
The EH Model: Analytical Exploration
of Energy-Harvesting Architectures

Joshua San Miguel , Karthik Ganesan,
Mario Badr , and Natalie Enright Jerger

Abstract—Energy-harvesting devices—which operate solely on energy collected

from their environment—have brought forth a new paradigm of intermittent

computing. These devices succumb to frequent power outages that would cause

conventional systems to be stuck in a perpetual loop of restarting computation and

never making progress. Ensuring forward progress in an intermittent execution

model is difficult and requires saving state in non-volatile memory. In this work, we

propose the EH model to explore the trade-offs associated with backing up data to

maximize forward progress. In particular, we focus on the relationship between

energy and forward progress and how they are impacted by backups/restores to

derive insights for programmers and architects.

Index Terms—Energy-harvesting, intermittent computing, analytical model

Ç

1 INTRODUCTION

THE batteryless operation of compute devices introduces new and
challenging trade-offs to programmers and computer architects.
A key challenge is that ambient energy sources (e.g., photovoltaic,
thermal, RF [11], WiFi [2]) do not provide a constant stream of power
to run the device [3]. Also, they typically provide less average power
than the device requires. To overcome this, a common approach is to
first store energy in a capacitor, the energy supply, which then powers
the device for a period of time [3]. However, as a result of this spo-
radic power supply, relying on ambient energy sources requires an
execution model that must inherently support intermittent computa-
tion: computation may stop at any point in the application because
the energy supply has depleted and cannot resume until sufficient
energy has been harvested from the environment.

Intermittent computation requires that application state be
backed up in non-volatile memory before energy is depleted
and restored when energy is available again. There are many
approaches to the backup process that differ in both when to save
state and how much state to store [1], [6], [9], [10]; we generalize
the concept of a backup to be any point at which no preceding
instructions need to be re-executed. Ideally, an architecture would
maximize energy usage and allow an application to make consis-
tent forward progress [7]. We define forward progress as the energy
spent on useful work (in contrast to energy spent on overheads
such as saving or restoring state). For example, a common energy-
harvesting application gathers sensor data from the environment
and calculates statistics (e.g., mean, median) for logging pur-
poses [4], [10]; in this case, forward progress is the energy spent on
processing the sensor data to generate the needed statistics for log-
ging. Another common application is activity recognition where
data is processed from accelerometers to determine the user’s
activity (i.e., walking, running, lying down) [4]. In such an applica-
tion, forward progress is the energy spent processing the acceler-
ometer data to determine the activity.

Easily estimating the energy spent towards making forward
progress is no simple task; doing so—whether as an architect or a
programmer—requires a solid understanding of the interplay
between backup/restore overheads, re-executions and actual use-
ful progress. This has led researchers to propose a wide range of
processor designs ranging from simple in-order cores [1] to com-
plex out-of-order cores [9] with a diverse mix of memory technolo-
gies (e.g., flash [10] and FRAM [4]). Despite these proposals, our
community lacks consensus on the best practices for building effi-
cient energy-harvesting systems and is in need of a general tool to
better understand and explore this space.

We present the EH model, an analytical model that explores
the complex trade-offs that arise in energy-harvesting systems.
Our work targets architects; with the application’s behaviour
known a priori (e.g., average task length, frequency of non-volatile
writes), our model can estimate the impact that architectural
parameters will have on forward progress. Our work also provides
insights to programmers seeking to maximize the performance of
their programs on given energy-harvesting architectures. We vali-
date our model and show that EH captures the trends of real hard-
ware accurately.

