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Abstract—IoT devices commonly use flash memory for both
data and code storage. Flash memory consumes a significant
portion of the overall energy of such devices. This is problematic
because IoT devices are energy constrained due to their reliance
on batteries or energy harvesting. To save energy, we leverage a
unique property of flash memory; write operations take unequal
amounts of energy depending on if we are flipping a 1 → 0
versus a 0 → 1. We exploit this asymmetry to reduce energy
consumption with FLIPBIT, a hardware-software approximation
approach that limits costly 0 → 1 transitions in flash. Instead of
performing an exact write, we write an approximated value that
avoids any costly 0 → 1 bit flips. Using FLIPBIT, we reduce the
mean energy used by flash by 68% on video streaming applications
while maintaining 42 dB PSNR. On machine learning models,
we reduce energy by an average of 39% and up to 71% with
only a 1% accuracy loss. Additionally, by reducing the number
of program-erase cycles, we increase the flash lifetime by 68%.

I. INTRODUCTION

The Internet-of-Things (IoT) spans a variety of fields such as

health care, smart cities, and agriculture [2], [48], [83], [91]. In

these settings, IoT devices are often powered by batteries [47],

[90] or use energy harvesting to avoid being tethered to wall

power [9], [30], [59], [79]. Therefore, reducing the power

consumption is essential to support their widespread use.

IoT devices commonly consist of: (1) a simple CPU,

(2) memory, (3) sensors to collect information (e.g., ADCs),

and (4) peripherals for communication (e.g., WiFi or Bluetooth

modules). The memory consists of both volatile memory (in

the form of SRAM) and non-volatile memory (NVM). SRAM

serves as temporary storage and includes structures such as the

stack and heap, while NVM stores larger data and the program

code. IoT devices typically have significantly more non-volatile

than volatile memory [66], [86], [90] due to the higher density

of flash compared to SRAM [14]. Thus, programs with large

memory footprints often use NVM for storage when they are

too big to fit into SRAM.

Many types of NVM have been proposed for IoT devices,

such as FeRAM [56], STT-RAM [95] and ReRAM [52].

However, flash continues to be the most common type of

NVM. For example, 67% of IoT devices in China in 2022

shipped with flash memory [31]. This dominance is due to its

lower price and higher process maturity [66]. Flash memory

has two varieties: NOR and NAND. NAND is used for high-

density storage such as SSDs, while NOR is used for NVM

in embedded devices [22], [53], [80]. We elaborate on this

difference further in Section II-C.
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Fig. 1: Power use of different flash operations compared to an

ARM Cortex M0+.

We observe that in applications with frequent writes to flash,

these writes account for a significant portion of the overall

energy use of IoT devices. Figure 1 shows the power consumed

by read and write operations to flash memory, compared to

the power used by an ARM-Cortex M0+ CPU executing ALU

instructions [5], [75]; flash consumes up to 8.5× more power

than an ARM-Cortex M0+. Flash writes also incur high latency,

leading to writes consuming 5 orders of magnitude greater
energy than reads (Section II). Thus, reducing the energy of

writes can significantly reduce the total energy consumption

of the device.

Another issue with flash memory is “wear out”, where the

device can only support a limited number (typically 10,000–

1,000,000) of erase operations [11]. After this, degradation

of the channel in the memory cell may cause writes to fail,

leading to data corruption. IoT devices are typically deployed

for long periods of time and can be challenging to replace.

Thus, applications that perform many erase-program cycles

can incur premature flash wear out. Aras et al. [4] show that

without any strategies to extend lifetime, flash can wear out

prior to the application’s intended lifetime.

While there have been prior approaches to reduce the

energy and increase lifetime of flash memory [25], [80], [98]

(Section VII), we exploit a unique property of flash; changing a

0 → 1 requires far more energy than changing a 1 → 0. Flash

cells – which each hold one bit – are organized in blocks. To

write to a flash cell, the entire block must be erased, which sets

all cells to 1. Then, the required cells are selectively drained

to 0. If a subsequent write requires draining a 1 → 0, this can

be done quickly and cheaply. However, to go from 0 → 1, the

entire block must be erased and individual cells flipped to get

the final value. Such write asymmetry requires erasing entire

blocks, which incurs significant energy and latency overheads

and exacerbates wear out.
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To reduce the energy of flash writes, we leverage the fact that

the real-word sensor data processed by IoT devices is inherently

noisy [62]. Therefore, we employ approximate computing to

reduce the energy of flash writes for error-tolerant applications.

Approximate computing has been applied to IoT devices [7],

[12] and also to flash memory used in SSDs [33], [46]. However,

to the best of our knowledge, we are the first to exploit write

asymmetry to selectively approximate values written to flash.

We propose FLIPBIT, a similarity-aware hardware mecha-

nism to replace expensive 0 → 1 writes with cheaper 1 → 0
writes. When performing a write, FLIPBIT compares the value

already present in flash with the new value to be written. If the

write only requires 1 → 0 flips, FLIPBIT performs the write

as normal. However, if any 0 → 1 flips are required, FLIPBIT

writes the closest value which does not require any 0 → 1
flips. Our technique does not require any changes to the CPU;

we implement FLIPBIT entirely in the flash logic. We also add

compiler support to annotate certain data as approximatable for

our technique. Finally, to control the level of approximation,

we use a programmer-specified threshold; a difference greater

than this threshold causes FLIPBIT to perform a precise write,

thereby limiting the error introduced by approximation.

To summarize, we make the following contributions:

• We are the first to exploit the unique property of flash

memory, where flipping 0 → 1 costs significantly more

energy and latency than flipping 1 → 0.

• We propose FLIPBIT, hardware to approximate values written

to flash to avoid 0 → 1 bit-flips, while adding just 0.1% area

overhead compared to an ARM M0+ SoC.

• FLIPBIT reduces energy by 39%, while incurring just a 1%

drop in accuracy for a range of ML workloads.

• FLIPBIT increases the lifetime of flash memory by 68% by

eliding write operations, which lead to device wear out.

