ECE 1749H: Interconnection Networks for Parallel Computer Architectures

Introduction

Prof. Natalie Enright Jerger

Winter 201

E 1749H: Interconnection Networks (Enright Jerger)

Interconnection Networks Introduction

- How to connect individual devices together into a community of communicating devices?
- Device:
 - Component within a computer
 - Single computer
 - System of computers
- Types of elements:
 - end nodes (device + interface)
 - links
- interconnection network
- Internetworking: interconnection of multiple networks

Winter 20

2 1749H: Interconnection Networks (Enright Jerger) 2
Slide courtesy Timothy Mark Pinkston and José Duato

Interconnection Networks Introduction

- Interconnection networks should be designed
 - to transfer the <u>maximum amount of information</u>
 - within the <u>least amount of time</u> (and cost, power constraints)
 - so as not to bottleneck the system

Winter 201

CE 1749H: Interconnection Networks (Enright Jerge

Why study interconnects?

- They provide external connectivity from system to outside world
 - Also, connectivity within a single computer system at many levels
 - I/O units, boards, chips, modules and blocks inside chips
- Trends: high demand on communication bandwidth
 - increased computing power and storage capacity
 - switched networks are replacing buses
- Computer architects/engineers <u>must understand</u> <u>interconnect problems and solutions</u> in order to more effectively design and evaluate systems

Winter 201

ECE 1749H: Interconnection Networks (Enright Jerger)

Slide courtesy Timothy Mark Pinkston and José Duato

Types of Interconnection Networks

- Interconnection networks can be grouped into four domains
 - Depending on number and proximity of devices to be connected
- On-Chip networks (OCNs or NoCs)
 - Devices include microarchitectural elements (functional units, register files), caches, directories, processors
 - Current designs: small number of devices
 - Ex: IBM Cell, Sun's Niagara
 - Projected systems: dozens, hundreds of devices
 - Ex: Intel TeraFLOPS research prototypes -- 80 cores
 - Proximity: millimeters

Winter 2011

ECE 1749H: Interconnection Networks (Enright Jerger) 6
Slide courtesy Timothy Mark Pinkston and José Dua

System/Storage Area Networks (SANs)

- Multiprocessor and multicomputer systems
 - Interprocessor and processor-memory interconnections
- Server and data center environments
 - Storage and I/O components
- Hundreds to thousands of devices interconnected
 - IBM Blue Gene/L supercomputer (64K nodes, each with 2 processors)
- Maximum interconnect distance
 - tens of meters (typical)
 - a few hundred meters (some)
 - InfiniBand: 120 Gbps over a distance of 300 m
- Examples (standards and proprietary)
 - InfiniBand, Myrinet, Quadrics, Advanced Switching Interconnect

Winter 201

ECE 1749H: Interconnection Networks (Enright Jerger)
Slide courtesy Timothy Mark Pinkston and José Duat

Local Area Network (LANs)

- Interconnect autonomous computer systems
- Machine room or throughout a building or campus
- Hundreds of devices interconnected (1,000s with bridging)
- Maximum interconnect distance
 - few kilometers
 - few tens of kilometers (some)
- Example (most popular): Ethernet, with 10 Gbps over 40Km

Winter 201

ECE 1749H: Interconnection Networks (Enright Jerger)

8 Slide courtesy Timothy Mark Pinkston and José Duato

Wide Area Networks (WANs)

- Interconnect systems distributed across the globe
- Internetworking support is required
- Many millions of devices interconnected
- Maximum interconnect distance
 - many thousands of kilometers
- Example: ATM (asynchronous transfer mode)

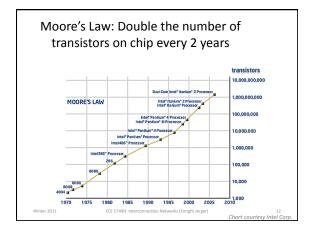
Winter 201

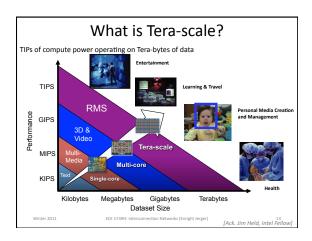
ECE 1749H: Interconnection Networks (Enright Jerger)

9

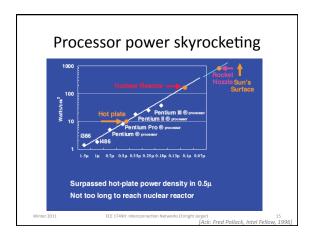
Slide courtesy Timothy Mark Pinkston and José Duato

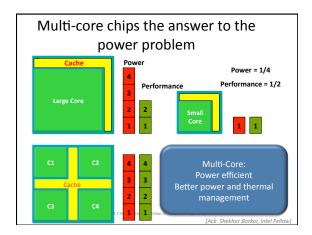
Interconnection Network Domains 5 x 10⁶ 8 8 9 5 x 10³ 5 x 10³ LANS SANS 5 x 10³ OCNS 1 10 100 1,000 10,000 >100,000 Number of devices interconnected Winter 2011 EEE 1748H: Interconnection Networks (Enright larger) Stide courtesy Timothy Mark Pinkston and José Duato

