ECE 1749H:

Interconnection Networks for Parallel Computer Architectures:

Topology

Prof. Natalie Enright Jerger

Announcements

- Tentative Presentation Schedule posted
 - E-mail me if:
 - You have registered/plan to register AND aren't on the list
 - You have a significant conflict with your assigned date
 - E.g. conference travel

Announcements (2)

- Title: Living in interesting times: Disruptive trends in computer architecture
- Where: GB405
- When: Wednesday, January 20, 2010, 2-3pm
- http://www.eecg.utoronto.ca/cider/
- Speaker: Bob Blainey, IBM Toronto

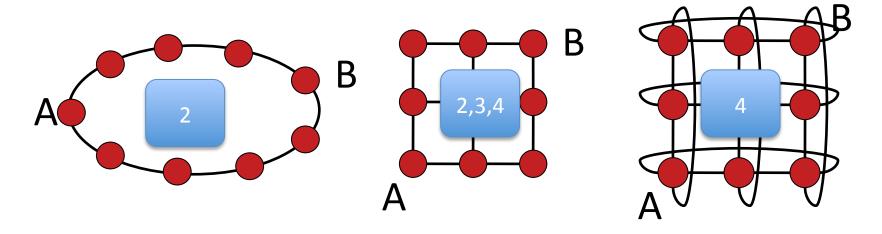
Last time

Why on-chip networks?

- Various system architectures
 - Interactions with on-chip network

Topology Overview

- Definition: determines arrangement of channels and nodes in network
 - Analogous to road map
- Often first step in network design
- Significant impact on network cost-performance
 - Determines number of hops
 - Latency
 - Network energy consumption
 - Implementation complexity
 - Node degree
 - Ease of layout


Abstract Metrics

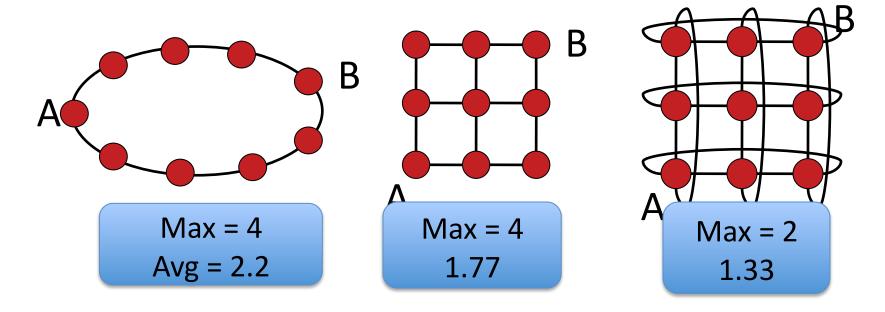
Use metrics to evaluate performance and cost of topology

- Also influenced by routing/flow control
 - At this stage
 - Assume ideal routing (perfect load balancing)
 - Assume ideal flow control (no idle cycles on any channel)

Abstract Metrics: Degree

- Switch Degree: number of links at a node
 - Proxy for estimating cost
 - Higher degree requires more links and port counts at each router

Abstract Metrics: Hop Count


- Path: ordered set of channels between source and destination
- Hop Count: number of hops a message takes from source to destination
 - Simple, useful proxy for network latency
 - Every node, link incurs some propagation delay even when no contention
- Minimal hop count: smallest hop count connecting two nodes

Hop Count

 Network diameter: large min hop count in network

- Average minimum hop count: average across all src/dst pairs
 - Implementation may incorporate non-minimal paths
 - Increases average hop count