II. FLASH OVERVIEW

Flash memory is a non-volatile memory commonly used in

solid state drives (SSDs), USB drives, SD cards, and embedded

devices. We focus on NOR memory due to its common use

in IoT devices [53], [68], but review NAND memory in

Section II-C. A flash cell retains information through the charge

stored in a floating gate MOSFET [8]. A cell is set to 0 by

injecting charge onto it through a program operation, and to

1 by removing the charge via an erase [17]. While reads and

programs occur at byte granularity, the erase occurs in bulk for

all cells sharing a common p-well to allow a negative voltage

to appear on the control gate. While this block of cells can

be up to 64 kB, some flash devices allow erase operations to

occur at a smaller page granularity [75]; we focus on these

devices with page-sized erase operations. Pages consist of all

the cells that share a word line and are typically 256 or 512B.

Since an erase occurs in bulk and relies on electrons

tunnelling through an oxide barrier, it is also the slowest opera-

tion [74]. In Table I, we show typical latency and energy values

for the different flash operations from a commercially available

flash memory used in embedded devices [75]. Critically, an

erase operation has 340× higher latency and 360× higher

TABLE I: Time and energy required for each flash operation.

Read Program Erase
Time (ns) 30.3 30,000 10,200,000

Energy (nJ) 0.338 / Byte 545 / Byte 196,000 / 256B page
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Fig. 2: Typical flash system with write buffers.

energy consumption compared to a program operation. Thus,

changing the logical value of a cell from 1 → 0 is cheaper in

energy and time than going from 0 → 1 as the former requires

only a program while the latter requires an erase.

To illustrate the energy cost of flash writes in IoT, we

compare it to the energy consumed by an MCU. A common

embedded MCU, the ARM Cortex-M0+, consumes 2.275 mW

running at a typical 48 MHz in 180 nm technology [5]. During

the 10.2 ms required to perform a page erase, the MCU

consumes 23.2 μJ. Meanwhile, during the erase, flash consumes

196 μJ or 8.4× as much energy as the MCU.

A. Flash Organization

Figure 2 illustrates the typical organization of flash. The

flash memory array is split into several pages. The CPU and

the flash are connected via a bus. The control logic in the flash

communicates with I/O, decodes addresses, and controls all

flash operations. The memory array is connected to the control

logic through write buffers, which we describe next.

Write Buffers: To increase write speed and reduce flash energy,

manufacturers typically add volatile SRAM write buffers to

flash chips [38], [75]. These are used to quickly program entire

pages of cells. In addition to reducing write energy, write buffers

allow a “read-modify-write” operation in which an entire page

is erased and then programmed in one command [75]. This

operation works in 4 steps: (1) The entire page is read into the

buffer, (2) the page in the flash is erased, (3) the values are

modified by the CPU in the buffer, and (4) the CPU sends a

command to write back the entire buffer to the flash array. This

operation allows any sequential block of bytes within a page

to be modified without changing the rest of the page. While a

single buffer allows for faster access to a single page, many

designs provide two buffers to interleave streams for operations

that edit multiple pages in quick succession [76]. FLIPBIT

leverages these write buffers to achieve energy reduction.

B. Endurance

An important consideration for flash memory is that it has

a limited number of program-erase cycles. This is mainly

due to tunnel oxide degradation as charges get trapped in the
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oxide [8]. The number of these cycles varies by manufacturer,

ranging from 10,000–1,000,000 cycles [11]. Therefore, various

techniques – such as using a flash translation layer (FTL) [19]

or flash file system [26], [94] – have been proposed to achieve

better wear levelling. These techniques aim to distribute writes

across different pages through address translation to prevent

one page from failing earlier than the rest of the memory

array. However, they either require an operating system or

a dedicated MCU on the flash chip itself to manage these

operations. Additionally, there are performance and memory

overheads to manage the address translations.

Since IoT devices are typically small, the memory and

performance overheads associated with using an FTL or file

system can be prohibitive [13], [25]. In these cases, the onus

is on the programmer to prevent early wear out by distributing

writes evenly across the memory [37], [87]. Since the lifetime of

the flash device depends on the number of program-erase cycles,

we describe in Section III-B how our technique, FLIPBIT,

increases lifetime by directly reducing the number of page

erases. Therefore, FLIPBIT extends flash lifetime without the

additional overhead of a flash translation layer or file system.

Thus, our technique is orthogonal to existing wear levelling

techniques and can be easily combined with them to yield

further benefits.

C. Types of Flash Memory

Flash memory varies based on the structure of the transistor

used and the number of bits stored per cell [15]. We elaborate

on these differences in the context of IoT devices, which is

the focus of our work.

NOR vs. NAND: Flash memory is categorized as either NOR

or NAND flash, based on the structure of transistors used to

store charge. NAND flash has higher density and is typically

used in large storage mediums such as SSDs [15]. However,

NOR is preferred for embedded devices for several reasons:

(1) NOR supports random read access, while NAND only

supports sequential reads. As NOR flash is used for storing

instructions, efficient random reads are essential for good

performance. (2) NOR supports eXecute-in-Place (XIP), which

allows code to be run directly from flash memory without

having to be copied to SRAM first [28]. XIP reduces the total

memory requirement which is important in a constrained IoT

environment. (3) NOR is more reliable than NAND and so

does not require the added overhead of error checking codes

(ECC) [36]. For these reasons, NOR flash is commonly used in

IoT devices for both storage and code execution and therefore

is the focus of our work [22], [28], [53], [68], [80].

SLC vs. MLC: Flash varies in the number of bits stored

per cell. Single-level cells (SLC) store one bit per cell while

multi-level cells (MLC) store multiple bits per cell. MLC

still requires an erase to remove charge from the cell while a

program only adds charge to the floating gate. SLC has higher

endurance, reliability, and read speed compared to MLC [88].

While MLC is common in high density NAND flash, SLC is

common in embedded devices requiring code execution for

its faster latency and higher reliability [3], [88]. Although we

Previous:      1101 0100

Exact:          1100 1111
(a)

Previous: 1101 0100

Approximate:  1101 0000
(b)

Fig. 3: Example of using FLIPBIT to perform an approximate

store. (a) For the exact write, we require expensive 0 to 1

transitions (red arrows). (b) For the approximate write, we only

use inexpensive 1 to 0 writes (green arrows).

focus on SLC flash, in Section VI we discuss how FLIPBIT

can be applied to MLC flash.