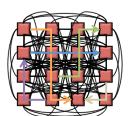

Course Overview


- Focus on On-Chip Networks
 - Two aspects:
 - Interconnection network basics
 - Lectures covering: topology, routing, flow control and router microarchitecture
 - Second part:
 - Mix in current OCN research with each lecture topic

Winter 2011


CE 1749H: Interconnection Networks (Enright Jerger)


11



Tera-scale Research Applications - Identify, characterize & optimize Programming - Empower the mainstream System Software - Scalable services Memory Hierarchy - Feed the compute engine Interconnects - High bandwidth, low latency Cores - power efficient general & special function

On-Chip Networks (OCN or NoCs)

- Ad-hoc wiring does not scale beyond a small number of cores
 - Prohibitive area
 - Long latency

OCN offers

- scalability
- efficient multiplexing of communication
- often modular in nature (ease verification)

Winter 201

ECE 1749H: Interconnection Networks (Enright Jerger

Differences between on-chip and offchip networks

- Significant research in multi-chassis interconnection networks (off-chip)
 - Supercomputers
 - Clusters of workstations
 - Internet routers
- Leverage research and insight but...
 - Constraints are different

Winter 201

ECE 1749H: Interconnection Networks (Enright Jerger)

20

Off-chip vs. on-chip

- Off-chip: I/O bottlenecks
 - Pin-limited bandwidth
 - Inherent overheads of off-chip I/O transmission
- On-chip

 - Un-Cnip

 Wiring constraints

 Metal layer limitations

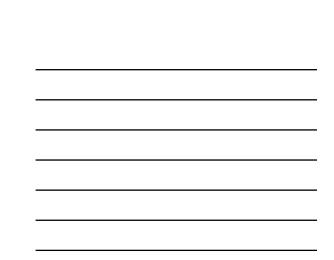
 Horizontal and vertical layout

 Short, fixed length

 Repeater insertion limits routing of wires

 Avoid routing over dense logic

 Impact wiring density


 - Consume 10-15% or more of die power budget
 - Latency
 - Different order of magnitude
 - Routers consume significant fraction of latency
 ECE 1749H: Interconnection Networks (Enright Jerger)

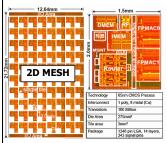
On-Chip Network Evolution

- · Ad hoc wiring
 - Small number of nodes
- · Buses and Crossbars
 - Simplest variant of on-chip networks
 - Low core counts
 - Like traditional multiprocessors
 - Bus traffic quickly saturates with a modest number of cores
 - Crossbars: higher bandwidth
 - Poor area and power scaling

ECE 1749H: Interconnection Networks (Enright Jerger)

Multicore Examples (1) 012345 **0**-XBAR Sun Niagara

Multicore Examples (2)

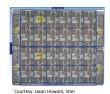


- Element Interconnect Bus
 - 12 elements
 - 4 unidirectional rings
 - 16 Bytes wide
 - Operate at 1.6 GHz

IBM Cell

ECE 1749H: Interconnection Networks (Enright Jerger)

Many Core Example



- Intel TeraFLOPS
 - 80 core prototype
 - 5 GHz
 - Each tile:
 - Processing engine +
 on-chip network router


Many-Core: Intel SCC

- Intel's Single-chip Cloud Computer (SCC) uses a 2D mesh with state of the art routers
 - Will discuss in detail later in lecture
 - Potential platform for project

Course Information

• Website:

www.eecg.toronto.edu/~enright/1749h/ index.html

- Lecture: Wed 10-12, BA 4164
- Contact Information:
 - enright@eecg.toronto.edu
 - Office: 374A Pratt
 - Stop by or send me email for appointment

ECE 1749H: Interconnection Networks (Enright Jerger)

Course Format

- ~5 weeks of lecture
 - Covering material from book: On-Chip Networks
 - · Available for free download (within UofT)
- Remaining weeks:
 - Presentation of research papers by you
 Should be interactive/foster discussion
 - Critiques (1 page)
 - identify one idea in paper that is major contribution or major limitation
 - describe new idea (of yours) that builds on paper

ECE 1749H: Interconnection Networks (Enright Jerger)

Course Marking Scheme

• Evaluation Scheme:

– Presentation: 20%– Critiques: 35%– Project: 45%

Winter 201

ECE 1749H: Interconnection Networks (Enright Jerger)

Course Project

- Propose your own topic
 - Topics do not need to be limited to OCN
 - Look for ways to relate OCN to your research
- Re-evaluate recent paper (or compare 2 papers)
 - Can use a paper from class
 - Or see bibliographic notes in book for ideas
- Or check out recent conferences: ISCA, MICRO, HPCA, NOCS etc.
- Can work in groups of 2
 - Project must be sized accordingly
- Enrolled in 1755? Parallel Computer Architecture and Programming
 - Do one larger project that spans both classes
 - Must get approval from Prof. Steffan as well
- See website for details

Winter 201

ECE 1749H: Interconnection Networks (Enright Jerger)

Next Time

- Look at Topology
- Discuss various potential projects
 - Not too early to start thinking about your project and bring questions
 - Send me e-mail/stop by if you want to discuss your project early
 - Project should
 - Reinforce/enhance class material
 - Add value to your research publish at conference/ workshop?

Winter 201

ECE 1749H: Interconnection Networks (Enright Jerger)

32

_				
_				
_				
_				
_				
_				
_				
_				
_				
_				
_				
_				
_				