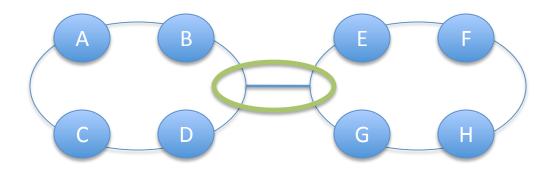
Hop Count

- Uniform random traffic
 - Ring > Mesh > Torus
- Derivations later

Latency

- Time for packet to traverse network
 - Start: head arrives at input port
 - End: tail departs output port
- Latency = Head latency + serialization latency
 - Serialization latency: time for packet with Length L to cross channel with bandwidth b (L/b)
- Approximate with hop count
 - Other design choices (routing, flow control) impact latency
 - Unknown at this stage

Abstract Metrics: Maximum Channel Load

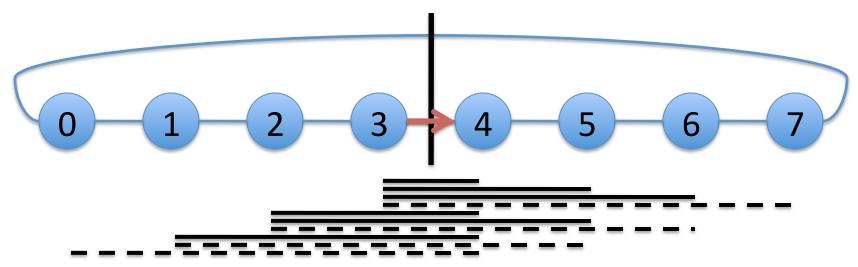

- Estimate max bandwidth the network can support
 - Max bits per second (bps) that can be injected by every node before it saturates
 - Saturation: network cannot accept any more traffic
 - Determine most congested link
 - For given traffic pattern
 - Will limit overall network bandwidth
 - Estimate load on this channel

Maximum Channel Load

- Preliminary
 - Don't know specifics of link yet
 - Define relative to injection load

- Channel load of 2
 - Channel is loaded with twice injection bandwidth
 - If each node injects a flit every cycle
 - 2 flits will want to traverse bottleneck channel every cycle
 - If bottleneck channel can only handle 1 flit per cycle
 - Max network bandwidth is ½ link bandwidth
 - A flit can be injected every other cycle

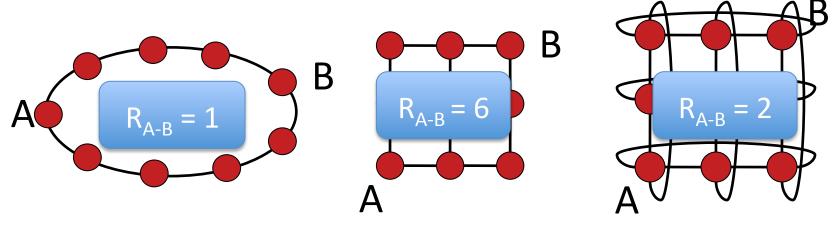
Maximum Channel Load Example



- Uniform random
 - Every node has equal probability of sending to every node
- Identify bottleneck channel
- Half of traffic from every node will cross bottleneck channel
 - $-8 \times \frac{1}{2} = 4$
- Network saturates at ¼ injection bandwidth

Bisection Bandwidth

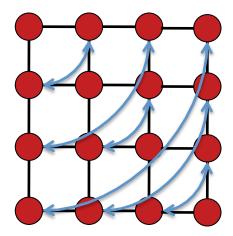
- Common off-chip metric
 - Proxy for cost
 - Amount of global wiring that will be necessary
 - Less useful for on-chip
 - Global on-chip wiring considered abundant
- Cuts: partition all the nodes into two disjoint sets
 - Bandwidth of a cut
- Bisection
 - A cut which divides all nodes into nearly half
 - Channel bisection → min. channel count over all bisections
 - Bisection bandwidth → min. bandwidth over all bisections
- With uniform traffic
 - ½ of traffic crosses bisection


Throughput Example

- Bisection = 4 (2 in each direction)
- With uniform random traffic
 - 3 sends 1/8 of its traffic to 4,5,6
 - 3 sends 1/16 of its traffic to 7 (2 possible shortest paths)
 - 2 sends 1/8 of its traffic to 4,5
 - Etc
- Channel load = 1

