources controlled by each of these layers of abstraction to avoid errors, it can
be more efficient to exploit the masking of errors occurring at one layer and thereby prevent those errors
from propagating to a higher layer.

We demonstrate the potential benefits of end-to-end approaches using two illustrative examples. We in-
troduce a formalization of terminology that allows us to present a coherent view across the techniques tra-
ditionally used by different research communities in their individual layer of focus. Using this formalization,
we survey tradeoffs for individual layers of computing systems at the circuit, architecture, operating system,
and programming language levels as well as fundamental information-theoretic limits to tradeoffs between
resource usage and correctness.

CCS Concepts: • General and reference → Surveys and overviews; • Hardware → Emerging technologies;
Analysis and design of emerging devices and systems; Integrated circuits; Signal processing systems; • Software

and its engineering → Software notations and tools; • Computer systems organization → Architectures;
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1 INTRODUCTION

Computing systems solve specific computational problems by transforming an algorithm’s inputs
to its outputs. This, as well as counteracting the effects of noise in the underlying hardware sub-
strate [16, 100, 187], requires resources such as time, energy, or hardware real-estate. Because
of the increasing pervasiveness of computing systems and the diminishing returns from perfor-
mance improvements of process technology scaling [7, 23, 152], resource efficiency is becoming
an increasingly important challenge.

Computing systems are reaching the fundamental limits of the energy required for fully reli-
able computation [16, 128]. At the same time, many important applications have nondeterministic
specifications or are robust to noise in their execution. We dedicate the next section of the review
(Section 2) to providing an overview of application domains with quality versus resource usage
tradeoffs, and we provide two detailed examples in Section 3. They thus do not necessarily require
fully reliable computing systems and their resource consumption can be reduced. For instance,
many applications processing physical-world signals often have multiple acceptable outputs for a
large part of their input domain. Because all measurements of analog signals have some amount of
measurement uncertainty or noise and digital signal representations necessarily introduce quan-
tization noise, it is not always necessary to perform exact computation on data resulting from
uncertain measurements of real-world physical signals.

These observations about the fundamental limits of computation and the possibility of trading
correctness for resource usage have always been implicit in computing systems design dating back
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to the ENIAC [226], but have seen renewed interest in the past decade. This interest has focused
on techniques to trade precision, accuracy, and reliability for reduced resource usage in hard-
ware. These recent efforts harness nondeterminism and take advantage of application tolerance
to coarser discretization in time or value (i.e., precision or sampling rate), to obtain significant re-
source savings for an acceptable reduction in accuracy and reliability. These techniques have been
referred to in the research literature as approximate computing and include:

• Programming languages to specify computational problem and algorithm nondeterminism.
• Compilation techniques to transform specifications that expose nondeterminism or flexi-

bility, into concrete deterministic implementations.
• Hardware architectures that can exploit nondeterminism exposed at the software layer or

that expose hardware correctness versus resource usage tradeoffs to the layers above.
• New devices and circuits to implement architectures that exploit or expose nondeterminism

and correctness versus resource usage tradeoffs.

In the same way that computing systems that only use as much energy as is necessary are
referred to as being energy-efficient, we can refer to the computing systems investigated in this
survey as being error-efficient: they only make as many errors as their end-to-end applications
can tolerate [209].

1.1 Context of This Survey

This survey explores research results in hardware and software systems in which the system’s
designers or end-to-end applications can trade lower resource usage for increased occurrence of
deviations from correctness. These deviations from correctness may occur within an individual
layer of the system (e.g., at the circuit layer), or they may occur in the context of an end-to-end
computing system application (e.g., a microcontroller-based pedometer application driven by sen-
sor measurements from an accelerometer). Existing related surveys [10, 74, 140, 144, 185, 227]
present valuable analyses of techniques at subsets of the layers of computing systems. These ex-
isting surveys provide complementary coverage of the relevant literature but neither introduce
any broadly applicable mathematical formalization of the research problem, nor do they survey
the information-theoretic foundations of the tradeoffs between resource usage and correctness
like we do in this article (Sections 4 and 10, respectively).

This survey is the result of research ideas and discussions started at a multi-disciplinary work-
shop, involving the authors, held in April 2017. We wrote the survey shortly thereafter and sub-
mitted it for review in June 2018. As a result, our coverage of the research literature is skewed
towards articles published prior to 2018. We have made every attempt to update the survey with
relevant recent results at the time of acceptance for publication.

Any survey of an active research field can necessarily never be exhaustive. We do not explicitly
cover the long history of fundamental research results on changing the structure of algorithms to
trade, e.g., average case performance for deterministic execution (approximation and randomized
algorithms). Instead, we limit ourselves to results that apply to compile-time program transforma-
tions of applications that implement a fixed algorithm. Throughout the survey, our objective is to
highlight representative examples that provide reusable insights, rather than compile an exhaus-
tive list of all related publications and related domains.

1.2 Contributions and Outline

This survey presents:

• A cross-disciplinary overview of research results on correctness versus resource us-
age tradeoffs, spanning the hardware abstractions and disciplines of: transistors, circuits,
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microarchitecture and architecture, programming languages, operating systems, and
applications.

• An overview of existing uses of quality-versus- resource-usage tradeoffs across ap-
plication domains and examples of two end-to-end applications (Sections 2 and 3).

• Mathematical formalization and terminology for describing resource usage versus
correctness tradeoffs of computing systems that interact with the physical world. The
formalization is consistent with existing widely used terminology and at the same time
provides a coherent way to discuss tradeoffs across domains of expertise (Section 4).

• Detailed discussions of the state of the art across the layers of system implementation
stack, from circuits, to microarchitecture and architecture, to the programming language
and operating system layers of abstraction (Sections 5–8).

• A taxonomy tying together the ideas introduced in the survey (Section 9).
• A discussion of limits of computation in the presence of noise. (Section 10).
• A set of open challenges across the layers of abstraction (Section 11).

2 EXISTING QUALITY VERSUS RESOURCE USAGE TRADEOFFS

The idea of trading quality for resources and efficiency is inherent to all computing domains.
Several research communities have developed techniques to exploit tolerance of applications to
noise, errors, and approximations to improve the reliability or efficiency of software and hardware
systems. In the same way that there have always been attempts to make hardware and software
more tolerant to faults independent of specific research on fault-tolerant computing, there has
also always been a pervasive use of techniques for approximation (e.g., Taylor series expansions)
independent of recent interest in approximate computing. The following highlights some of these
efforts across application domains.

2.1 Scientific Computing

Scientific computing can be defined as “the collection of tools, techniques, and theories required
to solve on a computer mathematical models of problems in science and engineering” [68]. Most
of these models are real-valued, and exact analytical solutions rarely exist or are costly to com-
pute [44, 129]. As a result, numerical approximations and their associated quality-efficiency trade-
offs have always been important in scientific computing [53].

These numerical approximations are introduced at different levels of abstraction. Because the
real-world is too complex to be represented exactly, practical considerations require resorting to
models, incurring modeling errors [129]. Even with a model in hand, analytical solutions may not
exist and numerical solutions are needed to approximate the exact answers [26, 46], introducing
further deviations from the expected result. And finally, most models are real-valued and thus have
to be approximated by finite-precision arithmetic, adding roundoff errors [81].

Roundoff errors can be bounded to some extent automatically using techniques such as interval
arithmetic [99]. Dealing with most of the errors introduced by modeling, numerical approximation,
and finite-precision arithmetic, is rarely automated by software tools. The state of the art in dealing
with modeling and numerical errors often requires manual intervention of the programmer or
domain expert and is typically on a per-application basis. Because of the resulting complexity of
the error analysis, the resulting error bounds are often only asymptotic.

2.2 Embedded, Digital Signal Processing, and Multimedia Systems

Many computing systems that interact with the physical world or that process data gathered from
it, have high computational demands under tightly constrained resources. These systems, which
include many embedded and multi-media systems, must often process noisy inputs and must trade
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fidelity of their outputs for lower resource usage. Because they are designed to process data from
noisy inputs, such as from sensors that convert from an analog signal into a digital representation,
these applications are often designed to be resilient to errors or noise in their inputs [207].

Several pioneering research efforts investigated trading precision and accuracy for signal pro-
cessing performance [7] and exploiting the tolerance of signal processing algorithms to noise [79,
186]. When the outputs of such systems are destined for human consumption (e.g., audio and
video), common use cases can often tolerate some amount of noise in their I/O interfaces [201–
203, 206, 208].

2.3 Computer Vision, Augmented Reality, and Virtual Reality

Many applications in computer vision, augmented reality, and virtual reality are compute-
intensive. As a result, many of their algorithms (e.g., stereo matching algorithms) have always
been implemented with quality versus efficiency tradeoffs in mind [69, 181, 215]. The implementa-
tions of these algorithms have used techniques including fixed-point implementations of expensive
floating-point numerics [130] and algorithmic approximations such as removing time-consuming
backtracking steps [24] when implementing these algorithms on FPGA accelerators.

2.4 Communications and Storage Systems

The techniques we survey often involve computation on noisy inputs or data processing in the
presence of noise in much the same way research in communication systems and information
theory considers communication over a noisy channel. As one recent example of work that could
be viewed as either traditional information theory and communication systems research or ap-
proximate computing, Huang et al. [86] present a simple yet effective coding scheme that uses
a combination of a lossy source/channel coding to protect against hardware errors for iterative
statistical inference.

2.5 Big Data and Database Management Systems

Approximate query processing in the context of databases and big data research leverages
sampling-based techniques to trade correctness of results for faster query processing. Early work
in this direction investigated sampling from databases [148, 149]. More recently, BlinkDB [2], an
approximate query engine, allows users to trade accuracy for response time. BlinkDB uses static
optimizations to stratify data in a way that permits dynamic sampling techniques at runtime to
present results annotated with meaningful error bars. Other recent efforts include Quickr [96] and
ApproxHadoop [67].