2 THE EH MODEL

The goal of our model is to provide an accurate estimate of an
application’s ability to make forward progress on a given energy-
harvesting architecture. Fig. 1 represents the abstract energy-
harvesting device that we target, which can encompass a wide
range of CPU designs. Within the context of intermittent comput-
ing, we divide application runtime into two phases: active and
charging. During charging, no forward progress is made until the
energy supply is filled to capacity. During the active period, the
energy supply is expended on executing instructions and perform-
ing backups and restores. Forward progress is only made when the
results of executed instructions are saved to non-volatile memory
(intermediate results in volatile memory are lost during a power
outage). Expending energy on instructions whose output is not
saved before a power outage is wasteful—we call this dead energy.
Our analytical model is designed to measure forward progress
within an active period.1

We list our model parameters in Table 1. The parameters can be
characterized as distributions—in this work, we assume the aver-
age unless otherwise specified. The output of our model is p, an
estimate of forward progress represented as the fraction of the
energy supply E expended on useful work (i.e., not spent on back-
ups, restores and dead execution). To begin, we characterize the
fundamental factors of energy E:

E � ðeP þ nB � eB þ eD þ eRÞ þ eC ¼ 0 (1)

� eP is energy spent on forward progress.
� eB is energy spent on each of nB backups.
� eD is energy spent on dead execution.
� eR is energy spent on restoring backed-up state.
� eC is energy gained from charging during the active period.
An application will expend some amount of energy per cycle

while executing on an architecture (�). During an active period, a
certain number of cycles will be used to make forward progress
(tP); the total energy spent on forward progress is computed via
Equation 2. Note that the execution energy cost � includes not only
the processor but also any sensors and peripherals that are active.

� The authors are with the Edward S. Rogers Sr. Department of Electrical and Computer
Engineering, University of Toronto, Toronto ON M5S, Canada. E-mail: {joshua.
sanmiguel, karthik.ganesan, mario.badr}@mail.utoronto.ca, enright@ece.utoronto.ca.

Manuscript received 28 Sept. 2017; revised 2 Nov. 2017; accepted 19 Nov. 2017. Date of
publication 26 Nov. 2017; date of current version 19 Mar. 2018.
(Corresponding author: Joshua San Miguel.)
For information on obtaining reprints of this article, please send e-mail to: reprints@ieee.
org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/LCA.2017.2777834

1. We do not consider the charging period—which can vary based on the
ambient power source—a limitation of our model that we plan to address in
future work.

76 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 1, JANUARY-JUNE 2018

1556-6056� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-6886-7183
https://orcid.org/0000-0002-6886-7183
https://orcid.org/0000-0002-6886-7183
https://orcid.org/0000-0002-6886-7183
https://orcid.org/0000-0002-6886-7183
https://orcid.org/0000-0001-6053-4061
https://orcid.org/0000-0001-6053-4061
https://orcid.org/0000-0001-6053-4061
https://orcid.org/0000-0001-6053-4061
https://orcid.org/0000-0001-6053-4061
https://orcid.org/0000-0002-0526-2080
https://orcid.org/0000-0002-0526-2080
https://orcid.org/0000-0002-0526-2080
https://orcid.org/0000-0002-0526-2080
https://orcid.org/0000-0002-0526-2080
mailto:
mailto:
mailto:

Techniques that reduce � (e.g., duty cycling sensors, dynamic volt-
age scaling [8]) are always beneficial for forward progress,

eP ¼ � � tP (2)

During active periods, computation must be backed up to non-
volatile memory (Fig. 1a) to make forward progress. Some
approaches may back up multiple times within an active period [1],
[6], [9]; others only once [10]. We can characterize how often they
occur with the number of cycles between backups (tB). The total
number of backups is then:

nB ¼ tP

tB
(3)

The energy spent on each backup (eB) is dictated by the cost of
saving the current state to non-volatile memory (VB) scaled by the
number of bytes written per backup. A system may choose to back
up a fixed number of bytes each time (AB), such as architectural
state (e.g., program counter, registers) [9]. A system may also incur
a variable backup cost that is proportional to any changes in appli-
cation state (aB) since the last backup (e.g., dirty data in a volatile
cache must be saved, the amount of which depends on the
application’s write footprint). We calculate energy expended on
backups as,

eB ¼ VB � ðAB þ aB � tBÞ (4)

Ideally, we would back up our data just before our energy sup-
ply (E) is depleted. If this is not the case, then the application will
have expended energy on computations that were never stored in
non-volatile memory. Thus, some number of cycles before the next
backup (tD) will contribute to dead energy (eD). We consider the
average case of dead cycles:2

