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Abstract—Energy is a primary constraint in processor design,
and much of that energy is consumed in on-chip communication.
Communication can be intra-core (e.g., from a register file to
an ALU) or inter-core (e.g., over the on-chip network). In this
paper, we use the on-chip network (OCN) as a case study for
saving on-chip communication energy. We have identified a new
way to reduce the OCN’s link energy consumption by using line
coding, a longstanding technique in information theory. Our line
codes, called Low-Energy Line Codes (LELCs), reduce energy
by reducing the frequency of voltage transitions of the links, and
they achieve a range of energy/performance trade-offs.

I. INTRODUCTION

Architects strive to save energy consumption wherever they
can, and within the chip, one of the largest culprits is on-chip
communication [12]. Communication occurs both within a core
(e.g., from register file to L1D cache, on pipeline bypass paths,
etc.) and between cores via the on-chip network (OCN). To
reduce on-chip communication energy consumption, we exploit
and adapt ideas from information theory. Information theory
explores how best to send information over communication
channels, and it is applicable to the communication channels
on processor chips. In particular, we use the information theory
technique of line coding and apply it to processor architecture.

Line coding, which consists of two interrelated aspects—
modulation and data coding—is a longstanding technique for
transmitting data over a communication channel (i.e., wire).
Modulation is how we represent 0s and 1s with voltages, such
as with the widely used NRZ (non-return-to-zero) and NRZI
(non-return-to-zero inverted) signaling techniques. With NRZ
signaling, a logical 0 is mapped to low voltage and a logical
1 is mapped to high voltage. With NRZI signaling, a 0 is
mapped to an unchanged voltage, and a 1 is mapped to a
voltage transition. Coding is how we map the k-bit dataword
into the n-bit codeword, so as to achieve desirable transmission
properties. As a simple example, a parity code adds a single bit
to the end of the dataword to create a codeword that can detect
single-bit errors. Other codes create codewords with other
properties, such as RLL codes which limit the length of a run
of like symbols in any codeword [46]. Code constraints enable
us to shape the distribution of 0s and 1s in the codewords.

To reduce energy in on-chip communication, we introduce
line codes that we call Low-Energy Line Codes (LELCs).
Energy is a function of the number of voltage transitions;

therefore, we seek to reduce transitions. We use NRZI signaling;
thus, the goal is to reduce the number of 1s. Our LELCs
take advantage of the observation that communicated data
communicated on chip is not uniformly random (i.e., the k-bit
datawords are not equiprobable), as assumed in much prior
work. Fig. 1 presents the distribution of 8-bit datawords sent
through the OCN for two representative CPU benchmarks
and one GPU benchmark.1 The all-0 dataword is by far the
most common, the all-1 dataword is fairly common, and other
datawords are not uniformly likely.2 These results are consistent
with intuition and prior experimental results, including results
that show that all-0 datawords are very common [33]. We
design codes that exploit redundancy in the data to produce
codewords with fewer 1s.

While many data codes exist that enable us to reduce the
number of 1s, we must consider their costs. Specifically, the
impact of coding on performance is represented by its rate,
which is the ratio of dataword bits to codeword bits. Parity, for
example, requires us to send n = k+1 codeword bits and thus
has a rate of k/(k+1). Information theory governs the pareto
optimal trade-offs between energy reduction and rate. However,
just because a trade-off is theoretically possible does not imply
that it is practical; certain codes might require prohibitively
complex or large hardware for encoding and decoding. We also
must ensure that any line code we develop does not exacerbate
crosstalk among the wires in a link.

In this paper, we present several practically implementable
line codes that correspond to a range of energy-rate trade-offs.
To showcase the opportunity for LELCs, we focus on OCN
communication; the OCN takes up approximately 10% of the
area [14] and consumes up to 20% of the processor’s power
budget [14, 22, 23, 39]. Furthermore, OCN links contribute a
substantial fraction of OCN power–∼50% of OCN dynamic
power is spent on wires [5]. Transmitting a single bit on a link
consumes approximately 1−1.75pJ [45, 47]. In the context of
the OCN, having a range of trade-offs is attractive, because
of the over-provisioning of link bandwidth and the varying
runtime demand for bandwidth. Furthermore, we provide a

1For full list of workloads and methodology, see Section VI.
2Other benchmarks had similar trends of all-0 and all-1 datawords, along

with variations in the next most common set of datawords.
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Fig. 1: Dataword distributions for benchmarks (2 CPU and 1 GPU)

mechanism for throttling coding when OCN utilization is high.
This paper makes the following primary contributions:
• Introduces line codes to reduce OCN link energy.
• Presents insight into how OCN architecture influences

which codes are effective and which are less so.
• Implements low-cost hardware implementations of en-

coders and decoders for the most promising LELCs.
• Provides a simple dynamic strategy to turn off line coding

when bandwidth demand is high.
• Experimentally shows that our LELCs provide a tunable

range of energy-performance trade-offs with energy reduc-
tions (8.0%-36.7%) that greatly exceed runtime increases
(−1.25%-8.42%). Our LELCs also reduce crosstalk by an
average of 21.3-36.1%.

• Demonstrates that codes designed for CPU workloads
provide significant energy improvements in GPUs.

II. SYSTEM MODEL

We focus on the links in an OCN, and we are largely agnostic
to the routers and topology. Coding happens at the source and
destination, leaving routers unchanged. We assume a 2D mesh
but our insights generalize to other topologies.3 Link energy is

3We focus here on OCNs for CPUs. In Sec. VIII, we present link energy
reductions for GPUs which typically feature crossbar networks.

proportional to link length; this Manhattan distance between
cores is independent of the number of router traversals between
them (router traversals would be a function of topology).
OCN Traffic. OCN traffic includes two types of packets:
control and data. A control packet (e.g., coherence request
or acknowledgment) is short (e.g., 8B), because it is effectively
just a header. A data packet (e.g., coherence response) is long
because it carries a cache block of data (e.g., 64B) in addition
to a header. In this paper, we only perform coding on data
packets, because of the greater opportunity. Each data packet is
divided into multiple flits whose size corresponds to the width
of the link. Furthermore, we only encode the data payload and
not the header, because coding the header would introduce
routing complexity and latency (i.e., having to decode the
header at each router to determine the next hop).