2.6 Machine Learning

Machine learning techniques learn functions (or programs) from data and this data is in practice
either limited or noisy. Larger datasets typically lead to more accurate trained machine learning
models, but in practice training datasets must be limited due to constraints on training time. As
a result, many machine learning methods must inherently grapple with the tradeoffs between
efficiency and correctness of the systems.

There are several techniques that allow machine learning systems to trade accuracy for effi-
ciency. These techniques include random dropout [197], which randomly removes connections
within a neural network to prevent overfitting during training and to improve overall training
accuracy. Techniques such as weight de-duplication and pruning [37, 75], low-intensity convolu-
tion operators [85, 88], network distillation [168], and algorithmic approximations based on matrix
decomposition [49, 105] take advantage of redundancy to minimize the parameter footprint of a
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given neural network. Weight quantization is yet another technique to reduce computation and
data movement costs in hardware [45].

2.7 Approximation and Randomized Algorithms

Approximation algorithms seek efficient solutions to computationally hard problems (e.g., knap-
sack or SAT solving), such that the distance of the obtained solution is guaranteed to be within a
fixed bound from the exact solution [221]. These algorithms often use heuristic methods or relax
hard optimization problems to instances of linear programs. Often, they are fully polynomial-time

approximation schemes—polynomial-time algorithms that for each fixed error bound ε have their
running time bounded by a polynomial in the size of 1

ε
and the size of the problem.

Randomized algorithms use a sequence of random bits to achieve good average case performance

over an input space. These algorithms often ensure that the computed solution is within a small
distance from the exact solution with high probability [141]. Randomized algorithms that perform
property testing, such as testing for similarity of strings typically query only a small fraction of the
data set (often logarithmic in size) and make the correct decisions with high probability.

The approximations performed by approximation algorithms and randomized algorithms are
purely algorithmic in nature. Although they often come with strong theoretical guarantees they do
not take advantage of approximation opportunities across the system, from circuits to applications.

3 ILLUSTRATIVE END-TO-END EXAMPLES

Many applications from the domains of signal processing and machine learning have traditionally
had to grapple with tradeoffs between precision, accuracy, application output fidelity, performance,
and energy efficiency (see, e.g., Sections 2.2 and 2.6). Many of the techniques applied in these
domains have been reimagined in recent years, with a greater willingness of system designers to
explicitly trade reduced quality for improved efficiency.

We discuss two applications from the signal processing and machine learning domains: a pe-
dometer and digit recognition. Using these examples, we suggest ways in which resource usage
versus correctness tradeoffs can be applied across the layers of the hardware stack, from sensors,
over I/O, and to computation. We use these applications to demonstrate how end-to-end resource
usage could potentially be improved even more when tradeoffs are exploited at more than one
layer of the system stack.

3.1 Example: A Pedometer Application

Applications that process data measured from the physical world must often contend with noisy
inputs. Signals such as temperature, motion, and so on, which are analyzed by such sensor-driven
systems, are usually the result of multiple interacting phenomena that measurement equipment
or sensors can rarely isolate. At the same time, the results of these sensor signal processing ap-
plications may not have a rigid reference for correctness. This combination of input noise and
output flexibility leads to many sensor signal processing applications having tradeoffs between
correctness and resource usage.

One concrete example of such an application is a pedometer (step counter). Modern pedometers
typically use data from three-axis accelerometers to determine the number of steps taken during a
given period of time. Even when a pedometer’s wearer is nominally motionless, these accelerom-
eters will detect some distribution of (noisy) measured acceleration values. At the same time,
small errors in the step count reported by a pedometer are often inconsequential and therefore
acceptable.

Figure 1 shows a block diagram for an implementation of one popular approach [233]. Our
implementation takes as input three-axis accelerometer data and returns a step count for time
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Fig. 1. The block diagram of one canonical pedometer application implementation.

Fig. 2. Intermediate stages of data from a pedometer application.

windows of 500 ms. The pedometer algorithm first selects the accelerometer axis with the
maximum peak-to-peak variation (the maximum activity axis selection block in Figure 1). The
algorithm uses the selections to create a new composite sequence of accelerometer samples.
Next, the pedometer algorithm performs low-pass filtering, and then, for each 500 ms window,
computes the maximum and minimum acceleration values and the midpoint of this range (the
extremal value marking block in Figure 1). Finally, the algorithm counts how many times the
low-pass filtered signal crosses the per-window midpoints in one direction (e.g., from above the
midpoint to below it), and it reports this count as the number of steps.

Figures 2(a)–2(c) show the progression of a sequence of accelerometer samples through the
stages of the pedometer algorithm, which outputs a step count of 19 at the end. Figures 2(d)–2(f)
show a modified version of the data where we have replaced 5% of the samples with zeros to
simulate intermittent failures at a sensor. Even though the data in the final stage of the algorithm
(Figures 2(c) and 2(f)) looks qualitatively different, the final output of the algorithm is relatively
close the noise-free output.

Applying individual tradeoffs. The hardware and system stack for a typical pedometer comprises
sensors (e.g., accelerometers), I/O links (e.g., SPI or I2C) between those sensors and a processor,
a runtime or embedded operating system, the implementation of the pedometer algorithm, and a
display. A system’s designer may exploit the resource versus correctness tradeoffs at each of these
layers or components independently, using the techniques surveyed in Sections 5–8 of this article.
For example, a system designer could apply Lax [207] to sensors, VDBS encoding [202, 203, 208]
to the I2C or SPI communication between sensors and a microcontroller, and could ensure that the

ACM Computing Surveys, Vol. 53, No. 3, Article 51. Publication date: May 2020.



51:8 P. Stanley-Marbell et al.

Fig. 3. The multi-layer perceptron (MLP) trained on the MNIST dataset: topology and effects of quantization.

potentially inexact data does not affect the overall safety of the application using EnerJ [174] or
FlexJava [153].

Potential for end-to-end optimization. This survey argues for exploring the end-to-end com-
bination of techniques for trading correctness for efficiency, across the levels of abstraction of
computing systems. Rather than treating each layer of the hardware and system software stack
as an independent opportunity, this article argues that greater resource-correctness tradeoffs are
possible when the entire system stack is considered end-to-end. For example, the insensitivity of
the pedometer algorithm to input noise highlighted in Figure 2 might be determined by program
analyses. These analyses could in turn be used to inform instruction selection for generated code
as well as determining sensor operating settings (e.g., sampling rate, operating voltage, on-sensor
averaging) and sensor I/O settings (e.g., choices for the I/O encoding for the sensor samples as
they are transferred from a sensor).

3.2 Example: Digit Recognition

Digit recognition is the computational task of determining the correct cardinal number corre-
sponding to an image of a single handwritten digit. Neural networks [111] are one popular tech-
nique to perform digit recognition. A typical neural network implementation of digit recognition
takes an array of pixel values from an image capture device such as a CMOS or CCD camera and
outputs, on its final layer, an encoding of the classified digit value. The ultimate input source is a
potentially noisy digital representation of an analog signal (an image) and the output is a digital
(decimal) interpretation of that input.

Neural network classifiers are naturally imperfect discriminators: The quality of their classi-
fications depend on the diversity of the data on which they are trained and on the resilience of
the classifier to noise and input modifications such as rotations and translations. If the number of
training examples are insufficiently many, then the learned classifier may overfit to the training
set. With an appropriate training set, a neural network may learn resilience to bit-level errors in
its inputs, enabling it to gracefully recover from hardware errors [51]. Other methods, such as
randomized pruning, can further help improve a trained classifier’s robustness [112]. As a result,
neural networks are a useful target application to evaluate approximation techniques across the
stack, from circuits to applications.

Figure 3(a) shows a simple network architecture for performing handwritten digit recognition.
The network consists of three fully connected layers (labeled “fc” in the Figure). The input layer
takes in a 28×28 image, which is flattened into a one-dimensional array of 784 pixel values. Each
fully connected layer performs a weighted sum of all input values to produce a single output value,
to which is applied a bias, followed by a non-linear activation function. The latter determines if
the output neuron should be considered active or not. The layers before the final output layer
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Fig. 4. Application-aware codes can be critical in enabling robustness to errors in neural networks. In the

case of ternary neural networks, we can craft codes that ensure a deviation of at most 1 from the original

value when a single bit flip error occurs.

are known as hidden layers: they identify hidden features that help discriminate between different
classes of digits. The final layer in Figure 3(a) has 10 outputs, each corresponding to a different
possible digit class (“0” through “9”). The neuron with the highest value indicates to what digit the
neural network has classified the input image.

Applying individual tradeoffs. Figure 3(b) shows the results for accuracy of the neural network
with quantization of weights starting with an 8-bit weight baseline all the way down to a 1-bit
weight. The network is trained on the MNIST data set with quantization of weights either during or
after training. The results show that as long as re-training is applied, this neural network is tolerant
even to aggressive levels of quantization. Quantization additionally enables weight prunability
and compressibility: Weights represented with fewer bits lead to fewer distinct values and more
weights end up in the zero-valued bin.

Potential for end-to-end optimization. Once the network has been quantized and compressed,
we can further leverage resource versus correctness tradeoffs by storing the weights in approx-
imate voltage-overscaled SRAM cells [163], which may occasionally produce read errors. Recent
work [103] motivates the use of approximate SRAMs by highlighting that SRAMs consume a signif-
icant percentage of overall power in neural network accelerators. The authors show that both re-
training and fault-detection mechanisms can mitigate the destructive effects of voltage-overscaled
SRAM read upsets on classification tasks.

