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Abstract—Circuit-switched networks can significantly lower
the communication latency between processor cores, when
compared to packet-switched networks, since once circuits
are set up, communication latency approaches pure intercon-
nect delay. However, if circuits are not frequently reused, the
long set up time and poorer interconnect utilization can hurt
overall performance. To combat this problem, we propose
a hybrid router design which intermingles packet-switched
flits with circuit-switched flits. Additionally, we co-design a
prediction-based coherence protocol that leverages the exis-
tence of circuits to optimize pair-wise sharing between cores.
The protocol allows pair-wise sharers to communicate di-
rectly with each other via circuits and drives up circuit reuse.
Circuit-switched coherence provides overall system perfor-
mance improvements of up to 17% with an average improve-
ment of 10% and reduces network latency by up to 30%.

I. Introduction

AS per-chip device counts continue to increase, chip mul-
tiprocessors are becoming a reality. Shared buses and

dedicated wires do not provide the scalability needed to meet
the communication demands of future multi-core architec-
tures. To date, designers have used packet-switched on-chip
networks as the communication fabric for many-core chips
[10, 16, 17]. While packet switching provides efficient use of
link bandwidth by interleaving packets on a single link, it
adds higher router latency overhead. Alternatively, circuit-
switching trades off poorer link utilization with much lower
latency, as data need not go through routing and arbitration
once circuits are set up.

For the suite of commercial and scientific workloads eval-
uated, the network latency of a 4x4 multi-core design can
have a high impact on performance (Figure 1) while the
bandwidth demands placed on the network are very low.
Figure 1 measures the change in overall system performance
as the per-hop delay1 is increased from 1 to 11 cycles. When
a new packet is placed on a link, the number of concur-
rent packets traversing that link is measured (including the
new packet)2. The average is very close to 1, illustrating
very low link contention given our simulation configuration
(See Table I). This demonstrates that wide on-chip network
channels are significantly underutilized for these workloads,
and that overall system performance is sensitive to inter-
connect latency. An uncontended 5-cycle per-hop router
delay in a packet-switched network can lead to 10% degra-
dation in overall system performance. As the per-hop delay
increases, either due to deeper router pipelines or network
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1This comprises router pipeline delay and contention.
2This measurement corresponds to a frequently-used metric for eval-

uating topologies, channel load [6].
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Fig. 1. Effect of interconnect Latency

contention, overall system performance can degrade by 20%
or more. This latency sensitivity coupled with low link uti-
lization motivates our exploration of circuit-switched fabrics
for CMPs.

Our investigations show that traditional circuit-switched
networks do not perform well, as circuits are not reused suf-
ficiently to amortize circuit setup delay. This observation
motivates a network with a hybrid router design that sup-
ports both circuit and packet switching with very fast circuit
reconfiguration (setup/teardown). Our preliminary results
show this leading to up to 8% improvement in overall system
performance over a packet-switched fabric.

As systems become more tightly coupled in multi-core
architectures, co-design of system components becomes in-
creasingly important. In particular, coupling the design of
the on-chip network with the design of the coherence proto-
col can result in a symbiotic relationship providing superior
performance. We have found that our workloads exhibit fre-
quent pair-wise sharing between cores. Prior work has also
shown that processor sharing exhibits temporal locality and
is often limited to a small subset of processors [2, 7]. Such
application behavior inspires a prediction-based coherence
protocol that further drives up the reuse of circuits in our
hybrid network and improves overall performance. The pro-
tocol predicts the likely sharer for each memory request so
the requester can go straight to the sharer for data, via a
fast-path circuit, rather than having first to go to the home
directory node. Our simulations show this improves overall
system performance by up to 17%.