Our OCN has fixed link widths between routers, and we must
map the bits being transmitted to those fixed number of wires.
Coding will change the rate; a change in rate can be accounted
for by increasing the number of flits per packet and/or by
increasing the link width. We conservatively assume that we
cannot widen links. For example, if our 64B data payloads
are broken up into 4 flits of 16B each and we reduce the rate
to 0.9, we would require one additional flit to accommodate
the coded data. Additional flits consume bandwidth on the
links and in the router crossbars and also increase serialization
latency (paid only once at the destination).

The increase in the number of flits is discretized because
of the fixed link width. Returning to our example with a link
width of 16B, any increase in data payload size from 1 bit to
16B requires exactly one flit to accommodate it. Thus, a code
that adds 16B has the same performance impact as one that
adds anything less, and thus it often makes sense to use codes
that add multiples (or near multiples) of the link width.
Energy Consumption. Recent work demonstrates that
links consume ∼ 40-50% of the total energy in the net-
work [5, 27, 49]. In the context of the un-core (including L1,
L2, OCN and DRAM), prior work reports that links consume
an average of ∼ 30% of uncore energy [29]. Link energy is
dominated by the energy consumed when the voltage on wires
transitions (from low-to-high or high-to-low). The amount
of energy consumed during a transition depends on many
factors–wire length, resistivity, and parasitic capacitance and
inductance–in this work, we focus on reducing the number of
transitions as a proxy for the energy savings.
Link Geometry. A link is a collection of wires, and these
wires are arranged in some 3D geometry. For the purposes
of this work, link geometry matters only insofar as it affects
crosstalk (discussed next). We assume the wires in a link are
arranged such that a cross-section of them is a 2D grid.
Crosstalk. Crosstalk is the phenomenon in which a signal
transmitted through one information channel affects signals
on neighboring channels. Crosstalk results from capacitive or
inductive coupling between adjacent parallel wires, and trans-
mission errors are more likely to occur when the interference
from neighboring wires is constructive. This happens when the
neighbors of a victim wire experience identical transitions and
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Fig. 2: Optimal trade-off between rate and energy reduction for
equiprobable input data.

the victim wire experiences no transition or a transition in the
opposite direction. Crosstalk manifests as a delay proportional
to the effective capacitance experienced by the victim wire,
and it is a significant issue in on-chip links [15, 42].

III. THE POTENTIAL OF LINE CODING

The principles of information theory enable us to analytically
bound the potential of line coding. To do so, we must make an
assumption about the input datawords; specifically, we assume
they are equiprobable. Real-world inputs are not equiprobable,
but with lossless compression, if the input is compressed down
to its entropy, it can be made equiprobable.

First, consider rate. The maximum achievable rate R of a
code that has a probability f that any given bit in the codeword
is a 1 is determined by the binary entropy function H( f ):

R = H( f ) =− f log2 f − (1− f )log2(1− f ). (1)

Intuitively, the rate is 0 at the extreme values of f ; if we send
only 0s or only 1s, we convey no information. The maximum
achievable rate of 1 occurs when f = 1

2 , i.e., when 0s and 1s
are equally likely, as with uncoded data.4

Our goal in this work is to save energy (i.e., decrease f )
while sacrificing as little rate as possible. We plot rate as a
function of the percentage of energy reduction in Figure 2. The
figure shows the trade-offs that are possible with line coding,
with two caveats. First, recall that this assumes equiprobable
input datawords, which is not true of real application data
though it could be achieved via compression. Second, some of
the points on the curve may correspond to codes that would
be prohibitively expensive to implement, due to circuit latency
and/or energy. Among the possible trade-offs, we believe that
there is a sweet spot for OCNs at a rate around 0.8, which has
a corresponding theoretical energy reduction of 40%.

It is natural to consider compression as an alternative to
line coding because our benchmarks are very compressible,
and compression reduces the number of bits communicated.
Consider communicating an N bit file that can be compressed
to NR bits, where the information rate R < 1. If we assume
perfect compression (down to the information rate R), then bits
in the compressed file will be equiprobable, and so we will
transmit NR/2 1s. In a world without practical constraints, we
can design a line code comprising 2RN codewords of length N,

4The converse is not true; one can create codes with f = 1
2 that have rate

less than the upper bound of 1.

each of which contains at most H−1(R)N 1s, where H is the
binary entropy function. When the information rate R = 1/10
(typical of our benchmarks) we have NR/2 = (0.05)N versus
H−1(R)N ≈ (0.013)N, so compression requires more energy
to send the file. It is important to note that this ideal analysis
assumes perfect compression and perfect coding, and it neglects
the practical considerations of implementing either compression
or coding on-chip: latency and area.

IV. LOW-ENERGY LINE CODES FOR OCNS

Our goal is to reduce OCN energy by using NRZI signaling
and by reducing the frequency of 1s transmitted. There are
several types of codes that we could use, adapt, or create to
shape the frequency of 1s, and we exploit the rich information
theory tradition of coding for other contexts and applications.
We call these codes Low-Energy Line Codes (LELCs). First,
we outline the properties we seek when developing our codes:

• Reduce the fraction of 1s to a sufficient extent to achieve
substantial energy savings, even when accounting for
additional overheads such as encoding/decoding circuitry.

• Achieve a rate that is high enough to incur a penalty of
only one additional flit. This rate threshold depends on
the link width of the target OCN system (e.g., it is 0.8 in
our experimental system).

• Facilitate low-latency hardware for encoding and decoding,
as well as the ability to easily parallelize the hardware for
encoding (decoding) independent datawords (codewords).

• Generalize well to different benchmarks and systems; per
application codes are possible but would require consider-
able profiling and reconfigurability to achieve good results.

• Avoid pathological scenarios that could increase energy.
• Reduce crosstalk as a result of reducing transitions; in the

worst case, avoid increasing crosstalk.

