
Friendly Fire: Understanding the Effects of Multiprocessor Prefetches

Natalie D. Enright Jerger, Eric L. Hill, and Mikko H. Lipasti

Department of Electrical & Computer Engineering, University of Wisconsin-Madison
{enrightn,elhill,mikko}@ece.wisc.edu

Abstract

Modern processors attempt to overcome increasing
memory latencies by anticipating future references and
prefetching those blocks from memory. The behavior and
possible negative side effects of prefetching schemes are
fairly well understood for uniprocessor systems. However,
in a multiprocessor system a prefetch can steal read and/or
write permissions for shared blocks from other processors,
leading to permission thrashing and overall performance
degradation. In this paper, we present a taxonomy that clas-
sifies the effects of multiprocessor prefetches. We also
present a characterization of the effects of four different
hardware prefetching schemes--sequential prefetching,
content-directed data prefetching, wrong path prefetching
and exclusive prefetching--in a bus-based multiprocessor
system. We show that accuracy and coverage are inadequate
metrics for describing prefetching in a multiprocessor;
rather, we also need to understand what fraction of
prefetches interfere with remote processors. We present an
upper bound on the performance of various prefetching
algorithms if no harmful prefetches are issued, and suggest
prefetch filtering schemes that can accomplish this goal.

1. Introduction

Dealing with the increasing relative latency of off-chip
references to memory is one of the most pressing issues in pro-
cessor design. One promising approach for mitigating this
problem consists of anticipating future references and issuing
speculative prefetches to move those blocks closer in the mem-
ory hierarchy. However, harmful effects due to limited cache
capacity as well as contention for finite bus and memory band-
width can erode or even overcome the benefits of prefetching.
These are not fundamental obstacles, since capacity problems
can be mitigated by adding a prefetch buffer, while more accu-
rate prefetch algorithms can reduce the bandwidth overhead.

Both of these harmful effects also exist in multiprocessor
prefetching; however, data sharing between processors intro-
duces additional harmful side effects. In a single-writer invali-

date protocol, a read prefetch can downgrade a remote line,
causing it to lose write permission. If the remote processor has
finished writing to this line, then no harm is done; however, if
it needs to write the line again before the prefetched line is ref-
erenced, the prefetch has now slowed down the remote proces-
sor without accomplishing any useful work in the prefetching
processor (illustrated in Figure 1). In the case of a write
prefetch, the remote effects can be substantially more harmful.
In the example in Figure 1, if the prefetch of A had been an
exclusive prefetch, CPU 1 would have required additional
coherence and data traffic to write the line a second time, since
its copy of the line was invalidated.

Both hardware and software prefetching algorithms have
been studied extensively in uniprocessors, and a variety of
prefetching schemes have been both proposed and imple-
mented. Prior work looks at both hardware [6], [7] and soft-
ware [9], [10], [11], [14] prefetching in multiprocessor
systems. Most of the evaluation has been done on scientific
workloads [6], [7], [8], [9], [12], [23]. Coherence issues have
been explored [6], [25], but an in depth analysis of the coher-
ence issues associated with prefetching is absent from much of
the prior work. Targeting only private data [26] is one tech-
nique to avoid the harmful effects of multiprocessor prefetch-
ing.

This work presents a novel taxonomy for classifying mul-
tiprocessor prefetches. We use this taxonomy to characterize a
variety of prefetching algorithms on both commercial and sci-
entific workloads. Another contribution not studied in prior
work is a limit study of various prefetching algorithms on var-

FIGURE 1. Harmful Prefetch Example.

Time Instruction
Cache
State Instruction

Cache
State Coherence Traffic

T0 ST A Modified P1 Write Hit

T1 Prefetch A Shared P0 issues prefetch

T2 Owned P1 copy downgraded

T3 ST A Modified P1 issues upgrade

T4 Invalid P0 copy becomes
invalidated

CPU 0 CPU 1

ious benchmarks. Understanding and quantifying a prefetching
algorithm’s potential through a limit study can help tune the
algorithm more than just the miss rate; miss rates alone are not
adequate for understanding the performance effects in a mod-
ern system with out-of-order processors as they do not capture
the harmful effects of additional upgrades. Our work shows
that a substantial problem with MP prefetching is the introduc-
tion of additional communication traffic into the system that
degrades remote processor performance. This problem can
also be seen in prior work [26] by the increase in false sharing
misses.

In our study of prefetching we name several orthogonal
properties of harmful prefetches.
• Local conflicting prefetches: These exist in the uniprocessor case

as well as in the multiprocessor case. A local conflicting prefetch
is one that evicts a useful line from the cache, which is subse-
quently referenced before the prefetch is referenced.

• Remote harmful prefetches: A remote harmful prefetch is one
that causes a downgrade in a remote processor followed by a sub-
sequent upgrade in the same remote processor before the prefetch
is either referenced by the prefetching processor or a demand ref-
erence occurs from another processor that causes the correspond-
ing downgrade. From the prefetching processor’s perspective this
is a useless prefetch because it is never referenced before its evic-
tion. These prefetches also have the potential to cause conflicts in
the local cache. The ability to detect and eliminate a remote harm-
ful conflicting prefetch is beneficial for both the local and the
remote processor.

