ECE 1749H:

Interconnection Networks for Parallel Computer Architectures:

Flow Control

Prof. Natalie Enright Jerger

Announcements

- Project Progress Reports
 - Due March 9, submit by e-mail
 - Worth 15% of project grade
 - 1 page
 - Discuss current status of project
 - Any difficulties/problems encountered
 - Anticipated changes from original project proposal

Announcements (2)

- 2 presentations next week
 - Elastic-Buffer Flow Control for On-Chip Networks
 - Presenter: Islam
 - Express Virtual Channels: Toward the ideal interconnection fabric
 - Presenter Yu
- 1 Critique due

Switching/Flow Control Overview

- Topology: determines connectivity of network
- Routing: determines paths through network
- Flow Control: determine allocation of resources to messages as they traverse network
 - Buffers and links
 - Significant impact on throughput and latency of network

Flow Control

- Control state records
 - allocation of channels and buffers to packets
 - current state of packet traversing node
- Channel bandwidth advances flits from this node to next
- Buffers hold flits waiting for channel bandwidth

Packets

- Messages: composed of one or more packets
 - If message size is <= maximum packet size only one packet created
- Packets: composed of one or more flits
- Flit: flow control digit
- Phit: physical digit
 - Subdivides flit into chunks = to link width

Packets (2)

- Off-chip: channel width limited by pins
 - Requires phits
- On-chip: abundant wiring means phit size == flit size

Packets(3)

- Packet contains destination/route information
 - Flits may not → all flits of a packet must take same route

Winter 2011

Switching

- Different flow control techniques based on granularity
- Circuit-switching: operates at the granularity of messages
- Packet-based: allocation made to whole packets
- Flit-based: allocation made on a flit-by-flit basis

Message-Based Flow Control

Coarsest granularity

- Circuit-switching
 - Pre-allocates resources across multiple hops
 - Source to destination
 - Resources = links
 - Buffers are not necessary
 - Probe sent into network to reserve resources

Circuit Switching

- Once probe sets up circuit
 - Message does not need to perform any routing or allocation at each network hop
 - Good for transferring large amounts of data
 - Can amortize circuit setup cost by sending data with very low perhop overheads
- No other message can use those resources until transfer is complete
 - Throughput can suffer due setup and hold time for circuits
 - Links are idle until setup is complete

Circuit Switching Example

- Significant latency overhead prior to data transfer
 - Data transfer does not pay per-hop overhead for routing and allocation

Circuit Switching Example (2)

- When there is contention
 - Significant wait time
 - Message from $1 \rightarrow 2$ must wait

Time-Space Diagram: Circuit-Switching

Packet-based Flow Control

- Break messages into packets
- Interleave packets on links
 - Better utilization
- Requires per-node buffering to store in-flight packets
- Two types of packet-based techniques

Store and Forward

- Links and buffers are allocated to entire packet
- Head flit waits at router until entire packet is received before being forwarded to the next hop
- Not suitable for on-chip
 - Requires buffering at each router to hold entire packet
 - Packet cannot traverse link until buffering allocated to entire packet
 - Incurs high latencies (pays serialization latency at each hop)

Store and Forward Example

- High per-hop latency
 - Serialization delay paid at each hop
- Larger buffering required

Time-Space Diagram: Store and Forward

Packet-based: Virtual Cut Through

- Links and Buffers allocated to entire packets
- Flits can proceed to next hop before tail flit has been received by current router
 - But only if next router has enough buffer space for entire packet
- Reduces the latency significantly compared to SAF
- But still requires large buffers
 - Unsuitable for on-chip

- Lower per-hop latency
- Large buffering required

Time-Space Diagram: VCT

Virtual Cut Through

Throughput suffers from inefficient buffer allocation

Time-Space Diagram: VCT (2)

Flit Level Flow Control

Help routers meet tight area/power constraints

- Flit can proceed to next router when there is buffer space available for that flit
 - Improved over SAF and VCT by allocating buffers on a flit-basis

Wormhole Flow Control

Pros

- More efficient buffer utilization (good for on-chip)
- Low latency

Cons

- Poor link utilization: if head flit becomes blocked,
 all links spanning length of packet are idle
 - Cannot be re-allocated to different packet
 - Suffers from head of line (HOL) blocking