0 � tD � tB; tD ¼ tB=2, on average (5)

We calculate the amount of dead energy expended in a similar way
to the energy spent on forward progress (Equation (2)). In this case,
we replace tP with tD since application state after dead computa-
tion is not saved for the next restore:

eD ¼ � � tD (6)

Before an application can resume execution, it must expend
energy (eR) to restore its last saved state (Fig. 1b). Mirroring the
backup overhead (Equation (4)), this incurs the cost of accessing
non-volatile memory (VR) scaled by the amount of architectural
(AR) and application (aR) state that must be restored. AR represents
a fixed number of bytes that need to be restored at the start of each
active period (e.g., register file). aR represents the variable cost of
reverting or cleaning up any uncommitted state left over from the
dead execution (tD) of the previous active period (e.g., flushing
dead instructions in non-volatile processors [9]). From this, we
compute the restore energy as,

eR ¼ VR � ðAR þ aR � tDÞ (7)

Often the energy budget is not fixed at E but rather increases
over time since the device can continue charging during an active

period. We model the charging energy (eC , Equation (8)) as the
device charging rate (�C) multiplied by the number of cycles in an
active period (second term in Equation (8)). The time spent per
backup and restore scales inversely with the non-volatile memory
bandwidth (s), typically 1 byte per cycle on the MSP430 CPU com-
monly used in energy-harvesting systems [1], [4], [10]

eC ¼ �C �
�
tP þ nB � ðAB þ aB � tBÞ

s
þ tD þ ðAR þ aR � tDÞ

s

�
(8)

Putting It All Together. Our model outputs the percentage of
energy spent on forward progress p as � � tP =E. Solving for p in
Equation (1) yields:

p ¼ 1� ð���C Þ�tB=2
E � ðVR��C=sÞ�ðARþaR �tB=2Þ

E

ð1þ ðVB��C=sÞ�ðABþaB �tBÞ
ð���C Þ�tB Þ � ð1� �C

� Þ
(9)

In the first term of the denominator, forward progress is scaled down
by the ratio of backup overhead (ðVB � �C=sÞ � ðAB þ aB � tBÞ) to
how much useful work is committed on each backup (ð�� �CÞ � tB).
This represents the backup cost-reward ratio that governs the rate at
which an application moves forward. The second term represents
additional progress made due to charging in the active period. Note
that the charging rate is generally much lower than the consumption
rate; progress p goes to 1 when �C approaches �. In the numerator,
progress is limited by one-time costs—dead energy (second term)
and restore energy (third term)—which are incurred once per active
period. Thus, even if the cost of backups were to be completely elimi-
nated in the denominator, these one-time costs impose an upper
bound on performance andmust beminimized.

There are many interesting implications that can be garnered
from Equation (9). The remainder of this section explores a few of
them in detail and discusses the insights they reveal. Unless other-
wise stated, we ignore restore overhead and charging energy and
set the execution energy (�) to 1 percent of the active period’s
energy supply (E) for illustrative purposes, focusing on general
trends as opposed to the exact values.

2.1 Exploration: Optimal Time Between Backups

How many cycles apart should backups be (tB) to maximize for-
ward progress? Fig. 2 shows how progress (normalized to �) varies
with the time between backups (tB) and backup cost (VB). The first
takeaway is that reducing backup cost is always better for perfor-
mance, as expected. As the backup cost approaches 0, forward
progress favours more frequent backups since 1) this minimizes
dead cycles, and 2) backups are cheap.

The second takeaway is that the optimal time between backups
is not stagnant but rather varies depending on the backup cost.
Solving for the roots of @p

@tB
(Equation (9)), we obtain the optimal:

Fig. 1. An abstract energy-harvesting device.