II. Hybrid Circuit-Switched Network

The key design goal of our hybrid circuit-switched network
is to avoid the circuit setup delay of traditional circuit-
switching. Our design consists of two separate mesh net-
works (the switch design is shown in Figure 2), the main
data network and a tiny setup network. The main data
network supports two types of traffic: circuit-switched and
packet-switched. In the data network, there are C sepa-
rate physical channels, one for each circuit. To allow for
a fair comparison, each of these C channels have 1/C the
bandwidth of the baseline packet-switched network in our
evaluations.
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Fig. 2. Switch Design



A. Setup Network

Like in a traditional circuit-switched network, the setup
network handles the construction and teardown of circuits
and stores the switch configuration for active circuits. How-
ever, as our hybrid network does not require waiting for
acknowledgment that a circuit has been successfully con-
structed/torn down, data can be piggy-backed immediately
behind the circuit setup request. When a setup request finds
that no unused circuits are available, it will trigger a recon-
figuration signal so that the LRU circuit will be reconfigured
as packet-switched whilst the new circuit request will take
over the old circuit. Incoming circuit-switched (CS) flits in-
tended for the old (reconfigured) circuit will henceforth be
tagged as packet-switched (PS) flits and will remain packet-
switched until they reach their destination. A control flit on
the setup network will signal the source of the old circuit,
that it must either stop sending CS flits or must re-establish
the circuit to prevent buffer overflow due to too many CS
flits arriving at a reconfigured node.

The routers in the setup network have three pipeline
stages, similar to that of our baseline PS router, except that
there is no speculation or virtual channel allocation (VA).
This 3-stage pipeline is based on an Intel design [12], which
found it not possible to fit the BW into the VA/SA stage
and still maintain an aggressive clock of 16FO4s. To lower
delay, we assume lookahead routing, thus removing the rout-
ing computation from the critical path. Virtual channels
are not necessary as traffic on the setup network is low and
wormhole is sufficient with lower overhead. When a setup
flit arrives, consisting of the destination field (log N, where
N is the number of nodes) and the circuit number (log C,
where C is the number of physical circuits), it will first be
written to an input buffer (BW). Next, it will go through
switch arbitration (SA), with each port having a C:1 allo-
cator. This is followed by a circuit reservation on the data
network which sets up the data network switch at that hop
to route incoming CS flits correctly. The setup flit then
traverses the crossbar (ST) and the link (LT) towards the
next router in the setup network. In the current design, this
network is only six bits wide.

The physical circuit plane is selected at the injection
router based on LRU information and the circuit number
(log C bits) is stored there for future CS flits injected at
that router. A circuit must remain in the same physical cir-
cuit plane from source to destination so a log C identifier is
sufficient. 

B W
V A

S A
S T L T

a )  B a s e l i n e  P a c k e t - S w i t c h e d  P ip e l in e

C F C

S T + T
L T

b )  C i r c u i t - S w i t c h e d  P ip e l i n e

B W  
P o r t  

B u s y ?

V A

S A
S T L T

c )  M o d i f i e d  P a c k e t - S w i t c h e d  P ip e l in e

B W
V A

S A
S T L T

a )  B a s e l i n e  P a c k e t - S w i t c h e d  P ip e l in e

C F C

S T + T
L T

b )  C i r c u i t - S w i t c h e d  P ip e l i n e

B W  
P o r t  

B u s y ?

V A

S A
S T L T

c )  M o d i f i e d  P a c k e t - S w i t c h e d  P ip e l in e

Fig. 3. Router Pipeline [BW: Buffer Write, VA: Virtual Channel Allo-
cation, SA: Switch Allocation, ST: Switch Traversal, LT: Link Traver-
sal, CFC: Circuit Field Check, T: Tagging]

B. Circuit-switched pipeline on data network

The circuit-switched pipeline in our hybrid network is de-
picted in Figure 3b. To allow CS and PS flits to intermingle

throughout the network, we add an extra bit field to each
flit indicating if this flit is a circuit- or packet-switched flit.
When a flit enters the router pipeline, the circuit field is
checked (CFC). If the field is non-zero, this is a CS flit and
will proceed through the pipeline in Figure 3b, bypassing
directly to ST, which was already set to the appropriate out-
put port when this circuit was originally established. The
tagging (T) stage flips the circuit bit for incoming data so
that flits originally intended for a circuit will now go into
the packet buffers. The tagging stage is enabled only when a
reconfiguration is needed at that router; this way, in future
hops, since the tagging stage is not enabled, the original
CS flits will stay packet-switched until they arrive at the
destination.