Having established the key properties of flash storage, we

next describe FLIPBIT, which reduces energy and increase

lifetime of NOR flash in IoT devices.

III. FLIPBIT

As described in Section II, changing a cell from 1 → 0
is cheaper than going from 0 → 1. FLIPBIT leverages this

technique to approximate writes to flash memory to reduce

energy. We selectively write a 0 to a 1 while avoiding writing

1s to 0s. Suppose that a memory location has previously stored

1101 01002 (21210) and we want to store 1100 11112 (20710).

As we show in Figure 3a, this would require changing several

0s to 1s and trigger a costly erase operation. Instead, FLIPBIT

avoids erases by approximating this value as 1101 00002
(20810) with an error of only 0.48% (Figure 3b).

A. Approximation Algorithms

Our goal is to design a hardware-friendly algorithm to

generate the approximate values. In software, we can take

a sequential approach; however, such a design would add

complexity in hardware due to branches. In contrast, we opt

for a design which works in parallel and therefore, is better

suited for hardware.

We now describe our baseline approximation algorithm.

1) Baseline Approximation Algorithm: The baseline algo-

rithm always returns the value closest to the exact value

without flipping any 0s to 1s. Formally, we want to find approx
that minimizes |exact − approx| such that for every bit, i, in

approx[i] that equals 1, previous[i] also equals 1.

min
approx

| exact − approx |
s.t. previous[i] = 1 ∀i ∈ approx[i] = 1

(1)

While the baseline algorithm minimizes error between exact

and approximate values, it is also complex to implement.

Effectively, we have to generate every possible combination in

which we either flip a 1 into a 0, or keep it as a 1 and then

compare this value with the exact one. To see the issue with

scaling, consider a value with n number of bits as 1. Then, the

number of possible new values we could generate is 2n. For

example, if our original binary value is 101, then we could

generate 101, 100, 001, and 000.

Consider the simple case of random data, where half the

bits are 1 and other half are 0. Thus, for an 8 bit value, on
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Algorithm 1 Approximation by examining one bit at a time

Input: previous, exact � Where variables have n bits

Output: approx
1: approx ← 0
2: setOnes ← false
3: for i ← n− 1 . . . 0 do
4: if previous[i] = 1 then
5: if exact[i] = 1 or setOnes = true then
6: approx[i] ← 1
7: end if
8: else if exact[i] = 1 then
9: setOnes ← true

10: end if
11: end for

0101

0011

Previous:
Exact:

0101
0011

Approx: ____ 0___

0101
0011
00__

0101
0011
000_

0101
0011
0001

1 2 3 4

Fig. 4: Creating an approximate value using Algorithm 1.

average, n = 4, resulting in 24 = 16 possible new values. While

comparing between 16 values may be doable, the exponential

growth quickly makes this strategy unfeasible. For example,

16-bit and 32-bit values would on average result in 28 = 256
and 216 = 65, 536 new values to compare.

To combat the issue of poor scalability, we explore alternative

algorithms to generate the approximate value. The key insight

we rely on is that the most significant bits are much more

important than the least significant bits to get a reasonable

approximate value. That is, we can make a decision about bit

n without looking at all bits n− 1, n− 2, n− 3, . . . , 0. Instead

we can focus on a smaller subset such as n− 1 and n− 2. In

the simplest case, we could make a decision looking solely at

bit n. We now explain how this would work for n = 1.

2) One-Bit Approximation Algorithm: The one-bit approx-

imation algorithm goes through each bit starting from the

most significant bit (MSB) to determine if we should set the

approximate output bit to 0 or 1. If the previous bit is 1, then

we set the output to 1 in two cases; (1) if either the exact bit

is 1 or (2) we already encountered an exact bit that was 1

but the corresponding previous bit was 0. In the second case,

we were not able to set the output bit to 1 since this would

require an erase operation. This means that the final value will

be smaller than the exact, so we minimize the error by setting

all following bits to 1. We detail this approach in Algorithm 1

and provide an example below.

Algorithm 1 takes 2 inputs, the previous value we are over-

writing (previous) and the exact value we want to write (exact).
We output approx, the approximated value that does not require

any erase operations. For example, given previous = 0101 and

exact = 0011, we want to determine approx. Figure 4 shows

how the approx is built bit by bit. In line 3, we start by looking

at the MSB of previous and exact, i.e., previous[3] and exact[3]

(step 1 of Figure 4). Since both bits are 0, we keep approx[3]

as 0 and proceed to the next iteration.

In the next iteration of the for loop (step 2 of Figure 4), we

find that previous[2] = 1, but since exact[2] = 0, we proceed

to the next iteration. Here previous[1] = 0, but exact[1] = 1

(step 3 of Figure 4). This means that the approximate value

will be strictly less than the exact value. Thus, to minimize

the error, we want to make approx as large as possible with

the bits that are left by setting them all to 1. We achieve this

by setting the setOnes signal to true in line 9. In the final

iteration (step 4 ), since previous[0] = 1 and exact[0] = 1, we

set approx[0] = 1. This gives us a final result of approx = 0001.

The final approximation in the example has an absolute

error of 210. The baseline algorithm would have yielded

approx = 0100 giving an error of 110. However, by examining

one bit at a time, we reduced the complexity to O(n) operations,

where n is the number of bits in the value. Using the baseline

algorithm would have required O(2m) operations, where m is

the number of 1s in the previous value.

We now have two strategies to determine an approximate

value, the baseline that minimizes error, but suffers from

high implementation costs, and the 1-bit approximation that is

simpler to implement, but can suffer from bigger errors. As a

next step, we look for a happy medium between these strategies

that has feasible implementation costs, but achieves a smaller

error than the 1-bit approximation. We do this by looking at

several bits at once in a method we call “n-bit approximation”.

3) N-Bit Approximation Algorithm: The n-bit approximation

algorithm is a generalization of the 1-bit approximation method

that examines more than one bit at a time to determine the

value for approx[i]. In Table II, we show our derived truth table

for n-bit approximation where n = 2. The first two rows of

the table are the same as the 1-bit approximation method. We

precompute the other rows by adopting a strategy of minimizing

the maximum potential error.