TABLE 1
EH Model Parameters and Outputs

Parameter Units Description

E 2 R> 0 joules energy supply per active period
� 2 R> 0 joules/cycle execution energy per cycle
�C 2 R�0 joules/cycle charging energy per cycle

s 2 R> 0 bytes/cycle non-volatile memory bandwidth
VB 2 R�0 joules/byte backup cost
VR 2 R�0 joules/byte restore cost
AB 2 R�0 bytes architectural state per backup
AR 2 R�0 bytes architectural state per restore
aB 2 R�0 bytes/cycle application state per backup
aR 2 R�0 bytes/cycle application state per restore
tB 2 R> 0 cycles time between backups

tP 2 R�0 cycles time spent on forward progress
p ¼ � � tP =E % of E % energy spent on forward progress

2. We discuss the impact of variability in Section 2.3.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 1, JANUARY-JUNE 2018 77

tB;opt ¼ VB � AB

VB � aB þ �
�
� ffi

2 � E
�
�VB � aB þ �

VB � AB
þ 1

s
� 1

�
(10)

The optimal number of cycles between backups is dictated by the

ratio VB �AB
VB �aBþ�. The numerator represents the compulsory energy cost

per backup while the denominator represents the energy cost pro-

portional to how much work was done since the last backup. There

is a trade-off between 1) backing up less frequently if the compul-

sory cost is high; and 2) backing up more frequently if the propor-

tional cost is high. With Equation (10), programmers can estimate

the optimal task length for their code (e.g., in systems like

CHAIN [4], a task can be sized to match the optimal backup time),

while system designers can configure the optimal period for check-

points [10] and watchdog timers (e.g., in Clank [6], by choosing the

appropriate duration between watchdog interrupts).

Note that in cases with only application state (aB) and no archi-
tectural state (AB), there is no optimal time between backups.
Removing the cost of backing up architectural state (AB ¼ 0) in
Equation 9 leaves us with a simple relationship: limtB!0 p ¼ 1. As a
result, when considering only the backup cost of application state,
it is always better to back up as frequently as possible since the
overhead decreases proportionally with the time between backups
(Equation (4)).

2.2 Exploration: Cost of Backups and Restores

Given the number of cycles between backups, should we focus on
minimizing backup or restore overhead? The decision arises in sit-
uations where 1) an architect must optimize for the average task
length [4], or 2) a programmer must optimize for periodic backups
imposed by the system (e.g., watchdog timers [6]). At first glance,
one may assume that it is always better to optimize backup cost
since restores are performed only once per active period. But if the
time between backups is too great, there may be insufficient energy
to backup resulting in no progress. In this section, we explore the
interplay between the time between backups and the backup/
restore overhead.

As the time between backups becomes significantly large (tB
approaches þ1), the performance improvement of reducing the
restore cost (@p

@eR
) outweighs that of the backup cost (@p

@eB
). Since prog-

ress is inversely proportional to backup and restore overhead, both
partial derivatives are negative (i.e., a lower @p

@eR
means that reducing

eR yields better performance). Investigating further, we solve for the
number of cycles between backups at the break-evenpoint (@p

@eB
¼ @p

@eR
):

tB;be ¼ 2

3
� E � eB � eR

�
(11)

From this, we have the following takeaways:

� If the time between backups is less than the break-even
point (tB < tB;be), reduce the cost of backups.

� If the time between backups is greater than the break-even
point (tB > tB;be), reduce the cost of restores.

As expected, with very frequent backups (i.e., low tB), architects
should focus on optimizing the backupmechanisms to improve per-
formance. For example, a non-volatile processor designer can
choose to discard the state of some structures (e.g., instruction fetch
queue, branch predictor) if they expect to back up often [9]. Con-
versely, as the time between backups increases, the restore overhead
starts to dominate; it becomesmore likely that no backup is invoked
at all within an active period. When this happens, all execution is
dead. As a result, we actually start to see more restore invocations
than backup invocations when the time between backups exceeds
the break-even point (tB;be). With this analysis, architects and pro-
grammers gain a better understanding of where to focus their efforts
to optimize for the expected time between backups in their systems.
For instance, in Clank [6], checkpoints occur due to idempotent vio-
lations and watchdog timers. Based on the observed frequency of
these checkpoints, the break-even point can inform the Clank archi-
tect to optimize the restore or backup overhead.