A. LELC Class 1: Flip-N-Write

A simple way to reduce the frequency of 1s in the codeword
stream is by inverting datawords with more 1s than 0s. The cost
is an extra flag bit that denotes whether the codeword’s bits
were flipped or not; we refer to this extra bit as the IsFlipped
bit. Thus, for k-bit datawords, we have k+1-bit codewords,
resulting in a rate of k/(k+1). This code is a degenerate case
of coset coding [17, 18]. The code is parameterized by k, and
it has the nice property that a codeword will never have more
than half of its bits equal to 1. This coding scheme has been
previously proposed for use in storage, under the name Flip-N-
Write [11], which we adopt. It has also been used for general
data buses, under the name bus-invert [44]. While bus-invert is
also an application of the code for communication, that work
did not consider real-world data or any specific network, but
instead assumed equiprobable datawords.

We extend Flip-N-Write (FnW) with a multi-level version
that further trades rate for energy savings. Consider applying
(single-level) FnW on a stream of datawords. The result is a
stream of codewords, each with its own IsFlipped bit. Now, if
we consider each group of f IsFlipped bits (i.e., the IsFlipped
bits corresponding to f codewords, where f may or may not

3



Fig. 3: Illustration of 2-level Flip-N-Write (k=4).

Fig. 4: Huffman coding tree with codewords at leaves. Assumes the
frequency of input datawords is, in decreasing order: 00, 11, 01, and
10. These datawords are mapped to codewords 0, 11, 100, and 101.

equal k), we could treat them as a f -bit dataword to be encoded
with FnW. Thus, for every group of f datawords, we have f
codewords, each with k+1 bits, plus one extra bit to denote
whether the f IsFlipped bits are inverted or not. We illustrate
an example in Figure 3. FnW is attractive in that encoding
and decoding require only simple logic, thus adding minimal
complexity, latency, and energy consumption. We evaluate the
circuitry and energy for encoding and decoding FnW (and all
other LELCs) in our experimental evaluation (Sec. VII).

B. LELC Class 2: Tree Codes

One can create a code using a tree, in which the leaves
of the tree are the codewords, and the path taken to reach
a leaf is the dataword. A famous example of a tree code is
a Huffman code [24]. A common use of a Huffman code is
lossless compression, and it achieves compression by assigning
the shortest codewords to the most common datawords. Figure 4
shows a simplified example which maps 2-bit data words to
code words that are 1 to 3 bits in length.5 In this example,
input 00 is most common so it is mapped to the shortest (single-
bit) codeword. Uncommon datawords are mapped to longer
codewords. Because a Huffman tree is designed to compress
datawords with expected (e.g., profiled) input statistics, its rate
is greater than 1 when input statistics are similar to expected.

One can also construct tree codes that do not follow the
Huffman algorithm. Instead of compression, our primary goal
is to reduce the frequency of 1s in the codewords; nevertheless,
any compression we achieve benefits our code rate. Therefore,
we construct trees that map dataword bit sequences to codeword
sequences with fewer 1s. While doing so, it is often possible
to retain some of the compression benefits of Huffman codes.

The construction of a tree code is informed by the expected
dataword distribution from PARSEC benchmarks. Recall from

5In lossless compression, a Huffman code encodes source strings into variable-
length codewords. Source symbols label leaves of the Huffman tree, and
codewords label paths to the root. To be consistent with our other tree codes,
we reverse this assignment, labeling leaves by codewords and paths by datawords.

Fig. 5: Tree Code 1 (TC1): Variable rate that is bounded between
3/4 and 5/4. 1 bit added redundancy for all 0s and compression
opportunity for strings of 1s.

Fig. 6: Tree Code 2 (TC2): Variable rate that is bounded between 3/4
and 6/4. No added redundancy for all 0s and compression opportunity
for strings of 1s.

Figure 1, the distribution of datawords is not equiprobable.
We have developed several tree codes that provide different
energy/rate trade-offs and require different amounts of hardware
for encoding/decoding. In Figures 5 and 6, we show two of
the tree codes we have developed. Both tree codes guarantee
that every codeword has no more 1s than its corresponding
dataword, and both target compression of strings of dataword
1s (i.e., the rightmost parts of the trees). Compared to tree
code 1 (TC1), TC2 targets longer strings of dataword 1s. The
essential design point in TC2 is that no bit redundancy is added
to the all-zero dataword, which is the most common dataword
in our benchmarks and very common, in general [33]. Thus,
TC2 offers higher rate for the most frequent datawords and a
higher overall rate, but less energy savings than TC1.

We designed TC1 and TC2 to fairly compete with FnWk=3,
such that the codeword length n = 4 in both schemes, and
the lower bound on rate for TC1 and TC2 is 3/4. (We can
make a tree code that is exactly equivalent to FnWk=3 with
a balanced tree that has path length 3 and codeword length
n = 4.6) A small value of k limits the depth of the tree and
the logic required to encode the datawords. Using a similar
methodology, we could design other tree codes to compete
against FnW with larger values of k. As we show in Section V,
though, even a shallow tree has a high encoding latency due
to variable length encodings; therefore, we do not consider
deeper trees further in this paper.

Tree codes can be either fixed or variable rate (both TC1
and TC2 are variable rate), depending on whether the tree
is perfectly balanced or not, respectively. Fixed-rate codes

6In fact, the balanced left part of TC1 is equivalent to FnWk=3.
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TABLE I: Mapping Codes

(a) Example rate-1

Dataword Codeword
000 000
111 001
100 010
001 100
010 011
110 101
011 110
101 111

(b) Example rate-3/4

Dataword Codeword
000 0000
111 0001
100 0010
001 0100
110 0011
010 1000
011 0101
101 0110

generally enable simpler hardware for encoding/decoding,
but variable-rate codes are attractive when they offer better
energy/rate trade-offs. We discuss how to overcome the
implementation challenges of variable-rate codes in Section V.

C. LELC Class 3: Mapping Codes

Fundamentally, a code is a mapping from a dataword to
a codeword. Mappings are often based on math or trees that
facilitate simple hardware. However, for short codes, we can
simply create a 1-to-1 mapping using a lookup table.

We take advantage of this opportunity by explicitly mapping
the most common k-bit datawords to the n-bit codewords with
the lowest weight, i.e., number of 1s. The rate of a mapping
code is under our control, because we can choose n to be equal
to k (in which case rate equals 1) or greater. As n increases, rate
decreases, but we can reduce energy more. Consider datawords
of length k and codewords of length n = k+1, and assume k
is even, for simplicity. Datawords can have a weight anywhere
from 0 to k. For codewords, we can choose to use the 2k n-bit
strings with weights from 0 to k/2. We will show later that
mapping codes with length k+1 reduce energy significantly
more than mapping codes with length k, at a relatively small
loss in rate (i.e., rate k/(k+ 1) versus rate 1). The primary
constraint on the size of a mapping code is k, because the
mapping table has 2k entries, each of which is n bits long.
Large tables may be too slow and energy-hungry to be viable.