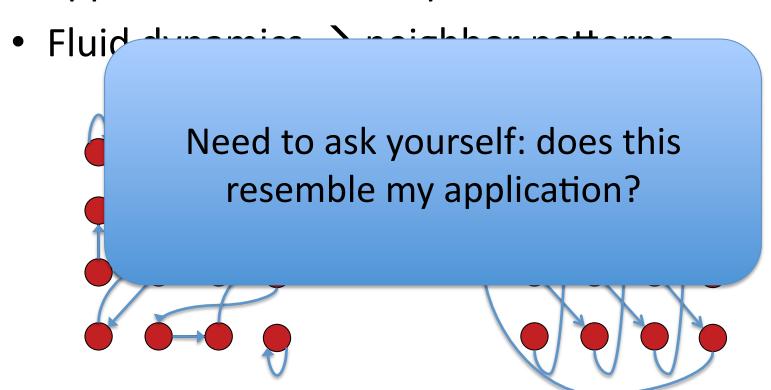
Path Diversity

- Multiple shortest paths between source/destination pair (R)
- Fault tolerance
- Better load balancing in network
- Routing algorithm should be able to exploit path diversity



Evaluating Topologies

- Important to consider traffic pattern
- Talked about system architecture impact on traffic
- If actual traffic pattern unknown
 - Synthetic traffic patterns
 - Evaluate common scenarios
 - Stress test network
 - Derive various properties of network


Traffic Patterns

- Historically derived from particular applications of interest
 - Spatial distribution
 - Matrix Transpose → Transpose traffic pattern
 - $d_i = s_{i+b/2 \mod b}$
 - b-bit address, d_i: ith bit of destination

Traffic Patterns (2)

 Fast Fourier Transform (FFT) or sorting application → shuffle permutation

Shuffle: $d_i = s_{i-1 \mod b}$

Neighbor: $d_x = s_x + 1 \mod k$

Traffic Patterns (3)

- Uniform random
 - Each source equally likely to communication with each destination
 - Most commonly used traffic pattern
 - Very benign
 - Traffic is uniformly distributed
 - Balances load even if topology/routing algorithm has very poor load balancing
 - Need to be careful
 - But can be good for debugging/verifying implementation
 - Well-understood pattern

Stress-testing Network

- Uniform random can make bad topologies look good
- Permutation traffic will stress-test the network
 - Many types of permutation (ex: shuffle, transpose, neighbor)
 - Each source sends all traffic to single destination
 - Concentration of load on individual pairs
 - Stresses load balancing

Final Thoughts: Traffic Patterns

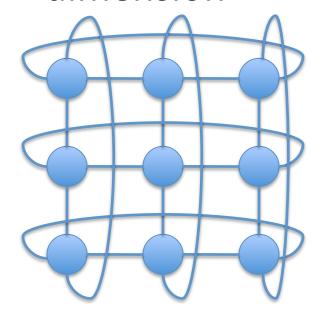
- For topology/routing discussion
 - Focus on spatial distribution
- Traffic patterns also have temporal aspects
 - Bursty behavior
 - Important to capture temporal behavior as well

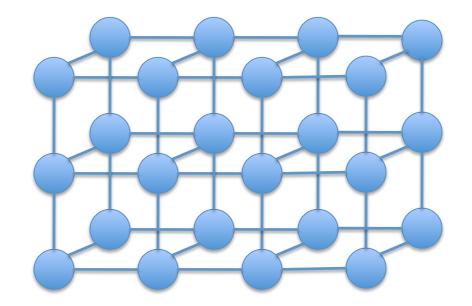
Types of Topologies

- Focus on switched topologies
 - Alternatives: bus and crossbar
 - Bus
 - Connects a set of components to a single shared channel
 - Effective broadcast medium
 - Crossbar
 - Directly connects *n* inputs to *m* outputs without intermediate stages
 - Fully connected, single hop network
 - Component of routers