4 TERMINOLOGY

The terminology used to describe resource usage versus correctness tradeoffs has historically dif-
fered across research communities (e.g., the computer-aided design and design/test communities
versus the programming language and system software communities). The differences in termi-
nology are sometimes inevitable: a “fault” in hardware is usually a stuck-at logic- or device-level
fault while a “fault” in an operating system is usually the failure of a larger macro-scale compo-
nent. In this article, we attempt to provide a uniform scaffolding for terminology. In doing so, we
acknowledge that this terminology will by necessity need to be reinterpreted when applied to the
different layers of abstraction in a computing system and we do precisely that at the beginning of
each of the following sections.

4.1 Computation in the Physical World

We consider computing systems that make observations of the physical world (e.g., using sensors
or other data input sources) and compute a discrete set of actions that the system (or a human)
then applies back to the physical world. Such end-to-end systems are therefore analog in, analog

out. In this process, the computing system measures the physical world, computes on a sample of its
measurement, and then computes a set of actions or actuations to be applied to the world. Figure 5
shows the steps of computation in the physical world.

ACM Computing Surveys, Vol. 53, No. 3, Article 51. Publication date: May 2020.
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Fig. 5. Steps of computation in the physical world.

We denote the domain of quantized values by Q. In practice, quantized values are often
bounded integers or finite-precision floating-point numbers. When working with a relation r ⊆
A × B, the domain and range of a relation r are defined as Domain(r ) := {x | ∃y.(x ,y) ∈ r } and
Range(r ) := {y | ∃x .(x ,y) ∈ r }. The composition of two relations f and д, denoted f ◦ д, is allowed
if Range( f ) ⊆ Domain(д) and it is defined as f ◦ д = {(x , z) | ∃y.(x ,y) ∈ f ∧ (y, z) ∈ д}. A left-total

relation is a relation that covers all members of its input domain. In other words, an output exists
for every possible input.

Physical world: We assume that all of our systems are situated in the physical world, and
we model inputs from this world with real numbers, R. This assumption is consistent with most
applications that trade errors for efficiency (see Sections 2 and 3), such as sensing applications (as
in Section 3.1), cyber-physical systems, computer graphics, computer vision, machine learning (as
in Section 3.2), and scientific computing.

Measurement and analog processing step: Each computation situated in the physical world
begins with a measurement in which the computing system makes an observation of the physical
world. In metrology, this quantity is referred to as the measurand. We denote the result of a mea-
surement by a probability distribution. We restrict our focus to distributions that we can represent
with a probability density function (PDF), f : R→ R.

Measurements may include within their internal processes computations that transform the
measured distributions to yield new distributions. These internal processes may be nondetermin-
istic. We include this facility to account for systems that may perform computation directly in the
unsampled and unquantized analog domain and Section 5.3 of the survey gives examples of such
systems. A measurement is therefore a function of type f : R→ (R→ R), mapping a real value
(the measurand) to a function in the form of the probability distribution (the measurement). The
result of the measurement step of a computation is therefore still in the domain of continuous-time
real-valued quantities.

Sampling and quantization step: Between the measurement step and a subsequent discrete
(digital) computation step, we assume that there is a sampling and quantization step that generates
discrete-time samples with discrete values from the real-valued distribution resulting from the
measurement step. A sampler is therefore a relation f : (R→ R) ×Qm that samples and quantizes
a discrete value from a probability distribution. (Qm denotes the set of allowable quantized values.)
The process of quantization adds implicit quantization noise to the real-valued input.

Digital computation step: In the discrete world, we consider the computations that take
as input a discrete sample from the measured world and performs a potentially nondeterminis-
tic computation to produce a discrete output. Therefore, a discrete computation f is a left-total
relation f ⊆ Qm ×Qo where Qm is the input and Qo is the output.

Actuation step: The digital outputs can be used back in the physical world as inputs to real-
valued actuation, which modifies the state of the physical world. An actuation computation is
therefore a nondeterministic function that we model as a left-total relation f ⊆ Qo ×R.
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4.2 Computation and Correctness

Following the terminology defined in Section 4.1, we can express any computation that processes
data from the physical world as a composition of the steps of measurement, sampling and quanti-
zation, digital computation, and actuation. Each of these steps defines a computation:

Computation: A computation f is a nondeterministic function that we denote as a left-total
relation f ⊆ I ×Q where we instantiate the domain I and O to fit the computation’s correspond-
ing step from Section 4.1. For example, as we will see later in Section 5.1, at the circuit level, the
input domain I and the output domain O are voltage levels.

We model computations as left-total relations to account for nondeterminism where for the same
input, the computation may produce different outputs on different executions. The relations are
left-total in that there exists at least one output for every value in the input domain. This modeling
assumptions also dictates that computations terminate. If a computation is deterministic, then we
model it as a function f : I → O.

Specification: For any computation f ⊆ I ×O, a system’s developers and users can provide
its specification as a relation f ∗ ⊆ I ×O that defines the set of acceptable mappings between the
function’s inputs and outputs. A specification need not be executable itself and multiple imple-
mentations can satisfy the same specification.

Correctness: A computation and its corresponding definition as a relation is correct if it imple-

ments its specification. A computation f implements a specification f ∗ iff∀i,o. (i,o) ∈ f ⇒ (i,o) ∈
f ∗. This definition means that every output of f for a given input, must be valid according to the
specification.

Faults: To define faults, we first decompose a computation f into two computationsд ⊆ I ×M
and h ⊆M ×O, where M is a domain of values for the output of д and h ◦ д ≡ f . Given this
decomposition, a fault is an anomaly in the execution of д on an input i such that д produces an
anomalous, unexpected valuem in that (i,m) � д.

Errors: An error occurs when a computation encounters a fault and the computation’s result-
ing output does not satisfy its specification. Given a computation f and its decomposition into д
and h as above, the semantics of an error is that if the execution of д on i produces a faulty valuem
(as above), then that fault is an error if the result of the continued execution via h does not satisfy
f ’s specification—namely, that (i,h(m)) � f ∗.

Masking: A fault does not always result in an error; a fault can instead be masked. If a com-
putation encounters a fault and the computation’s resulting output satisfies its specification, then
the fault has been masked by the computation’s natural behavior. Given a computation f and its
decomposition into д and h as before, the semantics of a masked error is that if the execution of д
on i produces a faulty value m (as above), then that fault is masked if the result of the continued
execution via h satisfies f ’s specification—namely, that (i,h(m)) ∈ f ∗.

Precision and accuracy: We define precision as the degree of discretization of the state space
determined by Qm (from the sampling and quantization step, Section 4.1), and we define accuracy

as a distance between the functions f and f ∗ defined above.

4.3 Standard Viewpoints

Let h be the identity function and f = д. Then the aforementioned definitions give a semantics to
faults that affect the output of a single, monolithic function f . Take f ∗ to be f , then the function’s
specification is given by its exact behavior. This form of specification is the standard assumption
for computing systems wherein they must preserve the exact semantics (up to nondeterminism)
of the computation. Most existing approaches to trading errors for efficiency fit this viewpoint:
they typically start from an existing program as their specification and approximate it to allow for
more efficient implementations.
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4.4 Quantifying Errors

Approaches to quantifying errors include absolute errors, relative errors, and error distributions.
In most contexts, the evaluator of a system is interested in the error of not only a single input, but
a whole domain of inputs. Depending on the application domain, upper or lower bounds on the
worst-case error, or average errors may be of interest. When a computation runs repeatedly, the
error frequency or error rate captures how often a computation returns an incorrect result.

5 TRANSISTOR-, GATE-, AND CIRCUIT-LEVEL TECHNIQUES

Transistors provide the hardware foundations for all computer systems. As a result, their physical
properties determine the efficiency at which a particular computation can be performed. When
collections of transistors are used to form gates and analog circuits, and when collections of gates
are used to implement digital logic circuits, the organization of the transistors, gates, and circuits
can be designed to trade efficiency for correctness.

5.1 Notation

Following the notation introduced in Section 4, input I can be defined as a voltage level that is
switched to O as a computation f is executed. Therefore, f : I → O is a switching of voltage at a
transistor or a group of transistors forming a circuit element, for instance, a byte in a memory or an
adder in an arithmetic/logic unit (ALU). Such computation can be regarded as f ∗ : I → O where
the relation between f ∗ and f is the difference in the electrical operating points of the individual
transistors. This difference saves computational costs like power consumption and latency while
introducing timing errors and incorrect voltage levels.

5.2 Analog Input/Analog Output Systems: A Comparison Reference for Quantization

When using finite-precision arithmetic, computation always involves errors that are caused by
quantization. Quantization is a fundamental mechanism for trading energy for accuracy and recent
work has highlighted examples of its effectiveness [143].

The effect of quantization errors can be observed by treating the inputs and outputs of a comput-
ing system as real-valued analog signals and comparing these signals to an ideal (error-free) com-
puting system that accepts analog inputs and produces analog outputs. When such ideal outputs
are not available, designers often use the output of the highest precision available (e.g., double-
precision floating point) as the reference from which to determine the error of a reduced-precision
block. Such analyses are common in the design process of digital signal processing algorithms
such as filters [154] where the choice of number representation and quantization level enables a
tradeoff between the performance and signal-to-noise ratio properties of a system.