In Table Ia, we illustrate a simple mapping code example
with 3-bit datawords and 3-bit codewords; because datawords
and codewords are the same length, the code rate equals 1.
Datawords are sorted in descending order according to observed
frequency in data packets, and the corresponding codewords
are in ascending order according to their weights.

Mapping codes offer the possibility of guaranteeing that
every codeword has a weight that is no greater than its
corresponding dataword. This feature could be desirable for
making guarantees about energy consumption, as well as
serving as a safety net against adversarial input data. A rate-1
mapping code cannot provide this guarantee, but once rate is
k/(k+1) or less, we can create maps with this guarantee. Such
maps offer better worst-case behavior at the potential cost of
somewhat worse common-case behavior. We show a rate-3/4
mapping code with this property in Table Ib. Comparing the
examples in Table I, note that dataword 101 is mapped to
codeword 111 which increases its energy when n = 3 (rate-1)

but is mapped to 0110 when n = 4 (rate-3/4), which provides
the aforementioned guarantee on energy consumption.

The main challenge in designing a mapping code is choosing
the mapping. As with our tree codes, we use profiling similar to
Fig. 1. We profile PARSEC benchmarks [6] independently and
in aggregate, and we explore how well per-benchmark mappings
perform on other benchmarks (i.e., how well does the mapping
based on the profile for benchmark X perform on benchmark
Y) and how well the aggregate mapping performs on each
benchmark. The similarities between benchmark distributions
enables a single aggregate mapping to work well; we quantify
these results in Sec. VII. Note that, while FnW targets high-
weight datawords, regardless of their observed frequency,
mapping codes (like tree codes, to a somewhat lesser extent)
exploit differences in observed frequencies. Mapping codes
also have the potential to be reconfigurable; we leave the study
of this to future work.

D. Compound LELCs

One can combine multiple codes to achieve multiple goals,
and we refer to such codes as compound codes. Many com-
pound codes are possible, and we now discuss one compound
LELC which combines a simple compression code with a
code that is designed to save energy.7 The dataword is first
converted by the compression scheme (discussed next) into an
intermediate codeword. At this step the objective is increasing
the code rate. Then the intermediate codeword is converted
by the rate-8/9 mapping code into the final codeword. At this
step the objective is energy reduction.

Our compression scheme exploits the observation that long
runs of 0s are very prevalent in typical software (including
our benchmarks). Our compression scheme is as follows: a
length-k dataword consisting of all 0s is mapped to ‘1’ and
all other length-k datawords are mapped to ‘0+dataword’. This
is similar to a standard Huffman compression scheme which
focuses on compressing the most frequent dataword. However,
as observed in Figure 4, even in the simplest Huffman code
there are more than two different codeword lengths which
is a significant drawback during hardware implementation of
decoders. Our compression scheme can be built for any choice
of k, and the resulting codeword length is either 1 or k+ 1.
Although we are increasing the number of 1s when we encode
the all-0 dataword to ‘1’ in the intermediate codeword, this is
overcome by the subsequent mapping code.

Our compound code’s rate depends on k and the dataword
statistics. As k increases, both the maximum possible compres-
sion ratio for the all-0 dataword and the maximum possible
rate for the other datawords increase. However, depending on
the benchmark statistics, the frequency of the all-0 dataword
varies at different granularities, and thus real-world results vary.
Furthermore, because the compound codes contain a code with
high energy savings, they also offer good energy savings.

7Recall from Sec. III that compression alone is less effective than line coding.
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TABLE II: Rates and percentage energy reduction for proposed LELCs
observed across 8 PARSEC benchmarks running on a CPU. Codes
above (below) the dashed line have fixed (variable) rate.

Coding Scheme Rate Energy Reduction %
Flip-N-Write (k=3) 0.75 15.52–23.66
Flip-N-Write (k=8) 0.89 17.47–27.30
2-level FnW (k=4) 0.76 24.31–36.40

Mapping1 0.89 21.91–36.67
Mapping2 1 10.79–30.41

TC1 0.76–0.78 18.30–27.88
TC1’ 0.76 18.94–27.91
TC2 0.92–0.97 11.10–20.83
TC2’ 0.86–0.88 10.65–20.52

Compound1 (k=32) 1.07–1.54 15.90–25.74
FP Compression [2] 1.25–1.72 -23.38 – -10.74

E. Summary of Promising LELCs

We presented four classes of LELCs. Moreover, all of these
LELCs have multiple viable design points. FnW can be applied
at different granularities. Tree codes can be designed with
many different topologies and assignments of datawords to
leaves. Mapping codes have many possible mappings and rates.
Compound codes can exploit compression at different rates.

In Table II, we list the ranges of rates and percentage
energy reductions we experimentally observe across our CPU
benchmarks for some of our most promising LELCs. The
observed rate for a given benchmark is measured as the total
number of dataword bits across all data payloads divided by
the total number of codeword bits across all data payloads.
For variable rate codes (below the dashed line in the table), a
different rate is observed for each benchmark, because dataword
statistics differ. The percentage energy reduction is measured by
normalizing the total number of 1s in codeword bits across all
data payloads by the total number of 1s in dataword bits across
all data payloads. We include two different entries for each of
our tree codes. TC1 and TC2 denote the codes as presented
thus far, while TC1’ and TC2’ represent adjustments made to
simplify their hardware implementations (see Section V). We
also compare against Frequent Pattern Compression (FPC) [2];
as expected FPC improves rate, yet across all benchmarks, the
energy consumed increases due to an increase in the number of
ones. This is consistent with the theoretical analysis in Sec. III.
This list of codes is not exhaustive, but it shows the potential
of practical LELCs codes to reduce energy at differing rates.