Types of Topologies

Direct


- Each router is associated with a terminal node
- All routers are sources and destinations of traffic


Indirect

- Routers are distinct from terminal nodes
- Terminal nodes can source/sink traffic
- Intermediate nodes switch traffic between terminal nodes
- Most on-chip network use direct topologies

Torus (1)

- K-ary n-cube: kⁿ network nodes
- N-Dimensional grid with k nodes in each dimension

3-ary 2-muteth

2,3,4-ary 3-mesh ECE 1749H: Interconnection Networks (Enright Jerger)

Torus (2)

- Map well to planar substrate for on-chip
- Topologies in Torus Family
 - Ex: Ring -- k-ary 1-cube
- Edge Symmetric
 - Good for load balancing
 - Removing wrap-around links for mesh loses edge symmetry
 - More traffic concentrated on center channels
- Good path diversity
- Exploit locality for near-neighbor traffic

Torus (3)

Hop Count:

$$H_{\min} = \begin{cases} \frac{nk}{4} & k \text{ even} \\ n\left(\frac{k}{4} - \frac{1}{4k}\right) & k \text{ odd} \end{cases}$$

- For uniform random traffic
 - Packet travels k/4 hops in each of n dimensions

For Mesh

$$H_{\min} = \begin{cases} \frac{nk}{3} & k \text{ even} \\ n\left(\frac{k}{3} - \frac{1}{3k}\right) & k \text{ odd} \end{cases}$$

Torus (4)

- Degree = 2n, 2 channels per dimension
 - All nodes have same degree
- Total channels = 2nN

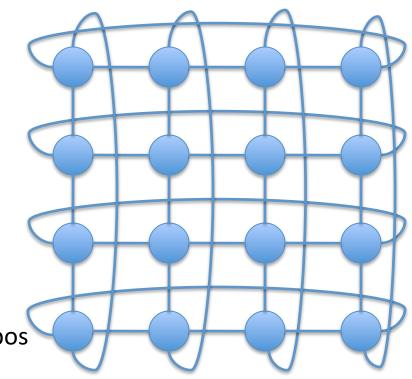
Channel Load for Torus

- Even number of k-ary (n-1)-cubes in outer dimension
- Dividing these k-ary (n-1)-cubes gives a 2 sets of kⁿ⁻¹ bidirectional channels or 4kⁿ⁻¹
- ½ Traffic from each node cross bisection

$$channel \, load = \frac{N}{2} \times \frac{k}{4N} = \frac{k}{8}$$

Mesh has ½ the bisection bandwidth of torus

Torus Path Diversity


$$\left| R_{xy} \right| = \begin{pmatrix} \Delta x + \Delta y \\ \Delta x \end{pmatrix}$$