• Harmful speculation: Applies to our study of wrong path and
exclusive prefetching. As the prefetches in wrong path prefetch-
ing are essentially speculative loads, a load that causes a remote
harmful prefetch is considered potentially harmful speculation
since, had that wrong path load not issued speculatively, the detri-
mental transitions in the remote processor would not have
occurred. The same is true for exclusive prefetching which specu-
latively acquires exclusive access for a line before the store has
reached the head of the reorder buffer.

An example of a remote harmful prefetch and a remote
harmless prefetch are shown in Figures 1 and 2, respectively.
Figure 3 illustrates the costly effect of a harmful exclusive
prefetch. In this example, the exclusive prefetch invalidates
line A in only CPU 1’s cache, but the line could have been
present and invalidated in multiple processors' caches, each of
which could have subsequent references to A.

In Section 5, we present characterization data for these
classes of harmful prefetches as well as for useful and useless
prefetches. A useless prefetch is one that does not cause any

detrimental transitions in a remote processor but is never used
in the local processor. The only harmful side effect of such a
prefetch is that it consumes additional bus bandwidth and
resources without achieving any benefit for the system. In
addition to quantifying each class of prefetch for different
algorithms, we also correlate the harmful and useful prefetches
to other events in the system. This correlation data can enable
the construction of novel prefetching approaches and filters
which avoid or eliminate harmful side effects and improve per-
formance.

The rest of this paper is organized as follows. Section 2
summarizes the original prefetch traffic and miss taxonomy
presented in [19] and then expands it to include multiprocessor
prefetches. Section 3 describes the prefetching algorithms
examined by this work; Section 4 presents the simulation
infrastructure followed by the results in Section 5. A summary
of related work is presented next in Section 6 followed by our
conclusions in Section 7.

2. Prefetch Taxonomy

Accuracy and coverage are two standard metrics used to
evaluate the merits of a prefetching scheme. Accuracy mea-
sures the ratio of useful prefetches to the total number of
prefetches issued. Coverage measures the reduction in demand
cache misses due to the prefetching technique. In [19], Srini-
vasan et al. assert that prefetch accuracy and coverage are not
sufficient metrics to evaluate a uniprocessor prefetching
scheme because they give no indication of a prefetcher's effect
on the other lines present in that cache set due to demand refer-
ences. This taxonomy presents a comprehensive means to
evaluate uniprocessor prefetching and can be extended to
apply to multiprocessor prefetching schemes. In the next sec-
tion, we will explain their taxonomy in more detail and then go
on to present our novel expansion to that taxonomy in the fol-
lowing section.

2.1. Uniprocessor Prefetch Taxonomy

Srinivasan et al. [19] provides a new methodology and
valuable insights into characterizing prefetching, but only con-
siders these effects in uniprocessor systems. They present a
taxonomy that incorporates the misses, both saved and induced
by a prefetch and the additional traffic that may be induced by
a prefetch. They note that it is important to consider how much
extra traffic is added to the system as the result of prefetching.

FIGURE 2. Useful/Harmless Prefetch.

Time Instruction
Cache
State Instruction

Cache
State Coherence Traffic

T0 ST A Modified P1 Write Hit

T1 Prefetch A Shared P0 issues prefetch
T2 Owned P1 copy downgraded

T3 Read A Shared P0 Read Hit

CPU 0 CPU 1

FIGURE 3. Harmful Exclusive Prefetch Example.

Time Instruction
Cache
State Instruction

Cache
State Coherence Traffic

T0 LD A Exclusive P1 Read Hit
T1 Excl

Prefetch A
Exclusive P0 issues Excl

Prefetch

T2 Invalid P1 invalidated

T3 LD A P1 Read Miss

T4 Owned Shared P1 Receives data
from P0

CPU 0 CPU 1

The uniprocessor Prefetch Traffic and Miss Taxonomy
(PTMT) breaks prefetches down into nine cases and classifies
those nine cases as useful, useless, or polluting.

2.2. Multiprocessor Prefetch Taxonomy

Accuracy and coverage metrics do not account for the
interactions between processors and do not address the effect
prefetches have on communication misses. As mentioned pre-
viously, a remote harmful prefetch will cause additional coher-
ence traffic. So in addition to the address bus and data bus
traffic incurred by the useless prefetch, additional address bus
traffic is incurred for harmful read prefetches, while additional
traffic is required on both the address and data bus if the use-
less prefetch was an exclusive prefetch.

Using the groundwork laid by [19], we expand the unipro-
cessor PTMT to encompass multiprocessor interactions. There
are many complex interactions that can occur when multipro-
cessor prefetches are introduced into the system but these
interactions can be grouped into 6 broader categories of both
coherence and data traffic which are used to simplify the col-
lection and presentation of data. These 6 classifications are
elaborated on in our full multiprocessor prefetch taxonomy,
which is included in Appendix A. The state diagrams in
Figures 4 and 5 show the different transitions a prefetch can
make during its lifetime in the cache. Our taxonomy goes on to
detail the ordering of various events that can cause these tran-
sitions. Figure 4 shows the data traffic component of a prefetch
and Figure 5 depicts the coherence traffic component of a
prefetch. For both figures, the transitions that are caused by
exclusive prefetches are shown in parentheses. Please refer to
Appendix A to understand what effect the initial coherence
state of a remote block has on the classification of an exclusive
prefetch. First, consider the transitions in Figure 4.