To derive our truth table, we determine the minimum

and maximum possible values that exact could be given the

information we have. For example, if exact[n:1] = 0, then the

maximum value exact could be is 1 if exact[0] = 1. Inversely,

the minimum value would be 0 if exact[0] = 0. Once we

know the minimum and maximum possible values for each

combination of exact, we determine what the maximum error

would be. Determining the maximum error requires using

information from previous. For example, if previous[1:0] = 11,

then we know that we can always set bits [1:0] to 0 or 1.

However, if previous[1:0] = 01, then we know only bit 0 can be

set to 0 or 1, while bit 1 must be 0. Using this information lets

us determine the maximum potential error if we set approx[i] to

0 or 1. We then set approx[i] to a value such that it minimizes

the maximum potential error.

We performed the procedure described above for all rows

in the truth table and for values of n from 2–8. We generalize

Algorithm 1 to work with the n-bit approximation. Algorithm 2

shows how to use the above truth table to generate an

approximate value. In the case where we set approx[i] = 1 even
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TABLE II: Truth table for n-bit approximation where n = 2

exact[i] exact[i-1] previous[i] previous[i-1] approx[i]

x x 0 x 0
1 x 1 x 1
0 0 1 0 0
0 0 1 1 0
0 1 1 0 1
0 1 1 1 0

0101Previous: 0101 0101 0101 0101

0011Exact: 0011 0011 0011 0011
Approx: ____ 0___ 01__ 010_ 0100

1 2 3 4

Fig. 5: Creating an approximate value using Algorithm 2 when

n = 2.

when exact[i] = 0, we know our approx value will be greater

than exact. In this case, we want to prevent any less significant

bits being set to 1 to minimize the error. Accordingly, we add

a new flag, setZeros, to achieve this purpose. It gets set in

line 11 only if approx[i] = 1, but exact[i] = 0.

In Figure 5, we show how an approximate value is created

using n-bit approximation for n = 2 using the same example

previous and exact values as used in Figure 4. Similar to the

1-bit approximation, in step 1 , the output remains 0. However,

in step 2 , we now set approx[2] = 1 since exact[2:1] = 01. The

rest of the bits then become 0 resulting in a final approx = 0100.

Compared to the 1-bit algorithm where approx = 0001, we

have reduced the error to the exact value from 2 to 1. Having

explored different strategies to generate approximations, we

now look at how we can bound the error produced by the

approximation.

4) Error Tolerance: When using approximate computing, it

is important to control how much error may be introduced in

the application. We achieve this by tracking the absolute error

between the exact and approximate writes. When we perform

multiple approximations across an entire flash page, we use the

mean absolute error (MAE) for all the values that are written.

We use MAE as it requires less hardware to implement than

the commonly used mean squared error. Once we have the

MAE, we use this information to make a decision about the

approximation. We use a programmer-specified threshold to

determine if we should write the exact value (requiring an

erase) or perform the approximation. This threshold can be

tuned on a per-application basis.

B. Hardware Implementations

We implement the hardware to perform the n-bit approxima-

tion and to track the MAE. Figure 6 implements one iteration

of Algorithm 2 in hardware. It outputs a single bit of approx.

It takes as inputs n bits of previous and exact and the setOnes
and setZeros signals. The various if statements in the algorithm

can be implemented through multiplexers. However, we found

Algorithm 2 N-bit approximation algorithm

Input: previous, exact � Where variables have n bits

Output: approx
1: approx ← 0
2: setOnes ← false
3: setZeros ← false
4: for i ← n− 1 . . . 0 do
5: if setZeros = false then
6: if previous[i] = 1 then
7: if exact[i] = 1 or setOnes = true then
8: approx[i] ← 1
9: else if TRUTHTABLEVALUE(exact, previous, i) then

10: approx[i] ← 1
11: setZeros ← true
12: end if
13: else if exact[i] = 1 then
14: setOnes ← true
15: end if
16: end if
17: end for

that many of the multiplexer inputs were tied to 0 or 1, so we

further simplified the logic in our final design.

The truth table logic block (used in Line 9 of Algorithm 2)

implements Table II for different values of n through combi-

national logic. If we want to use different values of n for the

n-bit approximation, one option is to have a different table for

each value of n. Alternatively, due to the regularity of the truth

table construction, if we implement the truth table for some

nmax, it also contains the truth table for all values of n < nmax.

Specifically, by tying the m least significant exact and previous
inputs to 0, we create the truth table for nmax − m. In our

evaluation we consider an nmax of 8. Thus, we use a single

circuit for all 1, 2, . . . , 8-bit approximation algorithms that is

configurable at run-time.

The circuit in Figure 6 is duplicated 32 times so it can be

used to generate the approximation for a 32 bit integer. We

show how the duplicated circuits connect in Figure 7. The

setOnes and setZeros signals are propagated through the design

from blocks 31 → 30 → · · · → 0. Each additionally takes n

values of both the previous and exact signals. Blocks where

i < n have previous and exact zero padded since in this case

our inputs would index from bits < 0. If a variable width is

less than 32 bits, i.e., 16 or 8 bits, we only use the lower 16

or 8 blocks to generate the approximate value. In Section V-D,

we synthesize our design and discuss its minimal overhead.

System Integration: Since many flash chips have write buffers,

we add our approximation between the write buffer and the

memory array [38], [75], [76]. Figure 8 shows the proposed

modifications in the flash chip. For our design, we use two

buffers so that we can keep a copy of the exact and approximate

version simultaneously. This lets us choose which version to

write to flash depending on how much error the approximate

version introduces. While the second buffer can be used to

interleave streams when needing to modify multiple pages at
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exact[i:i-n]

previous[i:i-n]

exact[i]

setOnes[i+1]

previous[i]

setZeros[i+1]

approx[i]
exact[i]

setOnes[i+1]
setZeros[i+1]

previous[i]

setOnes[i]

Truth 
Table 
Logic

n

n

setZeros[i]

Fig. 6: The n-bit approximation circuit for bit i.
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approx[31]
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n-bit approximator[31]
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once, in the applications we studied, memory writes were

mostly sequential so we only needed one write buffer to

maintain performance. This leaves one buffer free to be used

for our approximation strategy. Approximation can be disabled

in cases that require two buffers for higher write bandwidth.