F. Dynamic Code Throttling

Because many of our LELCs incur a cost in rate, they can
potentially degrade performance. When OCN link utilization is
low (i.e., there is bandwidth slack in the OCN), a decrease in
rate is unlikely to have much impact on performance. However,
when link utilization high, it can be more problematic to add to
bandwidth demand. To limit the potential performance impact
of coding, we explore disabling coding when OCN utilization
is high. (A more complicated solution would seek to switch
between LELCs; we leave this option for future work.) To
implement throttling, we must answer two questions: (1) where
to set the threshold and (2) how to measure OCN utilization.
The choice of threshold is a trade-off. If it is low (high), then

coding is more (less) often disabled, so performance impacts
are decreased (increased) but energy savings are also decreased
(increased). We evaluate several different thresholds.

Dynamic estimation of OCN utilization can be done in
several ways, and we are agnostic as to how this is done. The
option that we use is a per-link scheme in which each router
observes its local utilization at the granularity of 100k cycles. If
the utilization is above a given threshold, coding is disabled for
the subsequent 100k cycles; otherwise, it is enabled. Local link
utilization is tracked simply with a counter and a comparator,
resulting in minimal circuit overheads. The choice of interval
length is a tunable parameter, but we did not find that our
results were very sensitive to it.

V. ENCODER/DECODER CIRCUITRY

The hardware costs in terms of energy, latency, and area
are critical to determining the practicality of our codes. We
implemented the circuits for all our LELC encoders and
decoders in Verilog and synthesized them using Synposys
Design Compiler with a 12nm library. For codes requiring
look-up tables, we use CACTI [4] with its smallest technology
(22nm) to estimate the energy and latency, due to difficulties
with the Synposys memory compiler. We discuss circuit
implementation issues before presenting the synthesis results.

A. Fixed Rate Codes

For our fixed-rate codes, we easily take advantage of
parallelism. Assume d-bit data payloads (d = 512 in our
experiments) and k-bit datawords. We can encode (decode) all
d/k datawords (codewords) in parallel, given enough replicas
of the circuit that encodes (decodes) each k-bit dataword (n-
bit codeword). Replicas consume area and power (our power
and area results in Sec. V account for the overhead of these
replicas), but the concurrency is vital for performance. For
FnW, we have implemented circuits for various values of k. For
mapping codes, we have evaluated lookup tables (i.e., ROMs)
for maps of different sizes.

B. Variable Rate Codes

Variable-rate codes pose implementation challenges that we
must overcome, because our two tree codes and our compound
codes are variable-rate. With a variable-rate code, parallelism
is difficult because the boundaries between datawords and
codewords may not be determined until runtime. A variable-
rate code can have variable-length datawords (like our tree
codes) or codewords (like our compound codes), both of which
present implementation challenges. If datawords (codewords)
are variable-length, then we cannot start encoding (decoding)
a dataword (codeword) until we have encoded (decoded) the
previous one. Without parallelism, both encoding and decoding
would require more latency than we can comfortably tolerate.
Parallel encoding with variable-length datawords. We divide
the data payload into fixed-length dataword chunks of size f
and use independent modules to process each dataword chunk
in parallel. As the dataword lengths differ, a different number
of datawords can fit into each fixed-length dataword chunk.
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We pack the datawords that fit into the dataword chunk and the
remaining bits are sent unencoded. This solution lowers our
energy reduction (because unencoded bits do not benefit from
our coding), but may improve the rate of the overall scheme as
unencoded bits have a rate of 1. This solution requires some
circuit complexity to “pack” the output of each module into
flits, since the output length of each module is variable.
Padding variable-length codeword chunks into fixed-size
codeword chunks. Although tree codes have fixed-length
codewords, parallelizing the encoding process with fixed-length
dataword chunks (described above) results in variable-length
codeword chunks. To overcome the complexity of parallel
decoding of variable-length codeword chunks (see below), the
encoder uses zero-padding to create fixed-length codeword
chunks. Assume that f dataword bits are encoded as at most t
codeword bits. If any group of f dataword bits are encoded to
fewer than t bits, the remaining bits can be “padded” with 0s
to get a fixed output length of t. The padding hurts rate but
has no impact on energy, which is attractive for tree codes that
prioritize energy. As a result of this technique, our implemented
tree codes differ from the ones described earlier. We divide data
payloads into 32-bit dataword chunks, and we use padding to
create fixed-length codeword chunks of length 42. We denote
the more implementation-friendly versions of TC1 and TC2
as TC1’ and TC2’, respectively.
Decoding variable-length codewords. Assume we receive
a codeword string of c bits. If all codewords are the same
length, n, or if we use zero-padding to create fixed-size
codeword chunks, then parallel decoding is easy; we can have
parallel modules to decode each group of n codeword bits.
However, if codewords can be multiple possible lengths, as
in our compound codes (without padding), then we do not
immediately know where each codeword ends. Nevertheless,
we can make the problem much more tractable by limiting
the number of possible codeword lengths. Specifically, if our
codewords can be either of only two lengths n1 or n2, then
the circuitry can, in parallel, consider all of the possible bit
positions where codewords can start. However, if codewords
can have many different lengths, then the number of codeword
starting positions is too large for efficient circuitry. As such,
our compound code has only two codeword lengths: one length
for a run of 0s and a second length for all other data words.

Despite the availability of these three techniques for simplify-
ing hardware implementations, TC2 remained too complicated
and slow to be attractive. It requires padding for two different
lengths to limit rate loss, and has more dataword lengths
than TC1. As TC1 is already our most complicated code to
implement (see next section), we did not further pursue TC2.