• Useless/Harmless state (1): Entered when the local processor
issues a prefetch. At this point, nothing is known about the future
effects of this prefetch.

• From Useless/Harmless (1) to Useful (2): A demand reference
will cause the prefetch to transition into this state.

• From Useless/Harmless (1) to Harmful (3): Since an exclusive
prefetch also invalidates remote copies of the line, additional data
traffic will be required to reinstall the line into the remote cache
on a subsequent reference.

A prefetch can enter the Useful state (2) even if it caused a
remote downgrade as long as the demand reference by the
prefetching processor occurs prior to a subsequent upgrade by
the remote processor. If the prefetch issued is a read prefetch,
from the standpoint of additional remote data traffic, there are
no harmful transitions. The lower two quadrants in Figure 4
track the side effects of a prefetch after it has been identified as
a conflicting prefetch.
• From Useless/Harmless (1) to Conflict/Useless (4): A prefetch is

identified as a conflict if the line is evicted from the cache is ref-
erenced before the prefetch is demand referenced.

• From Conflict/Useless (4) to Conflict/Useful (5): The prefetch is
demand referenced after a demand reference has occurred to the
conflicting line. The prefetch ends up netting zero savings in traf-
fic or misses for the prefetching processor. This harmful side
effect of an otherwise useful prefetch could be avoided through
the use of a different replacement policy or a larger cache.

• From Conflict/Useless (4) to Conflict/Harmful (6): Same as the
transition from state 1 to state 3 except a conflict was first
detected in the local block.

• From Harmful (3) to Conflict/Harmful (6): Same as the transition
from state 4 to 6 except the harmful transition was detected
before the conflict. A remote load can only cause this transition if
the prefetch in question was an exclusive prefetch.

Figure 5 shows the transitions prefetches can make with
respect to coherence traffic. A read prefetch is considered use-
ful from an coherence traffic perspective only for a demand
load. For a write prefetch, a demand store will cause a transi-
tion from the Useless state (1) to the Useful state (2). From an
coherence standpoint, read prefetches are not useful for stores
but as shown above, they do save data traffic and only require
an upgrade on a demand reference. Read prefetches steal
exclusive ownership from a remote line which will cause a
subsequent store to issue an upgrade request. This prefetch
only induces an extra remote upgrade if the line was originally
in the remote processor's cache in either the modified or exclu-
sive state. A local prefetch that hits a remote processor's cache
in shared, owned or invalid does not require an additional
coherence request over the base case. Since write prefetches
steal both ownership and data from a remote cache, any remote
access to that line will be harmful. While a prefetch cannot
transition from Harmful (3) to Useful (2), a percentage of
harmful prefetches would have been useful had they occurred

FIGURE 4. Harmfulness of data transactions.

C o n f l i c t / H a r m f u l

U s e l e s s / H a r m l e s
s

U s e f u l H a r m f u l

C o n f l i c t / U s e l e s s

C o n f l i c t / U s e f u l

1

5

4

32

6

L o a d / S to r e (S t o r e /L o a d)

A c c e s s to
r e p l a c e d b l o c k

L o a d / S to r e
(S t o r e /L o a d)

C o n f l i c t / H a r m f u lC o n f l i c t / H a r m f u l

U s e l e s s / H a r m l e s
s
U s e l e s s / H a r m l e s
s

U s e f u lU s e f u l H a r m f u lH a r m f u l

C o n f l i c t / U s e l e s sC o n f l i c t / U s e l e s s

C o n f l i c t / U s e f u lC o n f l i c t / U s e f u l

1

5

4

32

6

L o a d / S to r e (S t o r e /L o a d)

A c c e s s to
r e p l a c e d b l o c k

L o a d / S to r e
(S t o r e /L o a d)

FIGURE 5. Harmfulness of address transactions.

C o n f l i c t / H a r m f u l

U s e l e s s / H a r m l e s s

U s e f u l H a r m f u l

C o n f l i c t / U s e l e s s

C o n f l i c t / U s e f u l

1

5

4

32

6

L o a d / (S t o r e) S t o r e

L o a d / (S t o r e) S t o r e

A c c e s s t o
r e p l a c e d b l o c k

C o n f l i c t / H a r m f u lC o n f l i c t / H a r m f u l

U s e l e s s / H a r m l e s s

U s e f u l H a r m f u l

C o n f l i c t / U s e l e s s

C o n f l i c t / U s e f u l

1

5

4

32

6

U s e l e s s / H a r m l e s sU s e l e s s / H a r m l e s s

U s e f u lU s e f u l H a r m f u lH a r m f u l

C o n f l i c t / U s e l e s sC o n f l i c t / U s e l e s s

C o n f l i c t / U s e f u lC o n f l i c t / U s e f u l

1

5

4

32

6

L o a d / (S t o r e) S t o r e

L o a d / (S t o r e) S t o r e

A c c e s s t o
r e p l a c e d b l o c k

later in execution; that is, after the remote processor's last
access to the line. Multiprocessors introduce a new issue of
timeliness in order for such prefetches to be useful.