2 dimensions*

$$\Delta x = 2, \Delta y = 2$$

$$\left|R_{xy}\right| = 6$$

$$|R_{xy}| = 24$$
 NW, NE, SW, SE combos

2 edge and node disjoint minimum paths

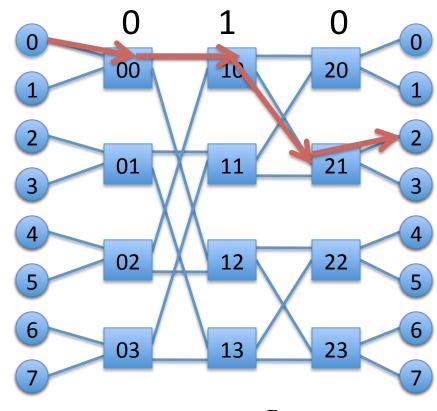
^{*}assume single direction for x and y

Mesh

A torus with end-around connection removed

Same node degree

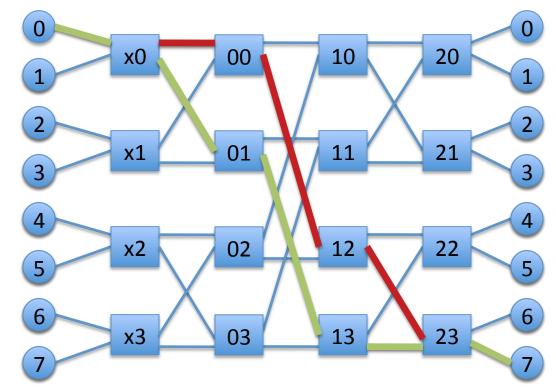
- Bisection channels halved
 - Max channel load = k/4


- Higher demand for central channels
 - Load imbalance

Butterfly

Indirect network

 K-ary n-fly: kⁿ network nodes


- Routing from 000 to 010
 - Dest address used to directly route packet
 - Bit *n* used to select output port at stage *n*

2-ary 3-fly 2 input switch, 3 stages

Butterfly (2)

- No path diversity $\left| R_{xy} \right| = 1$
 - Can add extra stages for diversity
 - Increase network diameter

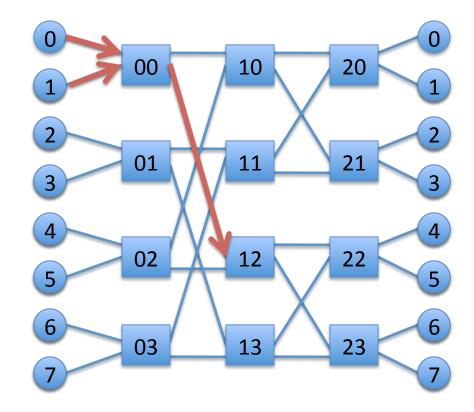
Butterfly (3)

- Hop Count
 - $-\log_k N + 1$
 - Does not exploit locality
 - Hop count same regardless of location

• Switch Degree = 2k

Requires long wires to implement

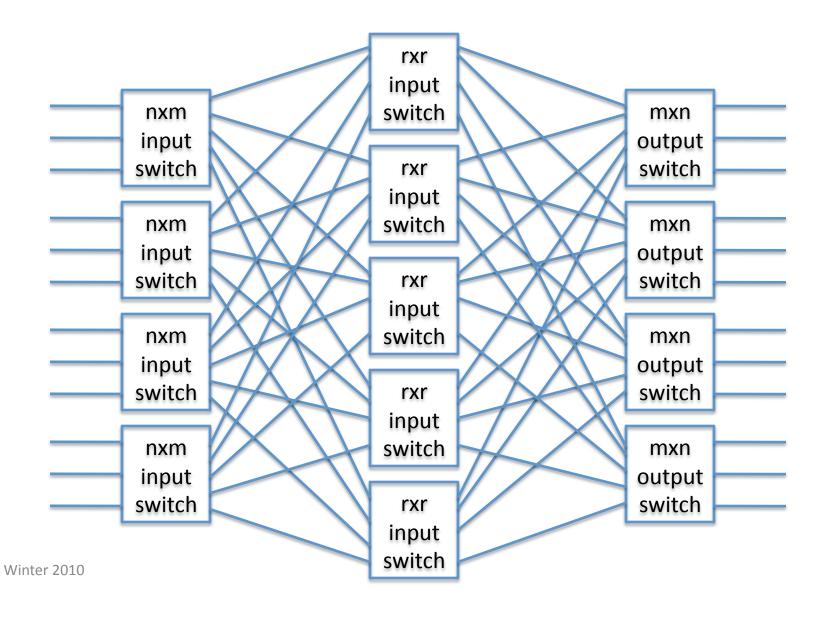
Butterfly: Channel Load


- H_{min} x N: Channel demand
 - Number of channel traversals required to deliver one round of packets
- Channel Load → uniform traffic
 - Equally loads channels