C. Latency, Energy, and Area Results

The latency, energy consumption, and area footprints of our
encoding and decoding circuits are summarized in Table III.
These circuits encode/decode 128 bits. We target single-cycle
latency for encoding/decoding to minimize performance impact.
All circuits fit within the latency of a 1.5 GHz clock period, and
all but the encoder for TC1’ fit within a 2GHz clock. In terms

TABLE III: Latency/Energy/Area for Encoder/Decoder Circuits for
128-bit flits

Coding Latency (ps) Energy (pJ) Area (µm2)
Scheme Enc. Dec. Enc. Dec. Enc. Dec.
FnW (k=3) 119.4 99.9 1.33 1.53 605 591
FnW (k=8) 203.1 104.6 1.27 1.33 669 515
2L FnW (k=4) 168.5 147.9 1.32 1.06 633 452
Mapping1 74.9 85.7 0.32 0.65 682 1093
Mapping2 73.5 73.5 0.14 0.14 262 262
TC1’ 675.0 429.2 2.31 1.96 3775 2346
Comp1 (k=32) 324.9 261.5 1.50 1.45 1226 1579

TABLE IV: Simulation parameters

Cores 16 OoO x86 cores
L1 ICache/DCache I: 32KB, 2-way, D: 64KB, 2-way

L2 shared, inclusive 2MB, 8-way
Cache block size 64B

Coherence protocol MESI
Topology 4×4 mesh

Routing Algorithm minimal XY
Router Latency 1 cycle for uncoded baseline

Link width 16B (same as flit size)
Flow Control 4 virt. nets, each with 3 virt. channels

of energy, to provide context, transmitting a single bit on a
link consumes approximately 1−1.75pJ [45, 47], whereas our
encoding and decoding circuitry requires 1.5pJ per 128-bit flit
for our compound code. Each network interface will require an
encoder and decoder; each encoder/decoder circuit processes
128-bits. In terms of area, all our designs are negligible.

VI. EXPERIMENTAL METHODOLOGY

By using line coding, we seek to reduce energy consumption,
while minimizing the potential impact on performance and
crosstalk. To evaluate these metrics, we use full-system simu-
lation and multithreaded benchmarks. To model a multicore
processor, we use the gem5 simulator [7]. We configure gem5
to model an x86 processor with 16 cores. To model the
OCN in detail, we use Garnet [1]. The configuration for our
simulator can be found in Table IV. Performance results are
produced directly by the simulator. The latencies in Table III
are included in our simulation to properly account for encoding
and decoding overheads. To estimate the energy savings for
the OCN links, we examine the bits in every message sent in
the simulated system and code them accordingly. Energy is
directly proportional to the number of 1s, and all energy results
are normalized to the number of 1s in the uncoded baseline.

We run applications from the PARSEC [6] benchmark suite
each with 16 threads, except for a few that do not currently
run on our simulation infrastructure: dedup, facesim, raytrace,
vips, and x264. Our use of benchmarks instead of assuming
equiprobable dataword statistics distinguishes our work from
much of the prior work. To highlight the broad applicability
of our work, we also evaluate our LELCs on a discrete GPU
using gem5’s GCN3 GPU model [19] and running 6 Pannotia
graph workloads [10].8 This system is configured with 32 CUs
and uses a crossbar interconnect modeled with Garnet.

8Floyd-Warshall was omitted due to errors in the benchmark.
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Fig. 7: Runtime impact of encoding/decoding latency (top) and code
rate (bottom).

VII. EXPERIMENTAL EVALUATION

Our primary goal is to evaluate the potential of LELCs to
reduce OCN energy without undue impact on performance. We
also evaluate the impact of LELCs on crosstalk.

A. OCN Tolerance to Latency and Bandwidth

We first explore how much tolerance OCNs have to increases
in latency (due to encoding/decoding time) and decreases in
bandwidth (due to lower rate).

1) Latency Tolerance of OCNs: Encoding and decoding take
some amount of time, and that added latency could impact
OCN and overall system performance. To quantify this impact,
we ran simulations in which we added varying amounts of
latency for encoding and decoding. The latency is paid once
at sending (for encoding) and once at receiving (for decoding),
but not at intermediate routers. The results of this sensitivity
analysis, shown in Fig. 7, reveal that the overall performance
impact of a 1-cycle latency is only 2-3%, but at a 2-cycle
latency the runtime increases by 8-11%.9 These results show
that we are practically constrained to simple hardware that can
complete within a single cycle.

2) Bandwidth Tolerance of OCNs: A rate reduction increases
bandwidth demand. Modern OCNs are over-provisioned to
tolerate bursty communication [16, 21] but in the common

9Since we do not encode the head flit, 1 cycle of encoding latency for body
flits can be performed during the routing of the head flit. Our results, which
assume a minimum 1 cycle encoding, are pessimistic in terms of performance
as our simple circuitry can be fully overlapped with the head flit.

case have sufficient spare bandwidth to accommodate a rate
reduction. Figure 7 plots performance as a function of code
rate. We abstract away the codes themselves and simply apply
a range of fixed rates, and we never throttle the coding. These
results include the addition of one cycle each for encoding
and decoding, as in the previous section. The results show
that adding one extra flit—which corresponds to a rate in
the range (0.8,1]—has an impact of about 4-7% (including
the roughly 2-3% for encoding/decoding latency). Adding
additional flits causes additional slowdown; unsurprisingly,
doubling the number of flits per payload causes significant
contention in the OCN and leads to excessive slowdowns. These
results motivate high-rate codes and code throttling.

B. Link Energy versus Performance

The fundamental trade-off with LELCs is link energy versus
performance. In Figure 8, we plot performance on the left y-
axis and link energy on the right y-axis, with both represented
as their percentage changes with respect to an uncoded
baseline (increased for performance and decreased for energy
consumption). Moreover, we plot results for both throttled and
unthrottled coding. Energy consumption reductions are reports
for OCN links; OCN links consume ∼ 40-50% of the total
energy in the network [5, 27, 49].

The graph reveals three general insights. First, on every
benchmark, every LELC provides a greater savings in energy
than increase in runtime. Second, the trends across benchmarks
are consistent, just with modest differences in absolute values.
Third, dynamic throttling is effective in reducing performance
impact; here, we throttle coding when utilization exceeds 16.5%
on a link (measured over 100K cycles). Dynamic throttling
roughly halves the performance loss but at the cost of more
than half of the energy savings. Figure 9 sweeps the utilization
threshold values for ferret. The utilization marker provides a
knob to tune the performance-energy trade-off of our LELCs.

The graph also reveals trends across our LELCs:

• Our rate-8/9 mapping code has the best energy reduction
across benchmarks (except ferret).

• Our compound code has the least impact on runtime
(−1.25-2.54%). Due to its high rate, little performance
degradation (and even small improvements for fluidani-
mate and freqmine) is observed. Compound codes benefit
significantly from non-equiprobable application data; com-
mon, long strings of 0s are compressed for high rate.

• Our rate-1 mapping code achieves significant energy
savings, with its only cost being the latency for encoding
and decoding (i.e., there are no extra flits).