In both figures, having a high number of prefetches that
fall in the top left quadrant is desirable. Moving prefetches
vertically from the bottom left quadrant to the top left quadrant
can be achieved through increased cache capacity, the addition
of a prefetch buffer, or by delaying the issuing of the prefetch
until the conflicting references have completed. To move
prefetches from the top right quadrant to the top left quadrant
can be achieved by delaying the prefetch until the remote
accesses have completed or by changing the coherence and
synchronization mechanisms of the system. Filtering and pre-
diction mechanisms can be used to reduce the number of
prefetches in the right quadrants and will be discussed in sec-
tion 5.

Multiprocessor prefetches have many of the same local
effects as uniprocessor prefetches. Even though these effects
are explained in the uniprocessor taxonomy [19], we include
them to highlight specifically the ways prefetches can hurt per-
formance for both prefetching and remote processors. Our tax-
onomy, in Appendix A, also indicates changes in remote
traffic and misses due to prefetches. In uniprocessors, the time-
liness of prefetches is important. A prefetch needs to occur far
enough in advance that the data has arrived before the demand
reference but not so far in advance that the prefetched line is
evicted from the cache before the demand reference. A
prefetch's ordering with respect to the last store by a remote
processor directly impacts its harmfulness, adding an addi-
tional dimension of timeliness for prefetches. This timeliness
with respect to remote prefetches is highlighted by the differ-
ent prefetch outcomes of cases 4 (the prefetched line is locally
referenced before a remote write) and 5 (the prefetched line is
locally referenced after a remote write) of the taxonomy. If a
prefetching algorithm exhibits a high percentage of prefetches
in cases 5 and 10 (a prefetch that would have been useful
except for an intervening remote write to that line) it will be
evaluated to have low accuracy. However, in truth, the
prefetching algorithm is accurately selecting addresses that
will be demand referenced in the future but it not issuing them
in a timely manner with respect to remote effects.

The three tables in Appendix A present the salient local
and remote transitions that a prefetch can cause. With 29 enu-
merated cases, it is clear that prefetching in multiprocessor
simulations introduces substantial new complexity and the
potential to adversely affect performance. In Section 5, data
will be presented that shows the relative number of these inter-
actions to the number of prefetches issued by different algo-
rithms.

3. Prefetching Algorithms

3.1. Sequential Prefetching

Sequential prefetching is one of the few hardware

prefetching algorithms that has been studied in multiprocessor
systems [7], [8], [17]. The algorithm modeled here approxi-
mates the Power4 sequential prefetcher [21]. This prefetcher
detects a sequential stream of either ascending or descending
addresses and begins prefetching the next 5 sequential
addresses. Our simulations can prefetch for a maximum of 32
different address streams. When the prefetcher encounters a
page boundary it stops prefetching to avoid incurring a TLB
miss. Much of the prior work that studied sequential prefetch-
ing focused on scientific applications, whereas this work pre-
sents a combination of commercial and scientific workloads.
Sequential prefetching is also included because its behavior in
uniprocessor systems is well understood and it has been imple-
mented in real systems.

3.2. Content Directed Data Prefetching

Content Directed Data Prefetching (CDDP) was intro-
duced by Cooksey et al [5]. This prefetching algorithm uses a
pointer matching heuristic to prefetch possible pointers into
the cache. When a line is brought into the cache, it is scanned
for possible pointers which are then prefetched. This algorithm
is especially useful in applications that do not exhibit the regu-
lar access patterns that can be targeted with sequential or stride
prefetching and that are pointer intensive. Our results show
that certain commercial applications do not benefit from
sequential prefetching because they lack regularity in their
access patterns, so content directed prefetching can improve
the performance of those workloads when absent of harmful
effects. CDDP also has the advantage of targeting cold misses
as it does not require any history to be established before it can
begin prefetching.

3.3. Wrong Path Prefetching

Wrong path prefetching looks at the effect of fetching
loads into the cache that are later determined to be on the
wrong path following a branch. Work has been done to look at
the effects of wrong path instruction prefetching in uniproces-
sors [18]. Recent work has been done to further understand the
effect of wrong path data references as well as the ability to
correlate these references to other system events [2], [16],
however this work is limited to wrong paths effects in a single
processor. A wrong path prefetch might fetch a cache line that
is subsequently referenced by a right path memory operation,
consequently reducing the stall time associated with that mem-
ory operation. However, like other kinds of prefetching, this
wrong path prefetch might pollute the cache, evicting a poten-
tially useful line, or it might downgrade a remote line causing
a subsequent upgrade that slows the performance of the remote
processor. Studying this scheme gives insight into when and
why the speculation of loads can be advantageous or harmful.
In contrast to sequential prefetching and CDDP, wrong path
prefetching does not require any additional bandwidth over the
base case as the base case permits these loads to execute spec-
ulatively.