$$\frac{NH_{\min}}{C} = \frac{k^{n}(n+1)}{k^{n}(n+1)} = 1$$

Increases for adversarial traffic

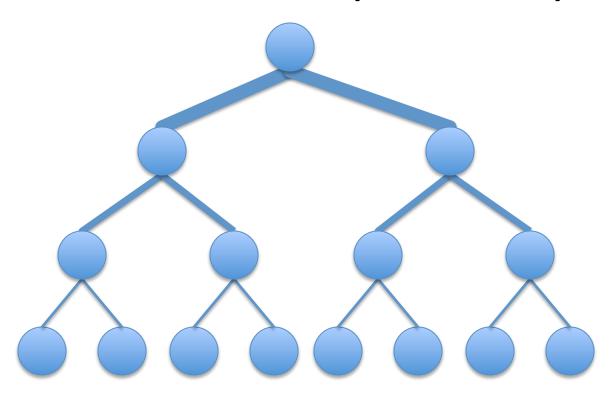
Butterfly: Channel Load


- Adversarial traffic
 - All traffic from top half sent to bottom half
 - E.g. 0 sends to 4, 1sends to 5

Clos Network

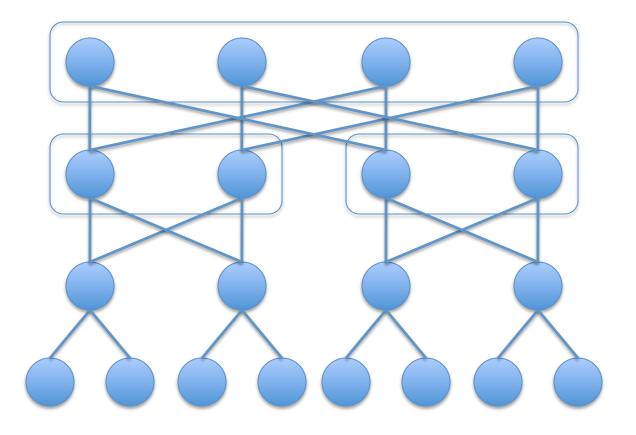
- 3-stage indirect network
 - Larger number of stages: built recursively by replacing middle stage with 3-stage Clos
- Characterized by triple (m, n, r)
 - M: # of middle stage switches
 - N: # of input/output ports on input/output switches
 - R: # of input/output switches
- Hop Count = 4

Clos Network



40

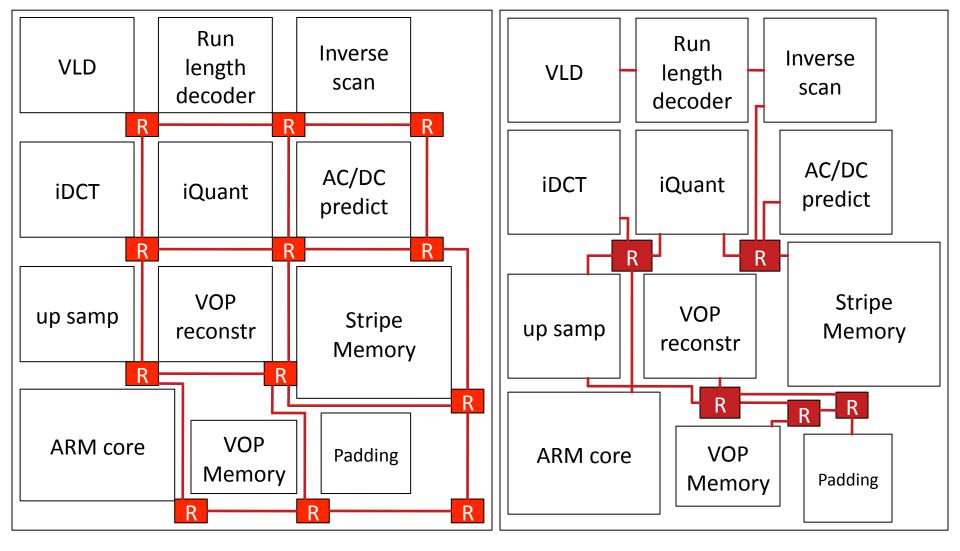
Clos Network


- Non-blocking when m > 2n-1
 - Any input can connect to any unique output port
- rxn nodes
- Degree
 - First and last stages: n + m, middle stage: 2r
- Path diversity: *m*
- Can be folded along middle switches
 - Input and output switches are shared