2.3 Exploration: Variability of Dead Cycles

So far our analysis assumes the average tD from Equation (5).
However, due to non-determinism in both the architecture (e.g.,
fluctuations in energy source) and the application (e.g., input-
dependent program behaviour) [5], the number of dead cycles can
vary dramatically across active periods. In this section, we explore
how this variability affects important design decisions.

Fig. 3 shows how progress varies under the worst-case
(tD ¼ tB) and best-case dead cycles (tD ¼ 0). The first takeaway
is that variability diminishes as the time between backups
approaches 0. This is expected since backing up more often
decreases the likelihood of dead execution. Conversely, a long time
between backups increases the risk of not backing up at all but
opens up the possibility of the ideal scenario (i.e., a single backup
invoked at the end of the backup period). This introduces an inter-
esting trade-off. If aggressive performance gains are desired, an
architect can design a system with a long time between backups
that are scheduled in an intelligent or speculative way to consis-
tently minimizes dead cycles. But if worst-case performance (i.e.,
tail latency) is important, an architect can sacrifice the average case
and opt for a much lower tB. For example, Spendthrift [8] uses
voltage and frequency scaling to maximize energy efficiency. Our
work provides an upper bound on forward progress for Spend-
thrift and related work that try to minimize dead cycles.

Following from this, how many cycles apart should backups be
invoked to maximize worst-case forward progress? At first glance,
one may assume that Equation (10) is sufficient, however it was
solved for the average case of dead cycles. Solving instead for the
worst case (tD ¼ tB):

tB;optðwcÞ ¼ VB �AB

VB � aB þ �
�
� ffi

E

�
�VB � aB þ �

VB � AB
þ 1

s
� 1

�
(12)

Fig. 2. Progress p with varying tB and backup cost VB (normalized to �). Assumes
E ¼ 100, eC ¼ 0, AB ¼ � ¼ 1, aB ¼ 0:1 and VR ¼ 0.

Fig. 3. Progress p over tB, varying from worst-case to best-case tD. Assumes
E ¼ 100, eC ¼ 0, VB ¼ AB ¼ � ¼ 1, aB ¼ 0:1 and VR ¼ 0.

78 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 1, JANUARY-JUNE 2018

Though similar to the average case in Equation (10), the key
takeaway is that tB;optðwcÞ and tB;opt are never equal. The optimal
time between backups in the worst case is always less than that of
the average case, an important consideration when designing for
tail latency.

2.4 Summary

We present the EH model formulation and its implications for
designing efficient energy-harvesting systems. We explore the opti-
mal time between backups (Section 2.1) and how it can help 1) pro-
grammers to determine the granularity and size of tasks [10] and
2) architects to configure optimal watchdog timers [6]. We also pro-
vide architects with guidelines on when to optimize backup or
restore overhead (Section 2.2). The model is capable of providing a
lower and upper bound on performance when accounting for the
non-determinism of intermittent execution (Section 2.3), useful for
works that seek aggressive performance gains [8]. In the next sec-
tion, we validate our model on real hardware.

3 VALIDATION

To validate EH, we experimentally measure � on an ARM Cortex-
M3 50 MHz processor. We observe that the energy cost per cycle is
fixed (� ¼ 1:18 mJ) for all tested instructions (NOP, AND, OR,
ADD, SUB, MUL, LW, SW). We configure backups with VB ¼ � in
our experiments. We employ interrupts to mimic the periodic
backups required, setting aB ¼ 0:1 and AB ¼ 50 to account for the
overhead of entering and exiting the interrupt routine. As in
Sections 2.1 and 2.3, we keep the restore cost as zero but note that it
is straightforward to add to our analysis.

For our experiments, we run an application that calculates the
mean and variance of 64 data points, a common task in energy-
harvesting systems. We emulate the average 100 ms active period
commonly found in prior work [6], [10] by modelling the energy
supply as a normal distribution with a mean E

� of 5000. We measure
the forward progress of our application as we sweep tB from 200 to
5000 cycles (10 runs each), which are the minimum and maximum
in our system, respectively. Fig. 4 shows that our experimental
results match closely with the values predicted by our model. As
we sweep tB to larger values, we see a greater variance in the dead
cycles (Section 2.3), as they can now occur over a larger timespan
of tB.