5.3 Analog Computing: Data Processing with Currents and Voltages

Analog computing systems [98, 125] eliminate the need for discretization and the resulting restric-
tion on precision that is inherent in digital circuits. While, in theory, analog circuits provide un-
bounded precision, in practice their precision is limited by factors such as noise, non-linearities, the
degree of control of properties of circuit elements such as resistors and capacitors, and the degree
of control of implicit parameters such as temperature. At higher precision, analog blocks tend to be
less energy-efficient than digital blocks of equivalent precision [180]. Because they usually do not
use minimum-size transistors, analog circuits may also be larger in area than their digital circuit
equivalents. Designing analog computation units is also a challenging task. Nevertheless, analog
circuits can be an attractive solution for applications that tolerate low-precision computation [180].
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5.4 Probabilistic Computing: Exploiting Device-level Noise for Efficiency

A line of research pioneered by Palem et al. [35, 151] (“probabilistic computing”) proposes
harnessing intrinsic thermal noise of CMOS circuits to improve the performance of probabilistic
algorithms that exploit a source of entropy for their execution. Chakrapani et al. [31] show an
improvement in the energy-performance product for algorithms such as Bayesian inference, prob-
abilistic cellular automata, and random neural networks using this approach and they establish a
tradeoff between the energy consumption and the probability of correctness of a circuit’s behavior.
These techniques have also shown energy savings for digital signal processing algorithms that
do not employ probabilistic algorithms but that can tolerate some amount of noise [65, 102].

5.5 Stochastic Computing: Unary Representation and Computing on Probabilities

Stochastic computing (SC) uses a unary data representation of bit streams where the fraction of
“1”s or “0”s in the stream denote real-valued probabilities [6]. In theory, the probabilities in SC rep-
resentations can have unbounded precision but in practice the length of the bit-streams determines
precision [4]. Despite what the name suggests, most existing SC circuits are in fact deterministic.
Unless a true random number source (e.g., memristors) is used, SC circuits will produce the same
output if inputs are unchanged and several studies have shown that adding determinism to SC is
in fact useful [72, 146]. If carefully chosen, then deterministic pseudorandom number sources can
increase the accuracy of SC circuits without adding any extra overhead.

SC was first introduced in the 1960s [63] and its main benefit is that it allows arithmetic op-
erations to be implemented via simple logic gates: a single and gate performs SC multiplication.
This made SC attractive in the era of expensive transistors. But as transistors became cheaper, SC’s
benefit faded away and its main drawbacks (limited speed and precision) became dominant [4].
For this reason, SC was only used in applications such as neural networks [50, 106] and control
systems [216].

Because of its energy efficiency, SC has seen renewed interest over the past decade [4]. Its
probabilistic nature copes with new inherently random technologies such as memristors [107]:
The unary encoding of numbers in SC makes computation robust to errors [155] and allows vari-
able precision computation [5]. With the low precision requirements of modern machine learning
applications, SC is becoming an attractive alternative to conventional binary-encoded computa-
tion [114].

5.6 Voltage Overscaling: Improved Efficiency from Reduced Noise Margins

The term voltage overscaling is often used to refer to reducing supply voltages more than is typically
deemed safe for a given clock frequency. Voltage overscaling exploits the quadratic relationship
between supply voltages and dynamic power dissipation. LetVdd be the supply voltage of a CMOS
circuit (e.g., an inverter), let f be its clock frequency (reciprocal of its delay) and let C be the
effective capacitance of the load of the circuit. Then, the dynamic power dissipation P is [157]

P ∝ CV 2
dd f . (1)

The delay of a gate in a circuit, and hence the clock frequency f , is however not independent
of supply voltage Vdd. Let Vt be the device threshold voltage and let α be a process-dependent
parameter (the velocity saturation exponent [170]). Then, as supply voltageVdd decreases, the delay
of charging its load capacitance for a gate increases and the maximum clock frequency achievable
at a given voltage follows the relation

f ∝ (Vdd −Vt )α

Vdd
. (2)
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As a result, overscaled voltages cause circuit delays, which in turn lead to timing errors in circuits
at a fixed clock speed. Several approaches have explored the idea of carefully and systematically
accepting such errors in exchange for the large (quadratic) power savings that voltage overscaling
can potentially provide [80, 95, 97, 109, 190]. In unmodified circuits, this often leads to catastrophic
errors at close-to-nominal voltages, as many digital circuits are optimized to minimize timing slack.
However, for several application domains, such as image and video processing, inherent depen-
dence of errors on known input characteristics can be exploited to redesign circuits such that they
allow for significant overscaling with small and graceful degradation of output quality [13, 77, 142,
218]. However, voltage overscaling has potential issues with timing closure and meta-stability. Fur-
thermore, timing errors in the critical paths of a circuit due to voltage overscaling tend to affect
the most significant bits of a computation first and hence can lead to large errors. Dedicated logic
modifications targeting lower significant bits as described next can instead provide better accuracy
with additional switching activity savings for the same timing and hence voltage reduction [132].

5.7 Pruned Circuits for Efficiency at the Expense of Precision and Accuracy

Pruning circuits refers to deleting or simplifying parts of a circuit based on the probability of their
usage or importance to output quality. Recent research has shown how circuit pruning improves
latency, energy, and area without the overheads associated with voltage scaling [117, 131, 183, 191].

Pruning can be applied to digital circuit building blocks such as adders and multipliers, en-
abling quality-cost tradeoff opportunities through different logic simplification and pruning tech-
niques. Approximate adders attempt to simplify carry chains [225, 234] or to use approximate 1-bit
full adders [73, 126, 132] at lower significant digits of a sum computation. Accuracy-configurable
adders have also been proposed for adaptive-accuracy systems that require a functional unit like
an adder or multiplier to vary the degree of tradeoff between correctness and resource usage based
on the quality demand of computation [94]. Unlike approximate adders, approximate multipliers
have a higher design space exploration requirement, as they are composed of 2×2 partial products
that are summed up by deploying an adder tree to compute the final result [108]. Correctness ver-
sus resource usage tradeoffs can be deployed in multipliers (partial products) or adders, or both,
for a chosen number of least-significant bits [91, 164].

Approximate adders and multipliers provide the combinational building blocks for approximate
datapath and processor designs. At the sequential logic level, the challenge is in determining the
amount of approximation to apply to each addition or multiplication operation in a larger compu-
tation to minimize output quality loss while maximizing energy savings. For example, in a larger
computation that consists of multiple accumulations, using an adder with a zero-centered error
distribution [132] will result in positive and negative errors canceling each other and thus aver-
aging in the final output of a larger accumulation. Similarly, approximate multipliers with unbi-
ased error distribution are promising for accumulation-based algorithms like multiply accumulate
(MAC) [76]. By contrast, in other computations, an approximate combinational block that always
over- or under-estimates may be beneficial.

Determining the best tradeoff for each functional unit in a larger sequential design has been
investigated for fixed register transfer level (RTL) designs [147, 161, 224]. Pure RTL optimizations,
however, do not exploit changes in approximated component characteristics for a complete RTL re-
design. In the context of custom hardware/accelerator designs, selection of optimal approximated
operator implementations can instead be folded into existing C-to-RTL high-level synthesis (HLS)
tools [113, 115]. For programmable processors, accuracy configuration of the datapath can be ex-
posed through the instruction-set architecture (ISA) [222]. A compiler then has to determine the
precision of each operation in a given application (see Sections 6 and 7).
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5.8 Approximate Memory: Reducing Noise Margins for Efficiency in Storage

Memory costs are often higher than that of computations in many data-intensive applications [15].
Approximate memories have been investigated in the research literature, to trade quality for
energy, latency, and lifetime benefits [175, 192]. Reducing the refresh rate of DRAM provides an
opportunity to improve energy efficiency while causing a tolerable loss of quality [93, 160]. For
static random access memory (SRAM), by contrast, the tradeoff between correctness and resource
usage is typically achieved by voltage overscaling, where the main concern is in dealing with
the failures in the standard 6-Transistor (6T) cells of an SRAM array under reduced static noise
margins (SNMs) [64]. As a result, hybrid implementations combining 6T with 8T SRAM cells [32]
or with standard cell memory (SCMEM) [19] have been employed to achieve aggressive voltage
scaling to get better quality versus cost tradeoffs. In case of emerging non-volatile random-access
memory (NVRAM) technologies, such as spintronic memories (e.g., STT-MRAM), reducing the
read current magnitude can reduce energy of read operations at the expense of reduced noise
margins and hence accuracy of the content being read [162]. Similarly, significantly increasing
the read current magnitude reduces the read pulse duration, decreasing the read latency while
potentially disturbing the written content with noise.

5.9 Summary

The circuit-level techniques surveyed in this section must ultimately be deployed in the context
of concrete applications. For example, one case study found that for applications such as Fast
Fourier Transforms (FFTs), motion compensation filters, and k-means clustering, applying tradi-
tional fixed-point optimizations to limit the size of operands was more effective than applying
circuit-level approximations such as approximate adders and multiplier circuits [14]. This is be-
cause approximating some bit values still requires information about those bits to be stored and
used in downstream computations. The additional overhead of this bookkeeping in many cases
is not worth the quality benefits. Carefully selecting the most suitable approximation strategies
and comparing their cost versus quality tradeoffs can therefore lead to a better solution for certain
applications.

6 ARCHITECTURE AND MICROARCHITECTURE-LEVEL TECHNIQUES

Architectural and microarchitectural techniques that trade correctness for resource usage have
focused primarily on correctness at the software or application level and have focused on reducing
resource usage in memory, in the processor, and in on- or off-chip I/O.

6.1 Notation

Architectural techniques create abstractions that allow operating systems, programming lan-
guages, and applications to specify their precision and accuracy requirements through special-
ized instructions and instruction extensions. Following the notation introduced in Section 4, the
computation function f : Qm → Qo is defined over the quantized sets Qm and Qo embodied by
software-visible machine state such as registers, memory, and storage. The computation function
f is implemented using either general-purpose cores or specialized hardware accelerators. Mi-
croarchitectural techniques facilitate the efficient implementation of the computation function f
at the level of hardware functional units, such as memory controllers and processor pipelines, or
by the efficient hardware representation of the sets Qm and Qo .