Folded Clos (Fat Tree)

- · Bandwidth remains constant at each level
- Regular Tree: Bandwidth decreases closer to root

Fat Tree (2)

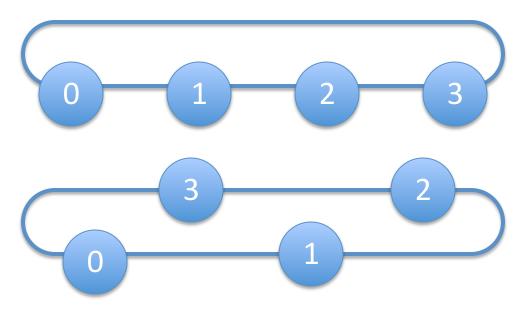


Provides path diversity

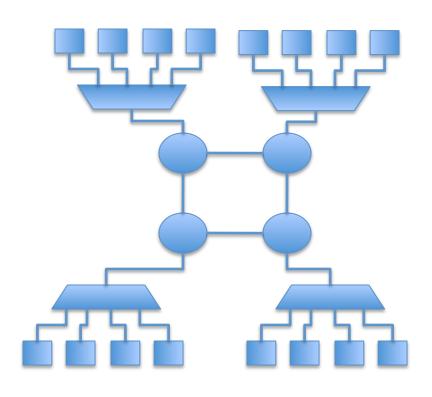
Irregular Topologies

- MPSoC design leverages wide variety of IP blocks
 - Regular topologies may not be appropriate given heterogeneity
 - Customized topology
 - Often more power efficient and deliver better performance
- Customize based on traffic characterization

Irregular Topology Example


Topology Customization

- Merging
 - Start with large number of switches
 - Merge to adjacent routers reduce area and power


- Splitting
 - Large crossbar connecting all nodes
 - Iteratively split into multiple small switches
 - Accommodate design constraints

Implementation

- Folding
 - Equalize path lengths
 - Reduces max link length
 - Increases length of other links

Concentration

- Don't need 1:1 ratio of routers to cores
 - Ex: 4 cores concentrated to 1 router
- Can save area and power
- Increases network complexity
 - Concentrator must implement policy for sharing injection bandwidth
 - During bursty communication
 - Can bottleneck

Implication of Abstract Metrics on Implementation

- Degree: useful proxy for router complexity
 - Increasing ports requires additional buffer queues, requestors to allocators, ports to crossbar
 - All contribute to critical path delay, area and power
 - Link complexity does not correlate with degree
 - Link complexity depends on link width
 - Fixed number of wires, link complexity for 2-port vs 3port is same

Implications (2)

 Hop Count: useful proxy for overall latency and power

- Doe
 Hop Count says A is better than B
 But A has 18 cycle latency vs 6 cycle
 latency for B
 - Network A with 2 hops, 3 stage pipeline, 4 cycle link traversal vs.
 - Network B with 3 hops, 1 stage pipeline, 1 cycle link traversal

Implications (3)

- Topologies typically trade-off hop count and node degree
- Max channel load useful proxy for network saturation and max power
 - Higher max channel load → greater network congestion
 - Traffic pattern impacts max channel load
 - Representative traffic patterns important
 - Max power: dynamic power is highest with peak switching activity and utilization in network

Topology Summary

- First network design decision
- Critical impact on network latency and throughput
 - Hop count provides first order approximation of message latency
 - Bottleneck channels determine saturation throughput