To use FLIPBIT, we employ a similar mechanism to the

“read-write-modify” operation. Recall from Section II that

a read-write-modify first reads the flash page into a buffer.

However, when using FLIPBIT, we read the page into both

buffers 0 and 1. Unlike a read-write-modify, we do not

automatically erase the flash page. Instead, the CPU writes the

exact values to buffer 0. Once the CPU has completed writing

all values to that page, we modify the stored values in buffer

1 using our approximation hardware. We want to ensure the

approximation does not produce too much error, so we have

to compare our approximate with exact values.

We use the circuit in Figure 9 to measure the MAE between

buffer 0 (exact) and buffer 1 (approximated). It computes

the absolute difference between the exact and approximate

value and accumulates this error for each value in the page. If

the error is less than the programmer supplied threshold, we

program the flash from buffer 1. Otherwise, we have to use

buffer 0 for an exact write to an erased page.

C. System Interface

We now describe how our hardware interfaces with the CPU

and software. FLIPBIT needs to know:

1) the memory region that is approximatable,

2) the width of the variable type, and

3) the MAE threshold to know how much error is allowed.

Flash already uses memory-mapped registers for configuring

and reading values such as write-protection settings and flash

status [87]. We extend the use of memory-mapped registers for

our application. Specifically, we require 4 registers, two to store

the start and end address of the approximatable memory region,

one for the variable type, and one for the MAE threshold. To

change the value in these registers, we perform a store operation

from the CPU to the memory address of that register. Then

during run-time, when a value is to be written to the flash

memory array, we check whether the address is within the set

range for approximation. Since the hardware needs to know

whether it should run for an 8, 16, or 32-bit variable when

generating the approximate value and computing the error,

we also read this information from the register. Similarly, the

threshold is read from the register to determine whether we

exceed the allowable error.

Software: We expose the approximation interface to the

programmer through an extension to the compiler and a library

function to set the MAE threshold. Similar to prior work [81],

we add an approx keyword to annotate approximatable

variables. Any variable with the approx keyword is stored

in the approximate region of memory. The type width is also
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Listing 1: Sample C program calculating the output of one

fully connected layer using FLIPBIT. Lines highlighted in gray

show modifications required by the programmer.

uint8_t weights[IN_SIZE][OUT_SIZE];
uint8_t bias_weights[IN_SIZE][OUT_SIZE];
approx uint8_t out[OUT_SIZE];

setApproxThreshold(2);
for (int i = 0; i < OUT_SIZE; i++){
uint8_t acum = 0;
for (int j = 0; j < IN_SIZE; j++){
acum += input[j] * weights[i][j];

}
out[i] = relu(acum + bias_weights[i]);

}

Listing 2: Sample linking script.

MEMORY
{

ram : ORIGIN = 0x10000, LENGTH = 4K
rom : ORIGIN = 0x20000, LENGTH = 64K
approx : ORIGIN = 0x40000, LENGTH = 1M

}

communicated to the flash through code added by the compiler

for variables marked by approx.

In Listing 1, we show an example of using FLIPBIT to calculate

the output of one fully connected layer of a neural network.

The weights are declared as regular uint8_t arrays while we

add the approx keyword only to the activation output (out).

Therefore, only out will be stored in the approximate region

of memory while all other variables are in the exact region.

When out is updated, it will use approximation, while other

variables do not.

Linking: Using our approach, the linker needs to know where

to physically put the approximate region in memory through

a linker script. In embedded systems, a linker script is used

to manually manage the location and size of memory regions.

We show a snippet of an example linker script in Listing 2

which specifies the physical address of varying memory regions.

When using FLIPBIT, an additional “approx” region is specified

that matches the approximatable memory region in the flash.

Consequently, all variables marked by the approx keyword

are stored in the “approx” region specified by the linker script.

To communicate this region to the flash, the compiler inserts

code to set the memory-mapped register with the appropriate

start and end addresses.

To set the MAE threshold, we construct a

setApproxThreshold(unsigned thresh) function.

Using this function, the programmer can adjust the threshold

in software. They may also adjust the threshold dynamically

in the program. Internally, this is achieved through changing

the value in the memory-mapped register.

Having established the various components of the system

interface, we now describe how the system would be used. As

shown by the highlighted lines in Listing 1, the programmer

starts by marking certain variables in the program as approx
and setting a threshold with the setApproxThreshold()
function. Next, the programmer compiles the program and

sets the size of the approximate region. When the compiled

program is run on the CPU, the start and end addresses of the

approximate region, variable width, and threshold are loaded

to the flash through memory-mapped registers. Since the flash

hardware now has all required information, the program will

run in its approximate form.

IV. METHODOLOGY

To evaluate FLIPBIT, we modify a cycle accurate ARM

Cortex-M0+ simulator [35] to collect statistics and perform

approximation in the flash. We multiply the number of times

different flash operations (read, program, erase) occurred by

the energy consumed for those operations using data from a

commercially available flash chip [75]. The ARM Cortex-M0+

CPU does not have a cache [5] which is typical for low-power

IoT devices [66]. Larger IoT devices, such as the Samsung

ARTIK 053/053s [84], may have a cache, but their caches are

still too small (32 kB) to fit our workloads. The applications

we evaluate have large memory footprints (100s of kB). Thus,

the working set does not fit in the cache or SRAM, and still

requires writes to flash to run. We focus on integer and fixed

point data in our evaluation, matching prior work which runs

machine learning inference on embedded devices [29], [40],

[71], [99]. In addition, lower power MCUs do not have floating-

point units [5]. We discuss extending FLIPBIT to floating-point

numbers in Section VI.

IoT devices typically operate in one of two paradigms:

1) sense and send data and 2) compute and send data [21]. To

demonstrate the broad applicability of FLIPBIT, we evaluate

applications from both paradigms. For sense and send, we

examine capturing video from a camera. IoT devices are

frequently used for video capture in scenarios such as wildlife

tracking [23], [101], traffic monitoring [97], and agricultural

crop monitoring [51]. Video capture requires saving an image

from the camera to the device before it is transmitted off the

device for processing. Due to the small amount of SRAM

available on IoT devices, these images must be written to flash

before they can be transmitted. We apply approximation to

the flash location that is repeatedly written to. We use videos

from the open source Xiph.org Video Test Media collection as

our benchmark suite [96]. To measure the quality of the final

video, we use peak signal-to-noise ratio (PSNR) between each

approximated and exact frame. We then take the average for

all frames to get our final PSNR value.