3.4. Exclusive Prefetching

Exclusive prefetching allows the processor to specula-
tively issue a store to the memory system before it reaches the
head of the reorder buffer. That store could be on the wrong
path and therefore never executed which can result in harmful
prefetches. In some cases, delaying the store until commit
could have better performance than speculatively issuing the
store depending on the impact the store has on the work being
done by remote processors. We analyze exclusive prefetching
in part because like sequential prefetching, it has been imple-
mented in real systems and to highlight the differences
between read and write prefetches.

4. Simulation Methodology

Our prefetching infrastructure is integrated into PHARM-
sim, a full system multiprocessor simulator [4], [13]. Our sim-
ulator is an aggressive out of order sequentially consistency
implementation that models a near-RTL level MP system with
a split transaction bus. The simulator implements the MOESI
coherence protocol and sequential consistency with specula-
tive loads.

One of the goals of this work is to present a limit study for
several prefetching algorithms. Our prefetching infrastructure
is able to mask the effects of cache pollution and remote
effects but not the side effect of increased memory bandwidth
requirements.

The mechanism used to eliminate the negative effects of
cache pollution is an infinitely sized prefetch buffer that holds
prefetches prior to being demand referenced. This approach
effectively eliminates the impact of cache pollution as useless
prefetches will never enter the cache, but it does nothing to
eliminate remote effects, i.e. downgrades induced by
prefetches. To solve this problem, we track prefetches in the
remote cache which allows us to undo harmful state transitions
caused by prefetches. In the situation of a prefetch necessitat-
ing the downgrade of an exclusive or modified line to owned,
we record the necessary downgrade in the remote cache. If the
next reference is upgrade by the owning processor we invali-
date the prefetch and upgrade the line without an explicit
upgrade transaction (zero latency). We classify this prefetch as
harmful as it would have added additional coherence traffic for
the upgrade without the prefetch being useful. However, if the
next reference is a hit to the prefetched line, we then officially
downgrade the remote line to owned and call that a harmless/
useful prefetch since a demand reference would have caused
the same downgrade.

We also use this infrastructure to quantify prefetches that
would be detrimental to the prefetching processor due to cache
conflicts or pollution. When a prefetched line is entered into
the prefetch buffer, we mark the cache line which would have
been evicted according to the LRU list for the set. This infor-
mation makes it possible to identify the prefetch as a conflict if
the local cache line is subsequently accessed by the processor

prior to the prefetch being referenced. The prefetch remains in
the prefetch buffer but is marked as a conflict prefetch so on a
demand reference it can be properly classified as a conflict/
useful prefetch. Harmful effects of a prefetched block are also
tracked after the prefetch block has been marked as a conflict-
ing prefetch. Conflict issues are difficult to track precisely
because the introduction of a miss or a prefetch will change the
LRU stack. Also, a subsequent demand miss might come
along and invalidate the conflicting block associated with the
prefetch. Useless prefetches have a potential side effect of
writing a modified block back to memory sooner than the
demand case, speeding up subsequent remote references to the
written back block. As we hold useless prefetches in a separate
buffer we do not cause these early write backs seen in a naive
implementation.

Results are presented for a variety of workloads running
in a 4 processor configuration. The applications include Bar-
nes-Hut and Ocean from the Splash2 suite [3], [28],
SPECjbb2000 [20], TPC-B and TPC-H [22]. The simulation
parameters are presented in Table 1. The descriptions of the
benchmarks run and their baseline performance are given in
Table 2.

5. Simulation Results

5.1. Prefetching Performance

Our assertion is that naively implementing a variety of
prefetching algorithms in multiprocessor systems can degrade
performance. Table 3 shows the number of prefetches per
thousand memory references for each algorithm and bench-
mark. Data showing the impact these four prefetching schemes

Table 1: Simulation Parameters

Processor Parameters

decode/issue/
commit

8/8/8

RUU/LSQ size 128/64

Functional Units 8 Int ALUs, 3 Int Mult/Div, 3 FP ALUs, 4 FP
Mult/Div 3 LD/ST Ports

Branch Predictor Combined bimodal (8k entry)/gshare (8k entry)
with 8k choice predictor, 8k 4-way SA BTB, 64

entry RAS

Memory System

L1 I Cache
(latency)

128K 2 way set associative (1 cycle)

L1 DCache
(latency)

128K 2 way set associative (1 cycle)

L2 Unified Cache 4MB 8 way set associative (12 cycles)

blocksize (all
caches)

64 bytes

Data network
latency

400 cycles

Address network
latency

50 cycles

can have on performance is presented in Figure 6. For each
benchmark, Figure 6 shows the cycle counts normalized to a
baseline simulation with no prefetching for each of the three
prefetching schemes (CDDP, Sequential, and Exclusive) both
with and without our idealized prefetch buffer which filters out
harmful prefetches. Also shown is the performance of a
scheme where all harmful wrong-path prefetches are removed
(Wrong Path). We use statistical simulation methods [1].

CDDP is the most aggressive prefetching algorithm for
the commercial workloads. As seen in Figure 6, the naive
implementation of CDDP results in performance degradation.
However, by eliminating the harmful effects of CDDP we see
performance improvement. Sequential prefetching shows
modest improvements across all benchmarks and significant
performance improvement for ocean. The irregular access pat-
terns of commercial workloads prevent sequential prefetching
from improving performance significantly.