6.2 Trading Resource Usage for Correctness in Processor Cores

Early work trading resource usage for correctness, such as Razor and related techniques [55,
196], relied on voltage overscaling as the primary underlying circuit-level mechanism to increase
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energy efficiency. As a result, these techniques provided no direct means to improve performance,
but provided higher energy efficiency at the expense of nondeterministic faults. To mask such
faults and hide them from applications, voltage overscaling approaches typically rely on error
recovery mechanisms. The key insight is that sophisticated error recovery mechanisms can be
much more resource-efficient in ensuring correctness compared to voltage over-provisioning.
Carefully balancing the error recovery overhead against the benefits of voltage overscaling can
provide higher energy efficiency without sacrificing output quality or program safety [55, 196].

Truffle [56] was the first architecture to willingly introduce uncorrected nondeterministic errors
in processor design for the sake of energy efficiency. Truffle uses voltage overscaling selectively
to implement approximate operations and approximate storage. The Truffle architecture provides
ISA extensions to allow the compiler to specify approximate code and data and its microarchi-
tecture provides the implementation of approximate operations and storage through dual-voltage
operation. For error-free operations, a high voltage is used, while a low voltage can be used for
approximate operations. Voltage selection is determined by the instructions, with the control-flow
and address generation logic always operating at a high voltage to ensure safety.

In addition to improving energy efficiency, architectures that enable tradeoffs between resource
usage and correctness may result in higher performance compared to an error-free baseline [57,
145, 198, 229]. Examples include offloading parts of a processor’s workload to computing units that
can perform the desired functionality much faster at the cost of deviation from correct behavior.
Because of their performance advantage, such computing units are often called accelerators. Ac-
celerators that trade resource usage for correctness include neural accelerators [57, 145, 198, 229],
which use a hardware neural network to approximate the output of portions of programs.

Temam et al. empirically show that the conceptual error tolerance of neural networks translates
into the defect tolerance of hardware neural networks [213], paving the way for their introduc-
tion in heterogeneous processors as intrinsically error-tolerant and energy-efficient accelerators.
St. Amant et al. demonstrate a complete system and toolchain, from circuits to a compiler, that
features an area- and energy-efficient analog implementation of a neural accelerator that can be
configured to approximate general purpose code [198]. The solution of St. Amant et al. comes
with a compiler workflow that configures the neural network’s topology and weights. A similar
solution was demonstrated with digital neural processing units, tightly coupled to the processor
pipeline [57], delivering low-power approximate results for small regions of general-purpose code.
Neural accelerators have also been developed for GPUs [229], as well as FPGAs [145].

6.3 Approximate Memory Elements

Memory architectures that trade resource usage for correctness permit the value that is read from
a given memory address to differ from the most recent value that was written. The traditional
view of memory elements assumes that every memory access pair consisting of a write followed
by a subsequent read operation, applied to a input I, results in the same read result for a given
write value. In contrast, approximate memory elements may perform non-identity transforma-
tions of the input I. At the architecture level, the benefits of doing so are exposed and leveraged
through reduced read/write latency, reduced read/write access energy, fewer accesses to memory,
increased read/write bandwidth, increased capacity [71, 90, 175], improved endurance [175], and
reduced leakage power dissipation [120]. These techniques have been applied to memory compo-
nents ranging from registers [56] and caches [56, 177–179] to DRAM [120] and Flash [71, 90, 175].

The underlying memory technologies employ circuit-level mechanisms to trade accuracy for
reduced latency, access energy, or both (Section 5.8). Exposing such mechanisms to architectures
enables adaptive selection of different approximation versus efficiency operating points, to better
fit varying application requirements. For volatile memory technologies such as SRAM and DRAM,
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voltage scaling and refresh rate scaling can reduce static or dynamic energy at the expense of
faults (observed as bit flips [56]). In the case of DRAM, differentiating between rows that contain
data for which errors can be tolerated versus rows that applications require to remain correct
motivates selective refresh rate reduction approaches [120]. In non-volatile memories, mechanisms
that reduce read or write noise margins for energy gains can be leveraged at the architectural
level through dedicated instructions for imprecise loads and stores [162]. For multi-level solid-
state memories that perform write operations iteratively until the written value is in the desired
range, reducing the number of write iterations significantly reduces the associated latency and
energy [175], increasing write bandwidth as a side effect, at the expense of reduced data retention.
Furthermore, mapping data that applications can tolerate to be incorrect onto blocks that have
exhausted their hardware error correction resources can significantly extend endurance.

Other architectural methods include predicting memory values instead of performing an ac-
tual read operation. For example, on the occurrence of a cache miss, load value approximation

(LVA) [179, 214] provides predicted data values to a processor that may differ from the correct val-
ues in main memory. Doing so hides cache miss latency and thereby reduces the average memory
access time at the expense of having data values in the cache that differ from what they would
be had they been faithfully loaded from main memory. The correct values in main memory may
subsequently be read from memory to train the predictor and improve its accuracy, or the main
memory access may be skipped entirely to save energy. Conventional value prediction considers
any execution relying on predicted values speculative and provides expensive microarchitectural
machinery to roll back execution in the case of a mismatch between the predicted and actual val-
ues. LVA, by contrast, allows imperfect predictions, trading correctness of values in the cache for
reduced micro-architectural complexity and reduced memory latency.

The correctness of values obtained from memories can also be traded for an increase in effec-
tive storage capacity. One way to achieve this is to avoid storing similar data multiple times. For
example, storing similar data in the same cache line can save on cache space in situations when
substituting a data item for a similar one still yields acceptable application quality [177, 178]. An-
other way to trade errors for capacity is through deliberate reduction in storage resources dedi-
cated to error-correction [71, 90]. By providing weaker error-correction schemes for data whose
accuracy does not have a critical impact on the output quality, significant storage savings have
been demonstrated in the case of encoded images and videos [71, 90].

6.4 Approximate Communication

As in the case of approximate memory elements, approximate communication systems may per-
form non-identity transformation f ∗ of input I to efficiently transfer the input through a com-
munication channel or network. The idealized computation function f corresponds to an identity
transformation over an infinitely large input. Examples of inputs include signals on intra- and
inter-chip wires, such as memory buses and on-chip networks. The architectural techniques trad-
ing resource usage for correctness in such systems usually rely on more efficient but less reliable
links, network buffers, and other network elements, or employ lossy in-network compression to
minimize data movement, while overlapping the compression and communication.

The conventional approach to trade resource usage for correctness in communication over a
channel is to employ lossy compression at the source and decompression at the destination, with
the goal of reducing the amount of data transferred through the channel, as well as to reduce
latency. Such approaches have been widely used for decades in long-distance communication, such
as media streaming applications. However, when the communicating parties are two processors
on a board, two cores on a chip, or a core and a cache, the communication latency is in the order of
nanoseconds and any compression/decompression latency added to the critical path of program
execution may be prohibitive.
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At the circuit level, transmitting bits over a wire on-chip or over a printed circuit board trace
costs energy. For single-ended I/O interfaces, where the signaling of information is with voltage
levels, the energy cost is typically due to the need to charge the wire capacitance when driving a
logic “1” and to discharge that capacitance when driving a logic “0.” Building on this observation,
and on the body of work on low-power bus encodings [38, 199], value-deviation-bounded serial
encoding (VDBS encoding) [206, 208] trades correctness for improved communication energy ef-
ficiency by lossy filtering of values to be transmitted on an I/O link. VDBS encoding reduces the
number of “0” to “1” and “1” to “0” signal transitions and hence reduces the energy cost of I/O.
Because VDBS encoding requires no decoder, it can be implemented with low overhead, requiring
less than a thousand gates for a typical implementation [202]. Extensions of VDBS encoding have
extended the basic concept to exploit temporal information in information streams [104, 150] and
to employ probabilistic encoding techniques [203].

A recent study leverages data similarity between cache blocks to perform lossy compression
in networks-on-chip (NoCs) [22]. The key idea is in simple data-type aware approximation us-
ing approximate matching between data to be sent and data items that have been recently sent
to perform a quick lossy compression. Performing approximation at the network layer allows a
significant data movement reduction without losing the precise copy of the data and without ex-
tending the critical path, as the communication and compression are overlapped.

An orthogonal approach to trading resource usage for correctness in communication by com-
pression, is to reduce the safety margins of communication links to trade off their reliability for
bandwidth, latency, or both. For on-chip networks, achieving reliable transmission in low-latency
high-bandwidth interconnects requires features like forward error correction (FEC), but FEC can
increase communication latency, by up to threefold in one study [62]. An approach to counteract
such high overheads is to allow higher bit error rates at the link layer by removing forward error
correction or employing a weaker but more efficient error correction mechanisms, with a variable
amount of redundancy based on application needs [62]. A low-diameter network is one approach
to keep the end-to-end bit error rate under control, minimizing the number of hop counts, and
thus prevent excessive accumulation of errors [62].

Allowing errors in communication can be particularly challenging in parallel programs, which
rely on communication for synchronization. In such contexts, failure to deliver correct messages on
time can affect control flow and lead to catastrophic results [232]. Yetim et al. propose a mechanism
to mitigate inter-processor communication errors in parallel programs by converting potentially
catastrophic control flow or communication errors into likely tolerable data errors [232]. Their
main insight is that data errors have much less impact on the application output compared to errors
in control flow. Their approach is to monitor inter-processor communication in terms of message
count, and to ensure that the number of communicated items is correct, either by dropping excess
packets or by generating additional packets with synthetic values. Ensuring the correct number
of exchanged messages improves the integrity of control flow in the presence of communication
errors and consequently improves the output quality of approximate parallel programs.

6.5 Summary

Microarchitectural techniques that trade correctness for resources build on circuit level techniques
(Section 5) to exploit information at the level of hardware structures such as caches, register files,
off-chip memories, and so on. Architectural techniques expose microarchitectural techniques
to software through constructs such as instruction extensions, new instruction types, or new
hardware interfaces to accelerators. Exposing information about hardware techniques to software
allows software to take advantage of the implemented techniques, while exposing information
from software to hardware allows hardware to, for example, more aggressively leverage tradeoffs
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between correctness and resource usage. In the same way that circuit-level techniques form a foun-
dation for the approaches discussed in this section, circuit-level, microarchitectural, and architec-
tural techniques similarly form a foundation for operating system and runtime system techniques.