• FnWk=8 is pareto optimal with respect to FnWk=3, because
it offers greater energy savings and less runtime impact.
It has lower runtime as it requires only 1 extra flit per
data packet.

• Our new 2-level FnWk=4 has an almost identical rate
as FnWk=3—and they both incur the same number of
additional flits, so they have the same performance—
yet the 2-level scheme gets significantly better energy
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Fig. 8: Percentage increase in runtime (left y-axis, bars) and percentage decrease in link energy (right y-axis, points)

Fig. 9: Sweep of utilization markers for ferret

reduction. The same comparison is true for FnWk=4 (not
shown).

• Our tree code (TC1’) is designed for fair comparison with
FnWk=3. Designing a deeper tree, say to compete with
FnWk=8, would require complicated, slow circuitry. Com-
pared to FnWk=3, TC1 has lower rate, yet implementation-
friendly TC1’ offers greater energy savings with the same
performance impact.

• In this work, we assume one fixed code for each bench-
mark run; different codes may provide benefits for different
phases of benchmark execution but come with added
overhead of multiple encoders and decoders–we leave the
exploration of this for future work.

To further understand the differences between LELCs, we
plot rate (not end-to-end performance) versus link energy
reduction in Figure 10. The figure includes all of the LELCs we
have discussed and evaluated already, plus other variants (i.e.,
different values of k for Flip-N-Write and compound codes,
mapping codes with different maps, and different trees for

tree codes). Including different variants for our codes provides
insight into the size of the design space and the trade-offs that
can be achieved. In the figure, we shade zones based on whether
the LELCs are fixed-rate or variable-rate. We observe that, in
general, fixed-rate codes provide greater energy reductions,
whereas variable-rate codes offer higher rates.

Variable-rate codes. These LELCs, including implementation-
friendly tree codes and compound codes, lie in the blue
rectangle and provide a wide range of rates. The datapoints
above rate-1 correspond to compound codes, with k = 16 and
k = 32, that combine a simple compression scheme with our
rate-8/9 mapping code. A deeper exploration of the importance
of k on compound codes reveals that k < 32 offer higher rates,
but less energy benefit and more complicated hardware (e.g.,
see Table III for k = 16). Choosing k > 32 is unattractive
because 32 bits represents a common datatype, and we would
not necessarily expect to have many runs of 0s at a granularity
greater than 32. Thus, we consider k = 32 to be the best choice
for our compound codes. Variable-rate codes can also have rate
less than 1, shown by the shaded green (intersection) portion,
which is where almost all of our tree codes lie.

Fixed rate codes. We explore a number of fixed-rate codes,
which lie in the yellow rectangle and have rates of 1, 0.89, 0.88,
0.8, 0.76, and 0.75. For performance, we strongly prefer codes
with rates above 0.8, since they add only a single extra flit in
each data packet. In choosing codes between 0.8−1, we prefer
those with the greatest energy reduction (furthest to the right)
and the simplest circuit implementation. Among the fixed-rate
LELCs, 2-level FnW and the rate-8/9 mapping code offer the
best trade-off between energy savings and implementation cost.
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Fig. 10: Rate vs. Energy

C. Choosing a Map for Mapping Codes

Our two mapping code results each use a single map for
all benchmarks. This map was based on profiling all of the
benchmarks; this is not optimal for any one specific benchmark.
The profiles provide the frequency of all length-8 datawords,
enabling us to map the most common datawords to the lowest-
energy codewords (i.e,. the codewords with the fewest 1s). To
explore the impact of using this aggregate map, rather than a per-
benchmark map, we (a) profile each benchmark individually to
generate a map that is optimal for that benchmark, (b) aggregate
the per-benchmark profiles to create a single aggregate profile
and single aggregate map, and (c) run every benchmark with
every per-benchmark map and the aggregate map. Results (not
shown due to space constraints) reveal that using the aggregate
map performs well. There is certainly a gap between using a
benchmark’s optimal map and using the aggregate map (2%-
8%), but, even so, the mapping code with the aggregate map
still achieves significant energy reductions.

D. Impact on Crosstalk

With LELCs, we want to ensure that we do not increase
crosstalk. Since crosstalk is exacerbated by voltage transitions
and LELCs reduce transitions, we expect LELCs to actually
reduce crosstalk. Many models have been developed for
crosstalk, and we adopt the intuitive one from Patooghi et
al. [37]. It models the crosstalk on a given victim wire in the
middle of a 3×3 grid as a function of its 8 neighboring wires.
Neighboring wires that are horizontally or vertically adjacent
have more impact than wires that are diagonally adjacent,
because they are closer to the victim, and this particular
model ignores the impact of diagonal neighbors. The amount
of crosstalk depends heavily on the voltage transitions on
the victim and its neighbors. For example, if the victim is
transitioning in the same direction (e.g., low-to-high) as its
neighbors, that incurs less crosstalk than if they transition
in opposite directions. The model, illustrated in Figure 11,
measures crosstalk in terms of capacitance, normalized to the
transition pattern with the least amount of capacitance.

Using this model, we evaluate the crosstalk of each of
our LELCs, normalized to that of an uncoded baseline. The
results in Figure 12 show that, for every combination of
LELC and benchmark, crosstalk is actually less than the

uncoded baseline. This result is intuitive, because (a) our
LELCs reduce the number of voltage transitions (represented by
1s in NRZI signalling), and (b) crosstalk effects are dominated
by transitions (i.e., up or down arrows in Figure 11). The exact
amount of crosstalk reduction, which ranges from negligible
up to 45%, depends on the LELC and the benchmark. Given
that our primary concern was avoiding an increase in crosstalk,
this result is a bonus. In addition, we observed that there is a
future opportunity to optimize the mapping code used by the
compound LELC to further reduce crosstalk.

E. Recommended LELCs

We recommend the use of Mapping1, 2-level FnW, and
Compound1 LELCs. These LELCs save energy up to 36.7%,
36.4%, and 25.7%, respectively, with less than 6.8%, 8.4%,
and 2.5% slowdown, respectively, on our benchmarks. The
latency, energy, and area overheads for the encoder/decoder
circuits are small for these LELCs (Table III).