C. Packet-switched pipeline on data network

If the circuit field is zero, this is a PS flit and will be
buffered, proceeding through the packet-switched pipeline
shown in Figure 3c. The allocator of the packet-switched
pipeline is designed to enable PS flits to steal bandwidth
from CS flits. It receives a signal from the input ports in-
dicating the presence or absence of incoming flits for the
physical circuit C that the PS flit has been assigned to and
is being stolen. If there are no incoming flits for that circuit,
the PS flit arbitrates for the switch. Once a PS flit wins pas-
sage through the crossbar, it then traverses the output port
and goes to the next hop. The circuit field remains set to
zero, so that this flit will continue to be interpreted as a PS
flit and buffered appropriately at the next hop. If a CS flit
enters the router while the PS flit is traversing the switch,
the CS request will have to be latched until it can proceed
along its circuit at the next cycle. To prevent the unlikely
scenario where PS flits are starved, a timeout is used to
trigger the reconfiguration of a LRU circuit into PS flits, so
starved PS flits can make progress.

D. Overhead

Power and area are a first order design constraint when
dealing with on-chip networks. Preliminary analysis of our
router using Orion [19] shows a setup network router (in-
cluding the configuration memory) consuming less than 2%
of the overall router power in 70 nm technology. On the data
network, components of the hybrid CS router that increase
power consumption and area are C D/C-wide multiplexers
that select from either the circuit or the buffers, tagging
hardware to reset the circuit bit in each flit and configu-
ration memory to store circuit paths through the switch.
The C D/C-wide crossbars in the hybrid router will occupy
less area than the D-wide crossbar of the PS router since
the area grows quadratically with the width of the crossbar
ports. The setup network will also consume additional area
due to the addition of buffers, switch allocator, and wiring.
However, as setup flits are very narrow, we do not expect
significant area overhead.

III. Coherence Protocol

We couple our hybrid network with a directory coherence
protocol based on the Origin directory protocol [13], but
augmented with an on-chip directory cache for each core
and protocol support for shared interventions; these changes
minimize off-chip accesses to memory.

A key disadvantage of directory protocols is the indirec-
tion through the directory that is required to request data
from another processor. Other proposals that look at using
prediction to accelerate the coherence protocol are discussed



in Section V. Our protocol extensions streamline this pro-
cess for load and instruction misses by predicting pairs of
processors that frequently share data, and directly request-
ing data from one cache to another, via a circuit-switched
link, without first consulting the directory. Sequential con-
sistency is maintained by ordering all coherence events at
the directory, but latency is improved by overlapping the
circuit-switched data transfer with the directory access.

The decision to designate a new message as circuit- or
packet-switched is made based on the nature of the message.
Messages such as invalidation requests from the directory
are not indicative of a pair-wise sharing relationship and
therefore are injected as packet-switched flits. Read requests
will initiate the setup of a circuit if one is not present. All
types of requests can reuse an existing circuit between a
given source-destination pair.
A. Protocol modifications

To allow directory indirections to be removed, we modified
the directory protocol as follows:
1. Allow a cache to request data directly from another cache.
2. Notify the directory that a sharer has been added without having
the directory forward the request to the owning cache or initiate a
memory request.
3. Allow a cache with a shared block to respond to a shared request.

4. Retry the request to the directory if the direct request fails due to

an incorrect prediction or a race condition.