7 PROGRAMMING LANGUAGE TECHNIQUES

Many programming-language- and compiler-level techniques that trade correctness for efficiency
provide abstractions for dealing with errors introduced at lower levels of the system stack. Some
techniques introduce higher-level approximations directly and these errors combine into whole-
application errors. We divide the techniques we survey into two broad categories: (1) static compile-

time techniques ensure that tradeoffs are safe to apply for all inputs, without running a program;
(2) dynamic tuning techniques typically execute the program on a set of representative inputs to
estimate the benefit and safety of the transformations (off-line), or monitor the program execution
at runtime to tune the level of approximation (on-line).

7.1 Notation

Following the notation introduced in Section 4, programming language techniques usually operate
at a level of abstraction where the computation’s implementation f : I ×O is defined over a sets
represented by, e.g., integers or floating-point numbers. These integer and floating-point number
representations serve as an abstraction for the actual bit-level representations of program state
in hardware. The idealized specification f ∗ that f implements may thus, for instance, assume
unbounded integers or real numbers for its output O and may represent an entire computational
problem or specific algorithm. Examples of errors introduced by the discrepancy between f and
f ∗ are floating-point roundoff errors, errors due to skipping entire portions of a computation or
due to missing synchronization. To quantify the end-to-end error, a developer typically specifies
a distance d ( f , f ∗). Examples distances include absolute error, relative error, worst-case error,
or error probability. Selecting the appropriate distance and its acceptable threshold are typically
application-dependent.

7.2 Static Compile-time Techniques

Static techniques aim to make resource versus correctness tradeoffs safe to apply without hav-
ing to run a program. Safety of approximate programs ensures that: (1) the errors caused by the
approximation never make the program violate important program properties; (2) the result of
the approximation is acceptable, i.e., that the magnitude and frequency of errors is within bounds
specified by the programmer as discussed above. Errors introduced at the lower levels of the stack
do not affect every operation of a high-level program equally. Ideally, errors in lower layers of the
stack should be restricted to locations such that when they propagate to higher layers of the stack,
they only affect those parts of the program where errors can be tolerated.

Conventional programming languages, however, do not provide a transparent way to mark what
can be potentially approximate. Several approaches propose annotations that allow the developer
to make the effects of lower-level errors explicit: EnerJ [174] (“approx” and “precise” data types),
Asymmetric RHL [20, 29] (“relax” and “relate” variable annotations), and FlexJava [153] (“loosen”
and “tighten” variable annotations). These techniques use type inference, theorem proving, and
taint analysis, respectively, to mark all data/instructions that may be affected by errors. They can
verify important safety properties, e.g., EnerJ ensures that approximate data cannot impact the
values of precise data.

Rely [30] extends the scope of program analysis to probabilistic errors: it automatically derives
the probability of a result being exact, given the probabilities of individual operations being exact.
Decaf [21] presents an alternative approach for deriving probabilities using type inference. More
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recently, Parallely [60] extends the reliability analysis to parallel message-passing programs by
reducing them to equivalent sequential programs. For a more precise analysis that considers the
case of diverging control flow, Lohar et al. [122] present a sound static analysis that can take
advantage of probability distributions provided by the developer.

The probability of a computed value being incorrect does not capture the numeric magnitude of
the error. Numeric error estimation has been addressed in the form of static analysis for bounding
errors due to input disturbances [34], optimizing finite-precision arithmetic [39, 47], and approx-
imating elementary function calls [89] while guaranteeing sound error bounds. Numeric error
magnitude can also be estimated by differential program verifiers to check relative safety, accu-
racy, or termination with respect to some reference implementation by reduction to a satisfiability

modulo theories (SMT) problem [78].
The above approaches either quantify the probability or the error magnitude, but not both. Fur-

thermore, they do not optimize directly for performance or energy usage. Zhu et al. [235] propose
a framework that explores a randomized combination of resource-correctness tradeoffs provided
by a user. It presents a tradeoff space exploration algorithm based on linear programming, which
provides near-optimal guarantees. Chisel [134] combines a reliability analysis with error bounds
computation. It automatically finds approximations satisfying a specification and minimizes en-
ergy by reduction to an integer linear problem. Lohar et al. [123] provide a dataflow-based proba-
bilistic error analysis that computes the probabilities of different error magnitudes.

Static techniques are desirable as they can provide strong correctness guarantees. However, for
a static optimization technique, a faithful resource cost model is needed. Until now, these models
have been mostly high-level, coarse, and additionally not consistent across different techniques
or evaluations, making combinations and comparisons of different techniques challenging. These
models necessarily have to abstract over the underlying hardware to be scalable and widely ap-
plicable, but they also need to reflect reality as much as possible. Here, a tighter collaboration
between the software and hardware is needed (see Challenge 2 in Section 11).

7.3 Dynamic Tuning Techniques

Static guarantees are in practice achievable only for small programs. For many applications such
strong guarantees may not be necessary. Dynamic or testing-based validation techniques trade
correctness for practical scalability and have been widely used to identify resource versus correct-
ness tradeoffs and to validate the quality of these tradeoffs.

A first step when implementing an application in an error-efficient way is to determine which
parts of the application are resilient to errors and which are not [166, 167]. Different applications
allow for error-efficient computing to various degrees. For instance, some algorithms can tolerate
higher error rates but lower error magnitudes and vice versa [41].

Profiling has traditionally been used to identify performance-intensive portions of a program. A
quality of service profiler [136] takes into account quality of the results in addition to performance
and can thus identify resilient portions of an application. A similar idea has been explored by
the ARC framework [41], which profiles an application while injecting errors, derives a statistical
error-resilience profile, and identifies the best error-efficient technique for the given application.
The statistical error-resilience profile has also been explored for iterative workloads [66] to
identify the number of resilient iterations. Passert [176] and AxProf [92] use statistical testing to
determine the confidence of specifications for randomized approximate programs.

Once resiliency of an application is established, a developer or a compiler can apply various
transformations. There are several interesting directions here:

• In arithmetic, Precimonious [169] assigns differing floating-point precisions across the vari-
ables in a program. STOKE [182], however, generates entirely new implementations of
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floating-point functions. Both Precimonious and STOKE ensure that on a given test set
a user-defined quality bound is satisfied.

• Since loops usually make up the bulk of running time of a program, loop perforation
[83, 136, 193] selectively skips entire loop iterations. Adaptive perforations have been
subsequently explored in image processing [124], neural networks [61], and at a finer level
of granularity [116, 139].

• Approximate memoization interpolates skipped data using the already computed one,
thus reducing error. Variants of approximate memoization have been proposed by several
works [34, 138, 171, 172, 217], exploiting both temporal and spatial locality of data. Neu-
ral networks can also be used to replace blocks of imperative code [56] and can provide a
performance benefit when coupled with a dedicated neural processing unit.

• Synchronization is another expensive part of many applications, and several research efforts
have observed that some synchronization primitives can be removed without impacting
quality significantly [28, 48, 135, 137, 165, 166]. Quickstep [135] explores nondeterminism
as a technique for trading resource usage for correctness techniques, by parallelizing a se-
quential program such that data races can occasionally occur. STAS [48] proposes generat-
ing alternative data in parallel, to prevent waiting at synchronization points and to improve
thread-level parallelism.

Another approach to exploiting resilient applications is to let a user define several application
components with different resource-correctness tradeoffs and to provide tool support to select be-
tween these candidates to obtain a final implementation [8, 9, 12, 59]. The search can be optimized
with sensitivity analysis [220]. The Intel open-source approximate computing toolkit (iACT) [138]
provides a simulation-based testbed for different approximations, such as precision scaling and
approximate memoization.

Although not all resource versus correctness tradeoffs are suitable for all application domains,
most of the techniques discussed above are application-independent. Chippa et al. [42] and
Venkataramani et al. [223] present application-specific approaches for machine learning classifiers
that exploit the fact that many instances are easy to classify. These easy-to-classify instances are
handled by simpler classifiers, while harder-to-classify instances use increasingly more complex
classifiers. IRA [110] tunes approximation fully at runtime using canary inputs—a small represen-
tation of the full input (e.g., a thumbnail of an image). The optimization can tailor the approxima-
tion to the input properties, while the overhead is small.

Several techniques emerged for optimizing data-parallel and heterogeneous applications, be-
yond CPU. SAGE [172] and Paraprox [171] pioneered the approximation of data-parallel kernels
running on GPUs and provide specialized approximate versions of common idioms, such as maps
and reductions. Kernel perforation [127] skips loading chunks of input data from global memory,
and reconstructs it in the local memory to improve accuracy, thus saving on data transfers. For
composing multiple approximations in heterogenous systems, ApproxHPVM [188] tunes the com-
putation (e.g., a DNN layer) executing it at each processing unit (with its own set of approximation
knobs).

7.4 Summary

The techniques discussed above are first steps toward addressing the need for automated tool
support for developers (Challenge 3 in Section 11) but they remain limited, because each addresses
one particular point in the design space. More comprehensive tools and ways to combine the
existing techniques are necessary. One solution might be for researchers to make their program
analyses and program transformations available as passes for the LLVM compiler infrastructure.
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Today, many techniques employ a simplified model of the underlying hardware and these mod-
els are rarely based on characterization of real hardware systems. In the future, error models will
need to be consistent with the errors observed at the hardware level. In addition to these exten-
sions of the way software-level techniques are evaluated today, end-to-end evaluation platforms
could provide increased confidence in research results (Challenges 2 and 8 in Section 11).