Some of our results show an increase in cycle count for
wrong path prefetching. Naive wrong path prefetching is
equivalent to the base case and has a normalized cycle count of
1. Wrong path prefetching with the idealized prefetch buffer
extends the lifetime of a cache line in the level 1 cache by
holding speculative loads in the buffer until they commit. This
increase in lifetime results in an increase in dirty misses; more
often remote processors need to incur additional latency while
the dirty block is flushed out of the level 1 cache which
degrades performance. The addition of the idealized prefetch

buffer also changes the LRU list causing the caches to no
longer see the same reference stream as the baseline case.
These changes in replacements in both levels of cache
adversely affects the performance of the wrong path idealized
case.

5.2. Breakdown of Prefetches

Figures 7 and 8 present the breakdown of prefetches
according to our Multiprocessor Prefetch Traffic and Miss
Taxonomy (MPTMT). The results indicate that a significant
number of prefetches fall into the most detrimental state, con-
flict/harmful (as many as 35%). Useless prefetches also repre-
sent a significant percentage of prefetches issued. Eliminating
useless prefetches would reduce contention for shared
resources and help to further improve performance.

Figure 7 shows the breakdown of prefetches for the first
three prefetching schemes according to the states shown in
Figures 4 and 5. CDDP exhibits the highest percentage of use-
less prefetches. By culling out these prefetches, more benefit
could potentially be reaped as there would be less contention
for the bus and for memory. Detailed simulation results (not
presented here) indicate that the average round trip latency of a
load miss is increased by the substantial number of prefetches
that CDDP injects into the system. Even though the prefetch
buffer infrastructure does not remove contention side effects,
performance improvement is still possible through CDDP if
the harmful prefetches are removed. Overall, sequential
prefetching issues the smallest percentage of harmful and
harmful/conflict prefetches of the three algorithms and also
has the highest percentage of purely useful prefetches. Even
for large caches, conflict prefetches can be a significant frac-
tion of the prefetches seen in multiprocessor simulations.

CDDP exhibits the greatest percentage of harmful and
conflict harmful prefetches across all the benchmarks; how-
ever, the remaining prefetching algorithms issue enough harm-
ful prefetches to give less than ideal prefetching performance.
Eliminating harmful wrong path references improves perfor-
mance. The harmful prefetches range between 5% and 80% for

Table 2: Benchmark Descriptions

Benchmark Description
Instr

executed
IPC

4 proc

SPECjbb Standard java server workload uti-
lizing 4 warehouses executing 6400

requests

~1.7B 4.95

TPC-B Standard OLTP benchmark with 20
clients executing a total of 1000

transactions against an in-memory
DB2 v6.1 relational database

~530M 1.61

TPC-H Transaction Processing Council’s
Decision Support IBM DB2 v6.1

running query 12 on 512MB data-
base

~2.2B 1.85

Barnes-Hut 8K particles, full end-to-end run
including initialization

~1.9B 7.13

Ocean 258x258 full end-to-end run with
initialization

~1.2 B 5.17

Table 3: Prefetches/Thousand L2 References

Benchmarks CDDP Seq
Wrong
Path

Excl.

SPECjbb 91 2 5 52

TPC-B 95 5 19 0.54

TPC-H 207 41 3 151

Barnes-Hut 97 6 8 0.43

Ocean 4.7 26 .1 13

FIGURE 6. Performance with and w/out ideal prefetch buffer.

0.88

0.92

0.96

1

1.04

1.08

1.12

SPECjbb TPC-B TPC-H Barnes Ocean

N
or

m
al

iz
ed

C
yc

le
C

ou
nt

s

base cddp-naive
cddp-idealized seq-naive
seq-idealized excl-naive
excl-idealized wp-idealized

the benchmarks studied. Performance improvements are seen
with both the naive and idealized sequential prefetcher. The
improvements are greater with the latter. Eliminating harmful
streams from the sequential prefetcher would free up those
streams buffers to be used for additional useful prefetches. For
CDDP, the commercial workloads exhibited the highest num-
ber of harmful prefetches. The irregular access patterns of
commercial workloads result in a larger number of prefetches
being issued which combined with more frequent data sharing
results in a substantially higher number of harmful prefetches
than is seen in the scientific workloads. In the case of CDDP, a
significant percentage (as much as 83%) of harmful prefetches
would have been useful to the prefetching processor had the
prefetch occurred later in program execution. The other algo-
rithms exhibit similar behavior but to a lesser extent than
CDDP.

Figure 8 breaks the harmful and useful prefetches down
into coherence and data components for exclusive prefetching.
As noted above, write prefetches have the effect of stealing
both ownership and data, which adds a harmful data compo-
nent that read prefetching does not possess. The harmful data
traffic component of the bar implies that the remote cache had
a valid copy and the next operation by that processor was a
read. Harmful coherence traffic indicates that the remote pro-
cessor had the line in an exclusive or modified state prior to

the prefetch and the next access to that remote line is a write.
With exclusive prefetching, it is interesting to note the break-
down of useful data/coherence versus harmful data/coherence.
A significant amount of exclusive prefetching results in harm-
ful data traffic which means that before the prefetch is refer-
enced, a remote processor does a load of the data and finds its
copy has been invalidated. The small percentage of harmful
coherence traffic indicates that the remote processor will more
likely read the line after the prefetch than write it.