6 flit buffers/input port

Time-Space Diagram: Wormhole

Virtual Channels

- First proposed for deadlock avoidance
 - We'll come back to this

- Can be applied to any flow control
 - First proposed with wormhole

Virtual Channel Flow Control

Virtual channels used to combat HOL blocking in wormhole

- Virtual channels: multiple flit queues per input port
 - Share same physical link (channel)
- Link utilization improved
 - Flits on different VC can pass blocked packet

Virtual Channel Flow Control (2)

Virtual Channel Flow Control (3)

- Packets compete for VC on flit by flit basis
- Example: on downstream links, flits of each packet are available every other cycle
- Upstream links throttle because of limited buffers
- Does not mean links are idle
 - May be used by packet allocated to other VCs

Virtual Channel Example

- 6 flit buffers/input port
- 3 flit buffers/VC

Summary of techniques

	Links	Buffers	Comments
Circuit- Switching	Messages	N/A (buffer- less)	Setup & Ack
Store and Forward	Packet	Packet	Head flit waits for tail
Virtual Cut Through	Packet	Packet	Head can proceed
Wormhole	Packet	Flit	HOL
Virtual Channel	Flit	Flit	Interleave flits of different packets

Deadlock

- Using flow control to guarantee deadlock freedom give more flexible routing
 - Recall: routing restrictions needed for deadlock freedom
- If routing algorithm is not deadlock free
 - VCs can break resource cycle
- Each VC is time-multiplexed onto physical link
 - Holding VC implies holding associated buffer queue
 - Not tying up physical link resource
- Enforce order on VCs

Deadlock: Enforce Order

- All message sent through VC 0 until cross dateline
- After dateline, assigned to VC 1
 - Cannot be allocated to VC 0 again

Winter 2011

Deadlock: Escape VCs

- Enforcing order lowers VC utilization
 - Previous example: VC 1 underutilized
- Escape Virtual Channels
 - Have 1 VC that is deadlock free
 - Example: VC 0 uses DOR, other VCs use arbitrary routing function
 - Access to VCs arbitrated fairly: packet always has chance of landing on escape VC
- Assign different message classes to different VCs to prevent protocol level deadlock
 - Prevent req-ack message cycles

Buffer Backpressure

- Need mechanism to prevent buffer overflow
 - Avoid dropping packets
 - Upstream nodes need to know buffer availability at downstream routers
- Significant impact on throughput achieved by flow control
- Two common mechanisms
 - Credits
 - On-off

Credit-Based Flow Control

- Upstream router stores credit counts for each downstream VC
- Upstream router
 - When flit forwarded
 - Decrement credit count
 - Count == 0, buffer full, stop sending
- Downstream router
 - When flit forwarded and buffer freed
 - Send credit to upstream router
 - Upstream increments credit count

Credit Timeline

- Round-trip credit delay:
 - Time between when buffer empties and when next flit can be processed from that buffer entry
 - If only single entry buffer, would result in significant throughput degradation
 - Important to size buffers to tolerate credit turn-around

On-Off Flow Control

- Credit: requires upstream signaling for every flit
- On-off: decreases upstream signaling
- Off signal
 - Sent when number of free buffers falls below threshold $F_{o\!f\!f}$
- On signal
 - Sent when number of free buffers rises above threshold F_{on}

• Less signaling but more buffering

Winter 2011On-chip buffers fragrenexpensive with a far with reservence of the contraction of the contraction

Buffer Utilization

Buffer Sizing

- Prevent backpressure from limiting throughput
 - Buffers must hold flits >= turnaround time
- Assume:
 - 1 cycle propagation delay for data and credits
 - 1 cycle credit processing delay
 - 3 cycle router pipeline
- At least 6 flit buffers

Actual Buffer Usage & Turnaround Delay

Flow Control and MPSoCs

Wormhole flow control

- Real time performance requirements
 - Quality of Service
 - Guaranteed bandwidth allocated to each node
 - Time division multiplexing
- Irregularity
 - Different buffer sizes

Flow Control Summary

- On-chip networks require techniques with lower buffering requirements
 - Wormhole or Virtual Channel flow control
- Avoid dropping packets in on-chip environment
 - Requires buffer backpressure mechanism
- Complexity of flow control impacts router microarchitecture (next)