For compute and send, we evaluate deep neural networks

(DNNs) which are commonly used to process data before

transmission [1], [49], [93]. A key challenge of running DNNs

on constrained IoT devices is the small amount of memory

available. Due to the high memory footprint of DNNs, we

write the activation output of each layer to flash; we apply
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TABLE III: ML models evaluated.

Model Application Name Parameters Model
Size (kB)

CNN Image Classification mnist cnn 3,620 7.07

MLP Image Classification mnist mlp 101,770 199

CNN
Human Activity

Recognition
har cnn 738,950 1,443

MLP
ECG Abnormal

Heartbeat Detection
ecg mlp 37,801 73.8
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Fig. 10: Energy reduction and accuracy using 2-bit approxima-

tion for video benchmarks. The line at 40 dB represents a level

of quality above which humans do not perceive a difference

in images [16], [41].

our approximation to the those activation outputs prior to

writing them to flash. We test four different DNNs run on three

applications and summarized in Table III. We evaluate image

classification, a common IoT application [69], on the MNIST

dataset [42] using a convolutional neural network (CNN) and

multilayer perceptron (MLP). We use another CNN for human

activity recognition (HAR) [32]. Finally, we use an MLP for

detecting an abnormal heartbeat in an ECG [54].

V. EVALUATION

FLIPBIT provides energy savings with minimal and tun-

able quality degradation. We start by evaluating the 2-bit

approximation approach; we explore different values of n for

n-bit approximation in Section V-B. In Figure 10, we evaluate

the energy reduction and approximation quality of the 2-bit

approximation approach on the Xiph.org video suite. We sort

the benchmarks according to the energy reduction we see and

assign each one a unique ID. We set a threshold of 5 for all

videos to minimize the quality loss. We perform a sweep of

thresholds in Section V-A.

As seen in Figure 10, the energy reduction varies significantly

across the videos we test. We see flash memory energy

reductions ranging from 1.0%–97.1% with a geometric mean of

67.7%. The approximation hardware itself adds less than 0.02%

additional energy. The videos with greater energy reduction

(>80%) have overall stability; they have fixed cameras with

little background movement and only objects moving in

the foreground. More dynamic videos saw smaller energy

reductions (<10%). They are recorded using handheld cameras

and have more action occurring in the fore and background.

For example, video 1 consists of a shaky, handheld camera

Fig. 11: Comparing PSNR for 2-bit approximation to reducing

the frame rate.

filming a husky running near a river. We expect FLIPBIT to be

used in mainly low-energy IoT applications. In these, capturing

stable images, such as from a mounted wildlife camera, is more

common than capturing highly dynamic scenes with a handheld

device. Thus, we expect FLIPBIT to perform similarly to the

more stable videos in IoT applications with significant energy

reductions.

While energy reduction varied significantly, video quality

saw less variation. In Figure 10, we also show the PSNR

for each video. As variations in image quality at or above

40 dB are considered nearly indistinguishable by humans and

acceptable for medical imaging [16], [41], we add a line to

Figure 10 to indicate the acceptable quality level. We find that

across videos, we obtain a geometric mean PSNR of 41.9 dB.

Only video 1 (husky) has a much higher PSNR. This is due

to the dynamic nature of the video and therefore difficulty

in applying approximation. Thus, FLIPBIT avoids almost all

approximation to maintain output quality.

Reducing Frame Rate: A more straightforward approach

rather than adding hardware to approximate values would be to

reduce the frame rate, thus necessitating fewer writes to flash.

Specifically, the energy consumed is directly proportional to

the frame rate. That is, when reducing the frame rate by n%,

the energy consumed is n% of the original. This approach

can yield strong energy savings, but has a significant cost to

output quality. As shown in Figure 11, the 2-bit approximation

technique has a higher average PSNR compared to statically

reducing the frame rate. This is because our technique takes

into account the error introduced through our threshold. Thus,

videos with considerable movement use less approximation in

the dynamic parts of the frame, resulting in less quality loss.

Conversely, the loss in output quality when reducing the frame

rate has a much higher correlation to the amount of movement

in the video because a frame may have many changes by the

time it is next updated. This results in the lower average PSNR

compared to our technique.

Additionally, the distribution of output quality degradation of

FLIPBIT is smaller compared to reducing the frame rate. Again,

this is because we take into account the error that is introduced

by applying our approximation. Accordingly, FLIPBIT can be
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Fig. 12: Energy reduction and accuracy loss compared to precise

execution using 2-bit approximation for ML benchmarks.

used on a wider range of videos as it will reduce approximation

when it finds the video not amenable to such techniques.

ML Benchmarks: In Figure 12, we evaluate FLIPBIT on the

4 ML benchmarks from Table III. We continue to use 2-bit

approximation and choose a threshold for each model to keep

the accuracy reduction close to 1%. We will show sweeps

of this threshold in Section V-A. The energy reduction has a

geometric mean of 39% while the accuracy drops 1.04%. The

HAR CNN has the highest energy reduction. This is because

HAR CNN is the largest model and therefore has the most

writes to flash as each layer’s output is propagated through the

model.

End-to-End System: While PSNR is a frequently used metric

for image and video quality, it often cannot represent the final

quality of applications that use images. Therefore, to perform an

end-to-end evaluation, we consider IoT devices doing wildlife

capture in which the end goal is to detect the presence of certain

animals. We evaluate the performance of object detection on

the approximated videos. We use the YOLOv3 model run on

the Python ImageAI library [67], [73]. We compare the objects

detected by the approximate versus the exact, baseline version.

To determine if a predicted object matches the baseline, we use

Intersection over Union (IoU) with a threshold of 50%, similar

to prior work [50]. IoU measures the overlap of the predicted

box surrounding an object with the actual box surrounding the

object. Then we use the precision and recall to determine an

F1 score.1 Because not all our input videos have objects that

YOLOv3 could properly detect, we remove the videos where

the model could not clearly detect objects in the baseline.

In Figure 13, we show the final performance of object

detection when the input video stream has been approximated.