Figure 9 shows the accuracy and coverage of the prefetch-
ing schemes across various benchmarks. For CDDP and
sequential prefetching the coverage is less than 20% across all
the benchmarks. Wrong path and exclusive prefetching show
coverage ranging from 8.5% up to 26.3%, respectively. Exclu-
sive prefetching has the highest accuracy of all the bench-
marks, which is to be expected since it is issuing prefetches
based on speculatively executed store instructions whereas
CDDP and sequential prefetching make intelligent guesses at
the addresses that are needed in the future. As previously
noted, accuracy and coverage do not paint the complete picture
of a prefetcher’s effectiveness. For example, Barnes shows
good coverage and accuracy for CDDP but its performance
degrades by approximately 4% due to large number of harmful
and conflict prefetches.

Our simulation infrastructure is able to mask all of the
harmful effects of prefetching except for the increased bus and
memory contention which could aggravate the latency of
demand memory references. Due to this fact, our performance
results show an approximate upper bound but as the increase
in load latency is not significant in many cases, our upper
bound is a valuable measurement. Contention caused by use-
less wrong path prefetches is not limited to bus bandwidth and
memory contention. Useless wrong path prefetches also
occupy space in the level 1 to level 2 request queues but do not
consume space in the response queue which will lessen the
delay of demand misses. By freeing up this queue space, right
path loads will issue to memory and be returned from memory
sooner. Alleviating pressure on these resources has potential
for further performance improvement and finding a means to
do so will be part of future work.

5.3. Identifying Harmful and Useful Prefetches

The MPTMT we have presented enables a detailed char-
acterization of prefetching which can be extended to develop
correlations between the different cases outlined above and
system state and to exploit those correlations to filter out
harmful prefetches. Among the correlations we looked at, two
appear to have valuable potential as filtering mechanisms that
can be applied to prefetching algorithms to filter out many of
the harmful effects. These two correlations are prefetch corre-
lations with Program Counter (PC) values and with the remote
coherence state of the prefetched block. For prefetching algo-
rithms that depend on the miss stream generated to issue addi-
tional prefetches, such as sequential and CDDP prefetching
filtering prefetches out can potentially result in a dramatically

FIGURE 7. Read prefetch classification.

FIGURE 8. Exclusive prefetch classification.

1 2 3

1. CDDP 2. Sequential 3. Wrong Path

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SPECjbb TPC-B TPC-H Barnes Ocean

Useless (1)
Useless/Conflict (4)
Conflict/Harmful (6)
Harmful (3)
Conflict/Useful (5)
Useful (2)

1 2 3

1. CDDP 2. Sequential 3. Wrong Path

1 2 3

1. CDDP 2. Sequential 3. Wrong Path

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SPECjbb TPC-B TPC-H Barnes Ocean

Useless (1)
Useless/Conflict (4)
Conflict/Harmful (6)
Harmful (3)
Conflict/Useful (5)
Useful (2)

0%

20%

40%

60%

80%

100%

SPECjbb TPC-B TPC-H Barnes Ocean

Harmful coherence
Harmful data
Useful coherence
Useful data
Useless

different set of prefetches than the original implementation
making the potential improvement difficult to estimate.

Figure 10 gives the correlation of PC values to harmful
and useful prefetches respectively for the commercial work-
loads studied. Only the commercial workloads are shown to
prevent the graph from becoming too difficult to read. In our
prefetching infrastructure we record the PC value of the
demand miss that initiated a prefetching sequences and than
record which PC values result in harmful or useful prefetches.
With the exception of CDDP in SPECjbb and TPC-B, the
majority of harmful prefetches correlate to only a few PC val-
ues. Approximately 15 PC values result in approximately 95%
of the harmful prefetches. A very similar trend exists for useful
prefetches. These trends are largely bimodal. The PCs that
result in a large percentage of harmful prefetches result in few
if any useful prefetches, and vice-versa.

We have implemented a small predictor table that incre-
ments a counter each time a prefetch is determined to be harm-
ful. A small counter of only a few bits will suffice and PC
values can be hashed to reduce to size of the table without sac-
rificing prediction accuracy. The PC based predictor requires a
warm up period during which all prefetches are allowed to
issue and their outcomes are recorded. After seeing 4 or more
harmful prefetches that are associated with a single PC value

and no intervening useful prefetches, future prefetches that
correspond to that PC are inhibited. Using this scheme, we are
able to achieve modest performance improvement with TPC-H
for CDDP, sequential, and wrong path prefetching. While the
performance gains seen in Figure 11 are not significant, the fil-
ter has successfully eliminated the harmful effects of these
prefetching schemes. Implementing these prefetching algo-
rithms can be desirable for single processor performance and
with the addition of this predictor, the same algorithms will be
performance neutral when put in a multiprocessor configura-
tion. SPECjbb, TPC-H and Barnes are shown in Figure 11 as
they suffered the most from harmful effects particularly with
CDDP.