VIII. DISCUSSION

We have evaluated our LELCs in the context of general-
purpose multicore architectures; however, they have broader
applicability, some of which we briefly discuss here.
GPUs. To assess the applicability of our codes beyond multi-
core processors, we evaluated the link energy reduction for a
GPU running Pannotia [10] applications. We present the results
in Table V. As observed in the Table, our LELCs designed for
CPUs provide substantial opportunities for link energy savings
in graph workloads running on a GPU. In benchmarks such as
color and mis, we note very high gains for some of our codes.
We discovered that some benchmarks initialize matrices to -1
(0xFFFFFFFF), which can be effectively coded for high gains.
Another property we see is matrices initialized to very large
positive values that also feature a large number of 1s. These
results highlight a few key findings:

• Common programmer behavior lends itself to non-
equiprobable data; properly designed codes can transform
this data into more efficient values to be transmitted.

• Our codes, which were designed based on CPU workloads,
still perform very well on GPU workloads, even though
dataword characteristics may differ.

• One GPU benchmark (SSSP) shows lower gains–this
benchmark is dominated by zeros, leaving little oppor-
tunity for coding. The remaining GPU benchmarks out-
perform the CPU benchmarks in terms of energy reduction.

Chiplet-based Designs. Chiplet-based architectures have
emerged as a means to combat skyrocketing manufacturing
costs by manufacturing smaller dies and composing them into
larger systems through interposers or package-level intercon-
nects [34]. Links between chiplets consume more energy than
on-chip links; current efficiencies on inter-chiplet links are
around 2pJ per bit [34, 47]. Thus we can expect more benefit
from our LELCs in this context. No modifications are needed
to our design to support chiplets—inter-chiplet routers code
the data prior to sending and decode upon receipt.
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Fig. 11: Crosstalk model from Patooghi et al. [37]. There are 9 pattern types; for each pattern we show one possibility but not the equivalent
rotations or the “mirror” version in which the low-to-high and high-to-low transitions are flipped. Beneath each pattern we show the pattern’s
probability and its normalized crosstalk metric.

Fig. 12: The impact of LELCs on crosstalk

TABLE V: Rates and percentage energy reduction for proposed LELCs
observed across 6 Pannotia benchmarks running on a GPU. Codes
above (below) the dashed line have fixed (variable) rate.

Coding Scheme Rate Energy Reduction %
Flip-N-Write (k=3) 0.75 9.57–50.23
Flip-N-Write (k=8) 0.89 11.22–67.69
2-level FnW (k=4) 0.76 15.79–73.39

Mapping1 0.89 19.24–68.75
Mapping2 1 7.38–65.53

TC1 0.77–0.88 10.75–59.50
TC1’ 0.76 11.89–55.14
TC2 0.96–1.06 5.62–49.28
TC2’ 0.89 5.66–41.53

Compound1 (k=32) 0.87–1.51 10.11–60.49

Machine-learning accelerators. Prior work has observed
that the distribution of activation and weight values in deep
convolutional neural networks are non-uniform [3, 32]. The
non-uniform nature of values in ML models would make
their communication highly-amenable to the types of LELCs
explored in this paper.

IX. RELATED WORK

OCN line coding has been studied to reduce power and
crosstalk. A temporal coding scheme codes the current flit
with the flit transmitted ahead of it on the link [35, 36] using
a bus-invert style scheme; this works well for wormhole
routed OCNs where flits from different packets cannot be
interleaved. However, in modern OCNs, virtual channel flow
control prevails, which can disrupt the flow of flits from the
same packet, rendering such techniques ineffective. Other work
focuses on uniform random data [25] which leaves opportunity
on the table, as we demonstrate on benchmark data; that
work also assumed hop-by-hop encoding which consumes
more overhead. Finally, an XOR-coding scheme improves the
efficiency of speculative routers [20].

Coding research in OCNs has largely applied techniques from
DRAM bus coding, which has a longer history of exploration.
Modern DRAMs often employ Data Bus Inversion (DBI) based
on Bus-Invert coding [44] to reduce energy and noise. DBI is
analogous to FnW discussed earlier in the paper. A bus coding
scheme that exploits value locality has been proposed [8].
Bitwise Difference Encoding [38] exploits data similarity to
reduce the Hamming weight of words on the DRAM bus.
Multiple schemes that XOR adjacent bits to reduce transitions
on a link have been proposed [30, 31] An online clustering
method that XORs data with a common value to reduce the
number of 1s transmitted improves on DBI [48]; this scheme
requires multiple cycles for encoding and would have high
overhead to synchronize the center values across the OCN.

Primarily in the CAD/EDA community, there has been
research on crosstalk-avoidance codes for OCNs and
buses [15, 28, 40, 41, 43, 51]. This prior work develops models
(like the one we use from this paper [37]) that are a function
of the geometry of the wires and the signals that are on each
wire. Certain signal patterns (e.g., a wire transitioning from
low-to-high while its neighbors transition from high-to-low)
are worse than others, and the crosstalk-avoidance codes seek
to eliminate the worst-case patterns of signals. This prior
work also assumes that inputs are equiprobable, which enables
mathematical analysis but is not representative of real-world
inputs. Unlike prior work, we reduce crosstalk by changing
the distribution of signal patterns to favor patterns with fewer
1s, rather than by eliminating a few select patterns.

Compression schemes are similar but distinct from coding.
Compression has been studied in the OCN [13], including
table-based compression [26], delta-compression [50], and
approximate (lossy) compression [9]. As noted earlier, coding
is theoretically superior to compression so that is our focus; in
addition, we demonstrate that coding provides greater benefits
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when compared to frequent pattern compression [2]. Frequent
pattern compression requires multiple clock cycles, whereas
our codes can be implemented within a single cycle.

X. CONCLUSIONS

Communication in various forms consumes substantial on-
chip energy. Fundamentally rethinking the representation of
data can reduce energy spent on communications. Line coding
originating in the information theory community offers insight
into more efficient on-chip communication. In this paper, we
apply line coding to OCN communication. Two particular
insights are gained from our results: 1) designing codes based
on equiprobable data does not achieve the full gains possible in
real applications and 2) the discrete flit sizes in OCNs impact
the desirable line code rates. Furthermore, our line codes have
the added benefit of reducing crosstalk.
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