The directory does not need to be aware of which circuit-
switched paths are in use so long as it receives notifications
of when to add new sharers to the sharing list for each cache
line. The above modifications coupled with the fast circuit-
switched paths for sharers create new race conditions which
have been identified and dealt with in our simulation infras-
tructure.
B. Sharing Prediction

Circuit-switched paths are set up on demand via a pre-
diction mechanism that predicts the frequency of sharing
between two processors. We implement an address region
based prediction mechanism. Each processor stores region
information alongside its last level cache. When data is
sourced from another processor, the region array stores the
identity of the sourcing processor. The next time a cache
access misses to an address in that region, we predict that
same processor will again source the data. Our region array
prediction structure is similar to the regions used to deter-
mine the necessity of broadcasts in [4]. At the time of the
prediction, if no circuit-switched path exists between the re-
questing and sourcing processors, one is established. If the
predicted core cannot provide the cache line requested, it
responds to the requesting processor to indicate an incor-
rect prediction. The requesting core must then retry to the
directory. The latency of a mispredicted request is thus the
round trip latency on the circuit-switched path plus the in-
direction latency of the conventional directory request. The
prediction array is then updated with the core that actually
sourced the data.

IV. Simulation Results

We use a full system multiprocessor simulator [3] built
on SIMOS-PPC configured with 16 in-order cores on a 4x4
mesh CMP. Our simulation parameters are given in Table
I. Our infrastructure is currently limited to 16 cores; To
scale our proposed hybrid circuit-switched router to larger
networks, we suggest extending flat meshes with physical
express links [5] thereby enriching the connectivity of the
underlying network and lowering circuit contention. For

our evaluation, we focus on commercial workloads since
these present the greatest opportunity, as seen in Figure
1. Preliminary results are presented for the following com-
mercial workloads: TPC-H and TPC-W [18], SPECweb99
and SPECjbb2000 [15]; our current network does not model
flit-level contention at the routers but as the observed con-
tention is very low (<6%), we believe it will not affect our
findings. However, we do model contention for circuit re-
sources and reconfigure circuits as needed.

TABLE I

Simulation Parameters

Processor 16 in-order cores

Memory System

L1 I/D Caches (latency) 32KB 2 way set assoc. (2)
Private L2 Caches 1 MB (16 MB total) 8 way assoc. (6)
Memory Latency 200 cycles

Interconnect

Link Width PS: 64B, CS: 64B/C (C=2)
Router baseline 3-stage pipeline

A. Evaluation of Hybrid Circuit-Switched Network

Performance comparisons for various interconnection net-
work optimizations are shown in Figure 4 (This shows over-
all system performance, not just network performance). All
cycle counts are normalized to a baseline PS interconnect
with a 3-stage router pipeline.

The first bar shows traditional circuit-switching which in-
curs setup overhead to establish the circuits but is able to
reuse dynamic circuit instances. However, there is not suffi-
cient reuse to see performance benefit except in the case of
SPECjbb. Traditional circuit switching will drive up the
interconnection latency and will therefore have the most
harmful impact on those benchmarks which are most sen-
sitive to interconnect latency, namely SPECweb and TPC-
H. As a result, we propose a hybrid circuit-switched net-
work. The first transfer in hybrid circuit switching is packet-
switched through the network as the circuit is established.
Subsequent transfers between the same source-destination
pair can reuse the circuit. By overlapping the setup time
with the first data packet, our proposed HCS network is
able to achieve overall performance improvement over PS of
up to 8% and on average 3%.

Performance sensitivity to setup and reconfiguration la-
tency is shown by the bars labeled traditional circuit switch-
ing (TCS) and hybrid circuit switching (HCS). The TCS
case has an initial setup latency of 8 cycles per hop (4 cy-
cles for setup + 2 cycles for acknowledgment + 2 cycles to
send the data) + reconfiguration latency; subsequent data
transfers can reuse the established circuit. As described ear-
lier, the setup time per hop for HCS is 4 cycles (the same as
packet switching). With each reuse of an established circuit,
the average per hop delay is further reduced and asymptot-
ically approaches the ideal interconnect delay of 2 (switch
traversal + link traversal). For SPECjbb and TPC-W, the
average per hop delay for hybrid circuit switching is 2.9 and
2.6 respectively.