8 OPERATING SYSTEM AND RUNTIME TECHNIQUES

Operating system (OS) and runtime techniques for trading correctness for efficiency dynamically
monitor a running system and adapt its accuracy to a changing environment. These systems may
take explicit input from a program, such as through an application programming interface (API)
or system call interface, or might be driven based on user input.

8.1 Notation

For OS and runtime techniques, measuring, sampling, and quantizing signals from the physical
world are already completed by the lower layers of the system. Following Section 4, computa-
tion is a nondeterministic function f ∗ : Qm → Qo with nondeterminism introduced by the need
to multiplex processes over a shared resource (the processor) in the presence of asynchronous
input and output events, user interaction, and time-varying power supply limitations. Actuation
typically takes the form of I/O (e.g., network, peripherals, displays).

At the OS/runtime level, the computation specification relation, f ⊆ I ×O takes the form of
guarantees provided by the system. These may be guarantees and the resulting definition of cor-
rectness in terms of the numeric behavior of the computation, or may be guarantees on timeliness
of operations in real-time and interactive computing systems. At this layer, faults and errors typ-
ically refer to the failure of a component from the architecture level and its manifestation in a
difference in machine state, respectively.

8.2 Runtime Systems: Computation

Trading timeliness guarantees for reduced resource usage was heavily explored in the 1990s, in
research efforts on imprecise realtime systems [11, 87, 118, 119, 189]. Much like the recent resur-
gence of interest in trading correctness for resource usage, these earlier efforts were targeted at
an application domain (embedded systems) where the relaxation of correctness requirements was
motivated by the inherent nondeterminism of their operating environments.

The Eon system [194] provides a declarative language that allows users to annotate components
with different energy specifications, which are then used at runtime to select suitable components.
Green [12] builds a quality of service model during a calibration phase based on approximations
supplied by the programmer. This model is used at runtime to select suitable approximations and
occasionally to recalibrate by running the approximate and exact subcomputations side-by-side.
Hoffman et al. [84] turn static configuration parameters into dynamic knobs that can adjust the
accuracy and energy usage of a system at runtime; an off-line calibration pass minimizes monitor-
ing overhead at runtime. Follow-up work presents an optimization in the general tradeoff space
between performance, energy, and accuracy [82]. Chippa et al. [40] propose a general framework
that phrases the dynamic management as a feedback system and further suggest different qual-
ity measurements at the circuit, architecture, and algorithm level which serve as the feedback
signal. Capri [212] proactively determines the configuration of the approximate program before
each run, by formulating and solving a constrained optimization problem, which minimizes cost
(performance) subject to error (accuracy loss).

To manage noisy data during execution (e.g., from sensors), the Uncertain<T> system [18]
encapsulates probability distributions as types. Uncertain data are stored and manipulated as
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probability distributions, in a way that is transparent to the developer. At each conditional,
Uncertain<T> infers the number of samples necessary to make a high-confidence decision.

Most previous runtime approaches consider average errors or only check the errors occasionally
during execution, and can thus miss large outliers. Rumba [101] checks all results with light-weight
checks and proposes an approximate correction mechanism, which is specific to data-parallel
applications. Topaz [1] also verifies every result, but at a higher granularity, by decomposing a
computation into tasks. Topaz checks each task’s output with lightweight checks provided by the
user. If the error is too large, then Topaz automatically re-executes the corresponding task.

8.3 Runtime Systems: Sensors, Actuation, and Displays

All measurements have some amount of measurement uncertainty and as a result, sensing systems
provide many opportunities for trading errors for improved efficiency. These range from trading
accuracy and reliability in sensors in the Lax system [207], to trading precision for fidelity in
imaging sensors (cameras) [25], to trading the fidelity of display colors and shapes for reduced
display panel power dissipation for OLED displays in Crayon [201] and Ishihara [210].

8.4 Summary

OS and runtime techniques provide a unique opportunity to exploit dynamic information about
running programs. Unlike circuit-level, microarchitectural, architectural, or language-level tech-
niques, they can exploit information about a user’s environment such as remaining energy store in
a mobile device or activation of a low-power mode on the device. OS and runtime techniques also
have the opportunity to learn across program executions. Hardware platforms for exploring the
end-to-end benefits of the techniques presented in this survey (Challenges 2 and 8 in Section 11)
may however be necessary for a meaningful evaluation of real-world benefits.

9 TAXONOMY

Table 1 highlights techniques for trading correctness for resource usage discussed throughout this
survey. The table focuses on publications that present a specific technique as opposed to publi-
cations discussed in the survey to provide context. Table 1 classifies techniques by three primary
categories: (1) error type, (2) property traded for errors, and (3) affected resources:

• The error type refers to the nature of the error that gets introduced into a system. Given
the same input and set of initial conditions, a technique is deterministic if it will always
cause the same outcome and a technique is nondeterministic if the outcome can differ.

• The property traded for errors is one of energy, time, and data density. These are cost
functions that a system designer optimizes for. In the context of this survey, we consider
trading an improvement in one or more of these properties for increased occurrence of
errors.

• The affected resources are the hardware subsystems that are impacted by the tradeoffs.
In practice, these will be the subsystems in which errors occur.

Although the table places publications in discrete categories, many techniques lie somewhere
in a spectrum. For example, when voltage overscaling (Section 5.6) is performed at a coarse level
(e.g., in steps of 500 mV for a device with a supply voltage range of 1.8 to 3.3 V), it could be seen as
a deterministic technique where some voltage levels always lead to repeatable failures. However, if
voltage overscaling is performed at a fine granularity of voltages (e.g., 50 mV), then there will likely
be one or more voltage levels where nondeterministic failures occur, resulting from the interplay
between devices operating right at the threshold of the minimum voltage for reliable operation,
and falling below that threshold due to power supply noise or thermal noise.
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Table 1. Highlights from the Techniques Covered in This Survey, from Circuit-level Techniques, to

Architecture-level Techniques, to Algorithmic and Programming-language-level Techniques,

to Operating System Techniques

We classify the techniques under the three broad categories of (1) error type, (2) property traded for errors, and (3) affected

resources. (PL: Programming language; OS: Operating system.)

At the circuit level, most techniques in the research literature to date have focused on trad-
ing errors for energy efficiency and to a lesser extent, performance and data storage density. At
this level of the system stack, the focus has been overwhelmingly on computation resources (e.g.,
arithmetic/logic units (ALUs)) as the Affected Resource columns in Table 1 show.

Most of the architectural techniques in Table 1 target computation at a coarse grain (e.g., analog
and digital neural accelerators). A majority of the architectural techniques listed in Table 1 apply
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to data movement and storage such as on- and off-chip memories, memory hierarchy data traffic,
and on- and off-chip I/O links.

Programming language techniques have largely focused only on techniques that affect compu-
tation, as the Affected Resource columns in Table 1 show. This is unsurprising, since most program-
ming languages focus on providing primitives and abstractions for computations (as opposed to,
say, communication). There is potentially an unexplored opportunity to investigate techniques for
trading errors for efficiency applied to language-level constructs for communication such as the
channels in Hoare’s communicating sequential processes (CSP). One early investigation of this
direction is the M language, which provided language-level error, erasure, and latency tolerance
constraints [204] on CSP-style language-level channels.

Techniques implemented at the operating system (OS) level, such as application programming
interfaces (APIs), standard system libraries, device drivers, and so on, have the unique vantage
point of seeing all system processes. Techniques at the OS-level often have a global view of the
system hardware, and visibility into application behavior beyond a single execution instance. OS-
level techniques also have access to information about user preferences, such as activation of a
low-power mode on a mobile device. Despite these potential advantages of OS-level techniques
for trading errors for efficiency, there have been relatively few techniques implemented at this
level of abstraction. The techniques that Table 1 lists target improving energy efficiency and do
so primarily by trading the use of sensors, displays, and coarse-grained application level error
behavior for improved efficiency.

10 FUNDAMENTAL LIMITS OF RESOURCE VERSUS CORRECTNESS TRADEOFFS

Sections 5 through 8 presented concrete techniques for trading resource usage for correctness at
levels of abstraction ranging from the device-, gate-, and circuit-level, to the operating system. For
techniques at each of these levels of abstraction, this article formulated the resource usage versus
correctness tradeoff in terms of a computational problem, its implementation in an algorithm, and
a distance function d between the state representations of a computation’s correct and resource-
reduced variants. That relation between a computation’s input and output or between a computa-
tion’s state prior to and subsequent to computation has parallels to communication systems. We
can draw an analogy between the state transformation performed by an algorithm, which must
consume resources (time, energy, die area) to achieve the exact behavior specified by the compu-
tational problem that it implements, and source- and channel-coding for communication over a
channel: Source- and channel-coding, which likewise consume resources to maximize the mutual
information between the transmitter and receiver over a channel. Von Neumann [226], Berger and
Gibson [17], Evans [58], Maggs [43], Elias [54], Spielman [195], and Shanbhag [79], among oth-
ers, have previously drawn similar analogies between resource usage versus correctness tradeoffs
and communication channels. And doing so provides a useful lens through which to study the
fundamental limits of resource usage versus correctness tradeoffs in computing systems.

10.1 From Information and Coding Theory to Coded Computation

The study of fault-tolerant systems dates back to von Neumann’s investigation [226] of build-
ing reliable systems from unreliable components. Fault-tolerant systems research has focused
more heavily on a coarser-grained view. In contrast, information theory focuses on the mathe-
matical study of communication over noisy channels [187] while coding theory studies methods
for judiciously trading redundancy in data representations for either reduced transmission time
(source coding) or improved end-to-end reliability in transmission over a noisy channel (channel
coding).
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In contrast to channel coding techniques whose objective is to counteract the effect of noise,
Chen et al. [36] exploit the presence of noise to improve image processing tasks, demonstrating
how adding Gaussian noise to quantized images can improve the output quality of signal process-
ing tasks. This observation that noise can improve a computing system’s performance has parallels
to randomized algorithms (see, e.g., Section 9).