With a geometric mean F1 score of 0.96, we find that FLIPBIT

does not negatively the affect the end-to-end performance by

an appreciable amount. Recall from Figure 10 that videos

with lower IDs had less energy reduction and generally higher

PSNR. Therefore, these videos tend to perform very well in

object detection. The type of video also had an effect on the

resulting F1 score. For example, 26 and 27 both consist of a

1Precision = TP
TP+FP

, Recall = TP
TP+FN

, F1 = 2 Precision×Recall
Precision+Recall

where

TP = True Positive, FP = False Positive, and FN = False Negative
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Fig. 13: F1 score of 2-bit approximation.
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Fig. 14: Geo. mean of energy and PSNR for all videos while

sweeping the threshold in the 2-bit approximation.

person talking to the camera while the poorer performing 23

tracks a boat moving on water. Detecting the boat was more

difficult due to more movement in the background and a higher

number of objects in the frame.

A. Sweeping Thresholds

Having previously looked at a single threshold, we now

sweep the threshold to show how it affects energy reduction at

a cost of quality loss. In Figure 14, we first perform a sweep

of the thresholds for the video applications. As the thresholds

increase, our energy savings increase and PSNR decreases.

Since the threshold is controlled by the user through software,

this provides an easy way to configure FLIPBIT for different

tradeoffs. Thus, depending on the needs of the application, the

quality loss can be set through the threshold such that it meets

the requirements of the final output.

As the thresholds continue to increase, the energy reduction

starts to level off. This occurs because values that are easy to

approximate become more rare to find. For example, parts of

the video that are very static are easier to approximate than

the dynamic parts. Therefore, the error is very high for the

dynamic sections. Thus, with a low threshold, only parts of

the video which are very static get approximated. However,

even with a higher threshold, approximating dynamic parts of

the video still causes such a high error that it triggers an exact

write, which does not yield any energy savings.
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(b) MNIST MLP
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(c) ECG MLP
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(d) HAR CNN

Fig. 15: Evaluation of DNNs when sweeping thresholds.

Next, we evaluate sweeping thresholds for our ML appli-

cations. Unlike the video benchmarks, we find that the ideal

threshold varies per network. To automate the process of finding

the threshold, we start with a value of 0.1 and multiply by 10
each time. Thus, by running just four threshold values (0.1, 1,

10 and 100), we can quickly narrow down the threshold range.

We then sweep through values within this range to determine

the ideal threshold per network. As we do this sweeping in

software, we can quickly identify the final threshold value

with minimal programmer effort. This is similar to existing

approximate computing techniques which also rely on setting

pre-determined thresholds [18], [78], [85], [92], [100].
In Figure 15, we show the energy reduction and accuracy

loss for the four networks while sweeping the threshold. Similar

to the videos, as the threshold increases, we save more energy

but at the cost of greater accuracy loss. However, in the DNNs,

the energy reduction is less steep than those observed for

videos in Figure 14. We believe this is because most of the

energy savings come from times when the activation outputs

are set to zero. This occurs frequently in DNNs due to the

ReLu function. We observed that between inference iterations,

outputs frequently get set to zero which benefits our technique

since setting a value to zero can be achieved perfectly without

requiring an erase. Thus, when we set higher thresholds, the

approximations we perform are not close to the exact value and

results in more error. This leads to fewer pages being written

without an erase and therefore less energy savings.

B. Different Approximation Schemes
Next, we sweep the number of bits, N, in the N-bit algorithm.

In Figure 16, we show the results for the video benchmarks.

We find that once we use 2 or more bits, we get nearly uniform

energy savings. This is because of the exponential dropoff in

importance of less significant bits compared to more significant

bits. Additionally, since we check that the error within a page

is not too high, even a more precise approximation may still

result in requiring an erase.

C. Lifetime and Endurance
In addition to reducing energy used by flash, FLIPBIT

also increases the lifetime of the flash. IoT devices are often

deployed in remote areas, which can make the replacement

of parts difficult. Therefore, increasing the lifetime of flash is

important for IoT devices.
To evaluate the benefit in endurance FLIPBIT provides,

we compare the number of pages requiring an erase using

approximation and not. Since flash endurance relies on the

number of program-erase cycles, we use a reduction in flash

page erases as a proxy for lifetime increase. This proxy is valid

if the most frequently written to pages are also those being

approximated. In this case, those pages would normally wear

out soonest, so reducing the number of erases for the affected

pages will also increase the overall lifetime. We already apply

FLIPBIT to memory that has frequent writes, so we expect this

to be the usual case.
In Figures 17 and 18, we show the increase in flash lifetime

for our benchmarks. The geometric mean lifetime increase is

68% and 44% for video and ML benchmarks, respectively. We

notice that the trends of lifetime increase are very similar to the

trends of energy reduction. This is expected since the majority

of our energy reduction benefit stems from the fact that we

are reducing the number of erases required by the device. At

the same time, this erase reduction also increases our lifetime

by reducing the number of program/erase cycles.

D. Hardware Overhead
We synthesized the n-bit approximation and error tracking

hardware described in Section III-B in Synopsys Design
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Fig. 16: The geometric mean of energy and PSNR for all

videos while sweeping N in the N-bit approximation.
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Fig. 17: Lifetime increase using 2-bit approximation for video

benchmarks

Compiler 2017.09 in a 65 nm technology. We can synthesize the

hardware up to 1 GHz, but since the flash runs at 33 MHz [75],

Table IV shows the area and power when the circuit is

constrained to a 33 MHz clock. We show two versions, the first

is configurable for n from 1 to 8, while the second is hardcoded

to n = 2. The latter version has reduced area and power

because of logic optimizations not possible when ensuring

configurability.

The circuit computes the output for one 8, 16, or 32-bit

value, so for a 256 byte page, we would need to duplicate this

circuit up to 256 times. However, due to the high latency caused

by flash writes, we instead reuse the same hardware multiple

times to save area. Since the flash runs at 33 MHz [75] and our

hardware runs at up to 1 GHz, we perform all approximations

while values are written to the buffer. Therefore, we do not

impact the critical path of flash writes.