Ongoing results with flit and circuit level contention mod-
eled in the network are shown in Table II. Although con-

TABLE II

Reduction in network latency for HCS relative to PS

SPECjbb SPECweb TPC-H TPC-W
26% 30% 19% 23%
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Fig. 4. Performance results

tention reduces the impact of HCS, we still see performance
gains over packet switching. Our design reduces network
latency by 19-30% with an average reduction of 24% over
the packet-switched baseline.

B. Interactions between Interconnect and Coherence Proto-
col

Applying our protocol optimization to each interconnect
design point yields results shown by the 3 rightmost bars in
Figure 4. The packet switching case results in some perfor-
mance improvement. However, more improvement can be
achieved through the use of circuits, so we apply the proto-
col optimizations to both traditional circuit switching and
our hybrid switching to show the cumulative effect.

SPECjbb sees the most significant performance improve-
ment due to a large percentage (54%) of on-chip misses to
clean blocks. Clean misses can be satisfied faster than dirty
misses, which will results in more benefit. TPC-H derives
most of its benefit as a result of 87% of misses being satis-
fied on-chip coupled with a very low contribution of stores
to the overall miss rate.

V. Related Work

Several hybrid network designs have been proposed. Here,
we highlight the differences. SoCBus [20] only packet-
switches the configuration message but holds the data at
the source until setup is acknowledged. All data in their
proposal must be circuit-switched through the network.
Wolkotte et. al [21] propose a design that has both circuit-
switching and packet-switching; however, it is our under-
standing that these two networks are physically separate.
The packet-switched network is used for reconfiguration
and best-effort traffic while the circuit-switched network
is used for guaranteed-throughput communications. Wave-
switching [8] combines circuit-switching and wave-pipelining
but in their design, wormhole-routed and circuit-switched
data do not interact and have physically separate resources.
Pipeline circuit switching [9] requires that a setup request
and acknowledgement message be sent and received before
data can travel along the circuit.

We advocate the co-design of the network with a predic-
tion based coherence protocol. Prior work as been done on
the ability to predict sharing and communications patterns
in shared memory multiprocessors [2, 11]. Work by Acacio
et. al [1] also looks at taking the directory access off the
critical path for DSM designs. In their work, only lines held
in the exclusive or modified state can be accelerated through
prediction; our optimization is extended to include shared
cache lines; additionally our work co-designs the intercon-
nect which is not a component of their work.

Our baseline packet-switched router is based on a recent
aggressive, speculative Intel router design [12] which has a

4-stage pipeline with an added request setup stage over our
baseline to accommodate an aggressive 16-FO4 clock cycle.
TRIPs supports a single-stage router, partly due to a very
lightweight design (4 flit buffers/port, no VCs), and partly
as their design requires a control flit ahead of the data to
reserve the path which essentially adds a cycle [10]. RAW’s
dynamic network consists of a 3-stage pipeline. Mullin’s
Lochnest router is single-cycle, but for a 35-FO4 clock cycle
[14]. With an aggressive clock, speculation cannot realisti-
cally reduce the pipeline to a single stage.

VI. Conclusions

This work demonstrates the potential of circuit-switched
networks for multi-core architectures. Our hybrid circuit-
switched network successfully overcomes some of the draw-
backs associated with circuit switching, specifically, avoiding
setup overhead and reconfiguring circuits on-the-fly. Our co-
herence protocol modifications further drive up circuit reuse
and reap higher savings.

In the future, we plan to evaluate our protocol on server
consolidation workloads as well as provide more in-depth
analysis of the network.
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