Classical information and coding theory rely on the assumption that noise only occurs in com-
munication, rather than in computation. In contrast, recent research has begun to study the funda-
mental limits of encoders [228] and decoders [219, 231] built on top of hardware implementations
that are, like the communication channel, susceptible to noise. Similarly, recent research has in-
vestigated techniques for executing computation on encoded representations to obtain exact or
approximate results in the presence of noise. These methods have been referred to in the research
literature as coded computation [70, 158]. One plausible direction for future research is to identify
computing abstractions that unify the above techniques via new computational operators that ex-
ecute on encoded representations. Stochastic computing [4], hyper-dimensional computing [156],
and deep embedded representations (deep learning) offer promising examples.

10.2 Theoretical Bounds

Recent research has used information theory as a foundation to investigate theoretical bounds
on performance [230], efficiency [200], energy consumption [33], Shannon-style channel capac-
ity, and storage bounds [200, 219] for computing and communication systems that trade resource
usage for correctness. Varshney [219] demonstrates Shannon-style bounds on storage capacity in
the context of noisy LDPC iterative decoders. Stanley-Marbell [200] derives best-case efficiency
bounds for encoding techniques that limit the deviations of values in the presence of logic up-
sets. Chatterjee et al. [33] present lower bounds on energy consumption for achieving a desired
level of reliability in computation of an n-input Boolean function and Yazdi et al. [230] formulate
an optimization problem to produce a noisy Gallager B LDPC decoder that achieves minimal bit
error rate, by treating unreliable hardware components as communication channels as in stochas-
tic computing (see Section 5 for coverage of stochastic computing). These recent research efforts
demonstrate that information and coding theory can provide a baseline to derive bounds on effi-
ciency, capacity, energy consumption, and performance in the systems of interest in this survey:
computing systems that trade resource usage for correctness.

10.3 Application-aware Source and Channel Coding Across the Hardware Stack

Mitigating the effects of errors across the stack will ultimately require encoding techniques, ap-
plied across the layers of the stack that are designed to take advantage of application character-
istics. Early examples of such application-aware codes can be found in the work of Huang et al.
[86], which proposes a redundancy-free adaptive code that can correct errors in data retrieved
from potentially faulty cells. The technique relies on an application-specific cost function and an
input-adaptive coding scheme that pairs a source encoder that introduces modest distortion, with
a channel encoder that adds redundant bits to protect the distorted data against errors. Adaptive
coding can greatly reduce output quality degradation in the presence of noise, compared to naïve
implementations where noise is allowed to traverse the stack unchecked.

10.4 Summary

Information and coding theory today form the basis for techniques to analyze and model noisy
communication and storage systems as well as techniques to counteract the effects of noise. With
the emergence of approximate computing, there is an opportunity to investigate new approaches
to source and channel coding. These new approaches could explicitly take into account the specific

ACM Computing Surveys, Vol. 53, No. 3, Article 51. Publication date: May 2020.



Exploiting Errors for Efficiency: A Survey from Circuits to Applications 51:27

noise distributions observed in practice and could explicitly take into account the requirements of
the applications consuming the data in question. These new challenges require a unifying mathe-
matical theory to reason about errors, efficiency, and capacity bounds.

11 CHALLENGES

We identify eight challenges facing both research and applications of techniques to trade correct-
ness for resource usage.

Challenge 1: Holistic cross-layer approaches. A whole-system view to trading errors for effi-
ciency requires expertise in the target application domain and in multiple levels of the computing
stack. Most of the existing approximation and error-handling mechanisms are designed in the con-
text of a single layer in the stack. This is likely to be suboptimal. Techniques in different layers can
easily negate each other, where gains reported in isolation may not translate into real system-level
benefits in the end. At the same time, techniques in different layers may complement each other,
where significant opportunities for cross-layer optimizations can be expected. A full-stack view of
error-efficient system design requires less insular approaches. A cross-layer approach will however
significantly increase the size of the design space and could introduce significant additional design
complexity. Early proposals for “approximating outside the processor” [205] and recent proposals
for “approximating beyond the processor” [159] are promising directions for holistic approximate
systems.

Challenge 2: Hardware models, hardware platforms, and measurement data. Most soft-
ware-level techniques employ models or abstractions of the errors and performance of the un-
derlying hardware to achieve modularity and scalability. Examples of hardware error models as-
sumed today include assumptions about the distribution of locations and values of errors caused
by voltage overscaling in microarchitectural structures and memories, or assumptions about the
distribution of errors in DRAMs that are not refreshed as regularly as they should be. Similarly,
lower levels of the software stack may expose higher-level models to, e.g., application developers.
Today, different research efforts often use different models, which makes comparisons between re-
search results difficult and raises questions about the validity of reported resource savings. Error
and performance models that have been validated by the hardware community, e.g., by hardware
measurements, and that are suitable for the software levels of the stack would be an invaluable
contribution to the research directions described in this survey. To make credible claims about
across-the-stack approximations, the proposed techniques need to be evaluated end-to-end either
on actual state-of-the-art hardware platforms or with realistic simulations. Such end-to-end eval-
uations with an agreed-upon platform is missing today. Early examples in this direction include
measurement results from open hardware platforms explicitly designed to expose accuracy, pre-
cision, performance, and energy efficiency tradeoffs [211].

Challenge 3: Hardware emulation/simulation, software tools, languages, and compiler

infrastructure. Applying error versus resource tradeoffs in software requires tools that help
programmers and systems builders take advantage of techniques in a systematic and controlled
way. It also requires hardware simulators or emulators that help bridge the gap between the fidelity
of hardware prototypes and the flexibility of software simulation. On the hardware simulation side,
these tools would ideally provide support for end-to-end evaluation of entire systems, to be used
in comparing different proposed techniques. Language and compiler tools would include those
to support testing, debugging, and dynamic quality monitoring. First steps in this direction for
compiler tools include ACCEPT [173].

Challenge 4: Application domains and algorithmic patterns. Today, there is insufficient
consensus on well-defined classes of application domains and algorithmic patterns that constitute
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a preferential target for relaxations. First steps include the definition of “Recognition, Mining,
and Synthesis” application classes [52]. A standard benchmark set that has been agreed upon
by the wider community would increase progress and comparability of different techniques, like
it has done for SAT/SMT solving. Such a benchmark set should ideally cover different domains
and include also real-world “challenge applications” that cannot be solved today but that would
convincingly demonstrate the viability of error-efficient computing.

Challenge 5: Large-scale user studies to provide empirical characterization of accept-

ability. User studies with thousands of participants will be necessary to provide quantitative
data [121], which researchers can use when proposing techniques that exploit tolerance of human
observers to deviations from correctness of program results. Initial steps in this direction include
the “Specimen” dataset of color perception data used in color approximation techniques [27, 210].

Challenge 6: Metrics. When applying techniques to an application, it would be useful to have a
reliable error metric to guide the optimization process. In the ideal case, that error metric would be
binary: “correct” and “not correct.” But in reality, correctness and its boundaries are not well known
for many applications. The metrics in question might be broadly applicable to many systems,
or might be application-specific metrics used to measure Pareto-optimality. Early work in this
direction includes the work of Akturk et al. [3].

Challenge 7: Studies of the theoretical bounds on resource usage. Theoretical upper and
lower bounds are invaluable in guiding research as they set the bar for what is achievable. Such
bounds are needed for a given formally defined specification of deviation from correctness. One
promising direction are bounds on encoding overhead for communication encoding techniques
that trade communication energy use or performance (data rate) for integer deviations in commu-
nicated values. Examples of first steps in this direction include work on the bounds of encoding
efficiency for deterministic and probabilistic approximate communication techniques [200, 206].

Challenge 8: Reproducibility and deployment of techniques. This survey describes a broad
range of techniques, from circuits to algorithms. For many of the research results across these
layers, it can be challenging to replicate the setup, tools, or benchmarks employed in evaluations.
Beyond good scientific practice of describing experiments in sufficient detail to be reproducible,
because there is today no common consensus even on many aspects of terminology, it is challeng-
ing to compare, replicate, and build upon research results. This survey attempted to address the
challenge of terminology with a consistent set of formal definitions across the layers of a system
(Section 4). Further progress is however needed. Opportunities include greater availability of open-
source libraries. First steps for low-power and high-performance approximate arithmetic compo-
nents include synthesizable Verilog/VHDL files and behavioral models in C/MATLAB [184, 185].

12 RETROSPECTIVE AND FUTURE DIRECTIONS

Computing systems use resources such as time, energy, and hardware to transform their inputs
to outputs. For many years, the primary driver of efficiency improvements in computing were a
combination of improved semiconductor process technology and better algorithms. In the past
decade, two important shifts have forced a fundamental re-evaluation of the hardware driver of
efficiency improvements. First, with the cessation of constant-field Dennard scaling and the stag-
nation of device supply voltages, process technology scaling no longer provides the improvements
in energy efficiency that it once did. Second, in contrast to traditional computing applications such
as financial transaction processing and office productivity, the dominant computing system appli-
cations are increasingly driven by inputs from the physical world (audio, images) with outputs
for consumption by humans. Applications driven by data from the physical world have essentially
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unbounded input datasets, and this has partly motivated a resurgence of interest in machine learn-
ing approaches to learning functions from large datasets. The stagnation in hardware device-level
improvements coupled with increasingly ever more abundant sensor-data-centric workloads has
led to a need for new ways of improving computing system performance. This survey explored
techniques to address this challenge of computing on data when less-than-perfect outputs are ac-
ceptable for a computing system’s users.
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