Compared to an ARM Cortex-M0+ SoC in the same 65 nm

technology, our hardware uses only 0.1% area [64]. In energy,

running the approximation for the entire page consumes up

to 574 pJ, equal to 0.1% of the energy required to program a

single byte. Given the low overheads of our proposed hardware,

we believe it beneficial to add to IoT devices requiring low

energy consumption.
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Fig. 18: Lifetime increase using 2-bit approximation for ML

benchmarks.

TABLE IV: Hardware overhead for the N-bit approximation

and error tracking hardware at 33 MHz.

N-Bit
Approximation

Area
(μm2)

Percentage
of SoC [64]

Power (μW)
at 33 MHz

1–8 (configurable) 3919 0.104% 74.05

2 3213 0.0855% 69.20

VI. BROADER APPLICABILITY OF FLIPBIT

We now discuss other areas where FLIPBIT can be applied

to benefit flash-based systems.

Floating-Point: We focus on integer and fixed point data types

as they are more commonly used in low-power devices [29],

[40], [71], [99]. However, FLIPBIT is easily extended to support

floating-point numbers. For example, we can approximate the

lower M bits of the mantissa, while keeping the sign and

exponent bits precise. M is application dependent; more error

tolerant applications have higher values of M . We would also

need to replace the error calculation hardware (Figure 9) to

use floating-point adders and subtractors. While, this increases

the area, the overhead of FLIPBIT remains small as devices

which support floating-point operations are typically larger.

Energy Harvesting: IoT devices are typically persistently
powered (i.e., using wired power or batteries). However, energy-

harvesting (EH) devices run directly on ambient energy (e.g.,

RF [34], [60], movement [6], vibration [44]). EH devices store

energy in capacitors for short bursts of computation, after which

the device remains off until enough energy is accumulated

to perform more computation. When processing cannot be

completed in a single “on-period”, data must be saved to non-

volatile memory (NVM). While EH platforms with emerging

technologies such as ReRAM [61], [70] and STT-RAM [77]

have been proposed in academia, commercial EH solutions

continue to use regular IoT platforms, where flash continues

to dominate [31]. Also, prior work has shown that energy-

harvesting applications are also amenable to approximation [27],

[55], [63]. Thus, FLIPBIT can also be used to approximate

data backups to reduce energy and extend device lifetime in

energy-harvesting IoT systems.
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FLIPBIT for MLC: While we focus our approximation

algorithms and evaluation on SLC due to its use in IoT

devices [3], [88], we show how our technique could be extended

to MLC flash. In MLC, a fully erased cell maps to 11; as

the charge increases, the logical mapping decrements. Using

program operations, we can only go from 11 → 10 → 01 → 00.

To apply FLIPBIT to MLC, instead of making a decision one

bit at a time, we would have to make it two bits at a time.

This is since a 102 value could now become 012 through only

a program operation. Specifically, we redefine our algorithms

from n-bit to n-cell approximation algorithms. Our new n-cell

approximation algorithm still does not look at more bits than it

can set at each iteration and so functions similarly to the n-bit

algorithm. We show how the 1-cell approximation algorithm

would function using the same example as in Section III-A2.

We are given previous = 0101 and exact = 0011. We first

examine previous[3:2] = 01 and exact[3:2] = 00, we set

approx[3:2] to 00. Now we examine previous[1:0] = 01 and

exact[1:0] = 11. Since exact[1:0] < previous[1:0], we set

approx[1:0] to the previous value of 01. Our final result is

approx = 0001.

VII. RELATED WORK

Prior work looks at reducing erase operations for energy

reduction and lifetime increase in flash through different

strategies. Fazackerley et al. [25] propose masked overwriting

for NOR flash to reduce the number of erase operations required.

However unlike our work, they still require an erase to occur

once each byte in a page has been written to once. Bittman

et al. modify software data structures to reduce bit flips in

phase change memory [10]. Their work could be extended to

flash, but unlike FLIPBIT does not consider the asymmetry

that a 1 → 0 is comparatively cheap in flash. Nonetheless,

their approach is orthogonal to ours and could be combined

to reduce bit flips further if the application of interest uses

the data structures targeted by them. MicroVault [4] reduces

bit flips by employing gray coding, but their technique only

works for storing counter values.

Different coding has also been proposed to increase the

lifetime of flash [39], [57], [58], [98]. These codes allow more

writes to occur to the same region without requiring an erase,

but they increase the memory footprint. RLD coding [57]

also considers the inherent noise that exists from analog

sensor values to produce codes, but the authors do not explore

trading accuracy for energy savings. In our constrained IoT

environment, an increased memory footprint is undesirable.

Orthogonal to FLIPBIT, compression [45], [65], including

approximate versions [72], has been explored to reduce the

total memory traffic, and therefore number of erases needed.

Caching for wear levelling also exists [13] but assumes large

amounts of SRAM available that does not exist in IoT devices.

Several techniques for approximate storage have previously

been developed. Some techniques [20], [80], [82], [89] use

less reliable writing mechanisms such as lowering the voltage

or reducing the number of programming pulses used. Others

use faulty or worn out cells for approximate data [33], [46],

[82]. However, none of these leverage the asymmetric program

versus erase opportunity that flash offers.

In SSDs, the FTL is used to reduce wear out by employing

wear leveling [19]. However, usually a separate MCU runs on

the SSD solely to run the FTL, which does not work well for

energy constrained IoT devices. Various file systems have been

proposed to reduce the number of erases required [24], [26],

[43], [94]. File systems can have large RAM footprints and

run on an OS, which is often constraining to an IoT device.

Additionally, while our technique is aimed at the lower power

IoT domain, it does not preclude the use of these software

approaches to reduce page erases.

VIII. CONCLUSION

Flash memory consumes significant energy performing erases

required for a 0 → 1 bit transition. Erases additionally result in

the eventual wear out of flash. We propose FLIPBIT; hardware

for reducing page erases using approximation. FLIPBIT exploits

the idea that we can prevent an erase by avoiding flipping a

bit from 0 → 1. We are the first to use approximation to write

values to flash based on the previous value such that we use

only 1 → 0 transitions. We show that applying FLIPBIT in an

IoT domain can reduce energy by 39% in ML applications.

Additionally, our technique increases the flash lifetime by 68%

for video streaming applications.
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