4 RELATED WORK

To the best of our knowledge, this is the first model that explores
the forward progress made by energy-harvesting devices. To date,
evaluations of different devices has been done in simulation [1],
[6], [9]. Through simulation, Clank identified that re-execution cost
(i.e., dead cycles) can outweigh the cost of checkpointing [6]. The
EH model allows similar observations to be made without the

implementation details of a backup/restore mechanism, revealing
insights from simple formulas.

The cost of checkpointing has been explored. Chain advocates
that checkpointing is too expensive in an energy-harvesting envi-
ronment and proposes a new programming model to avoid it [4].
Ekho proposes an I–V curve to capture how current changes when
checkpointing with a variable energy supply [5]. Our EH model is
more architecture centric, focusing on the active period and requir-
ing the energy supply to be fully charged before execution
resumes. Future work could look at how to model architectures
that resume execution before the energy supply has fully charged.

5 CONCLUSION

We propose the EH model, a step towards better understanding
the unique implications and complex interactions that arise in
energy-harvesting systems. Our analysis sheds new insights and
trade-offs that we hope not only assist but also excite research in
this field.

REFERENCES

[1] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-Hashimi, D. Brunelli,
and L. Benini, “Hibernus: Sustaining computation during intermittent sup-
ply for energy-harvesting systems,” IEEE Embedded Syst. Lett., vol. 7, no. 1,
pp. 15–18, Mar. 2015.

[2] D. Bharadia, K. R. Joshi, M. Kotaru, and S. Katti, “BackFi: High throughput
WiFi backscatter,” in Proc. ACM Conf. Special Interest Group Data Commun.,
2015, pp. 283–296.

[3] A. P. Chandrakasan, D. C. Daly, J. Kwong, and Y. K. Ramadass, “Next gen-
eration micro-power systems,” in Proc. IEEE Symp. VLSI Circuits, 2008,
pp. 2–5.

[4] A. Colin and B. Lucia, “Chain: Tasks and channels for reliable intermittent
programs,” in Proc. ACM SIGPLAN Int. Conf. Object-Oriented Program. Syst.
Languages Appl., 2016, pp. 514–530.

[5] J. Hester, T. Scott, and J. Sorber, “Ekho: Realistic and repeatable experimen-
tation for tiny energy-harvesting sensors,” in Proc. 12th ACM Conf. Embed-
ded Netw. Sensor Syst., 2014, pp. 330–331.

[6] M. Hicks, “Clank: Architectural support for intermittent computation,” in
Proc. 44th Annu. Int. Symp. Comput. Archit., 2017, pp. 228–240.

[7] B. Lucia and B. Ransford, “A simpler, safer programming and execution
model for intermittent systems,” in Proc. 36th ACM SIGPLAN Conf. Pro-
gram. Language Design Implementation, 2015, pp. 575–585.

[8] K. Ma, et al., “Spendthrift: Machine learning based resource and frequency
scaling for ambient energy harvesting nonvolatile processors,” in Proc.
22nd Asia South Pacific Des. Autom. Conf., 2017, pp. 678–683.

[9] K. Ma, et al., “Architecture exploration for ambient energy harvesting non-
volatile processors,” in Proc. IEEE 21st Int. Symp. High Performance Comput.
Archit., 2015, pp. 526–537.

[10] B. Ransford, J. Sorber, and K. Fu, “Mementos: System support for long-
running computation on RFID-scale devices,” in Proc. 16th Int. Conf. Archit.
Support Program. Languages Operating Syst., 2011, pp. 159–170.

[11] A. Wang, V. Iyer, V. Talla, J. R. Smith, and S. Gollakota, “FM backscatter:
Enabling connected cities and smart fabrics,” in Proc. USENIX Symp. Netw.
Syst. Des. Implementation, 2017, pp. 243–258.

Fig. 4. Comparison of measured data to the trend predicted by EH.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 1, JANUARY-JUNE 2018 79

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