Harmful prefetches can also be correlated to the remote
coherence state of the prefetched block. Prefetched blocks that
are in a remote cache in either exclusive or modified state rep-
resent a large percentage of overall harmful prefetches, in
some cases up to 99% of harmful prefetches. Rejecting
prefetches that are in the exclusive or modified state will elim-
inate the majority of harmful prefetches for several algorithms.
Unfortunately, this correlation is not as bimodal as the PC cor-
relation. Rejecting these prefetches will result in rejecting
some useful prefetches as well. For SPECjbb and TPC-H,
rejecting prefetch requests to remote blocks in modified or

FIGURE 9. Accuracy and Coverage of Timely Prefetches.

FIGURE 10. Harmful and Useful Prefetch Correlation to Program Counter values of prefetch initiating miss.

Coverage

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

SPECjbb TPC-B TPC-H Barnes Ocean

cddp
stride
wp
excl

Accuracy

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

SPECjbb TPC-B TPC-H Barnes Ocean

0

20

40

60

80

100

120

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Number of PC values

P
er

ce
nt

of
to

ta
lH

ar
m

fu
lP

re
fe

tc
he

s

specjbb CDDP TPC-B CDDP
tpch CDDP specjbb seq.
TPC-B seq specjbb WP
TPC-B WP tpch WP
specjbb excl tpcb excl
tpch excl

0

20

40

60

80

100

120

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Number of PC values

P
er

ce
nt

of
T

ot
al

U
se

fu
lP

re
fe

tc
he

s

specjbb CDDP TPC-B CDDP
tpch CDDP specjbb seq
TPC-B seq tpch seq
specjbb WP TPC-B WP
tpch WP specjbb excl
tpcb excl tpch excl

modified clean, will overcome much of the performance deg-
radation seen in the CDDP naive case, however, there is no
performance improvement over the baseline as a significant
percentage of useful prefetch requests are also rejected.

Overall, the PC based predictor does a better job of elimi-
nating harmful effects as it allows nearly all of the useful
prefetches to still be issued. The PC base predictor inhibits
prefetches locally, whereas in the coherence state filtering
scheme, a prefetch request must still be sent out on the bus
thereby consuming additional bandwidth and resources
(MSHRs) that are left available for demand references in the
PC based scheme.

6. Related Work

Some work has been done to study prefetching in multi-
processor systems. A significant body of work exists that looks
at compiler based prefetching scheme for multiprocessors
[15], [23], [24]. Other work has been done to devise hybrid
software/hardware prefetching schemes [27]. We leave the
study of software and hybrid schemes to future work. Our
work differs from these studies in the workloads characterized
as well as the classification of prefetches for different algo-
rithms rather than focusing solely on performance and changes
in a miss rates.

Work by Wallin et al. [26] explores the effect of one
prefetching strategy on both scientific and commercial work-
loads. They draw two main conclusions in their work; first,
that prefetching shared lines is harmful because it aggravates
communication misses which are costly, and, second, that
prefetching schemes that introduce large amounts of additional
coherence traffic also degrade performance. They explore a
method they call bundled capacity prefetching to reduce the
amount of coherence traffic required for several cache lines
while still prefetching a substantial amount of data. Our work
supports part of their conclusion that prefetching shared cache
lines can be bad, specifically the conclusion that prefetching
frequently modified lines can be harmful.

Stride and sequential prefetching have been studied in a
cache coherent NUMA architecture with a directory based pro-

tocol and an off chip second level cache [7]. This work used a
different set of workloads and a different system configura-
tion. One interesting conclusion they draw is that sequential
prefetching performs equivalently if not better than stride
prefetching in many cases and requires significantly less hard-
ware overhead.

Garzaran et al. [8] present some characterization of load
patterns for the SPLASH-2 benchmarks. According to their
findings, these benchmarks are dominated by regular access
patterns, namely scalar, sequential and stride patterns. These
patterns are not nearly so prominent in commercial workloads
necessitating further characterization to understand the best
prefetching algorithm.

Tullsen et al. presents characterization data for compiler
directed prefetching in shared memory multiprocessors run-
ning scientific applications [23]. With the rise of commercial
workloads as a dominant application for multiprocessor sys-
tems, this work needs to be expanded to characterize the
effects of prefetching on this class of applications. Our work is
able to provide additional insight over this work as we use full
system simulation where Tullsen et. al. used trace driven simu-
lation. They emulate a software prefetching algorithm with
perfect knowledge of non-shared data misses and simulate
that. Our idealized study achieves similar goals for hardware
based prefetching, only recording the effects of prefetches that
are not harmful.

Neighborhood prefetching is a scheme that attempts to
glean the benefits of sequential, stride and exclusive prefetch-
ing [11]. They do this by associating a neighborhood of lines
with each miss and prefetching those lines. Lines to prefetch
are also chosen based on the instruction that missed. Included
in their table are two thresholds that are used to cull out harm-
ful prefetches; however, they do not quantify the harmful
prefetches. Their results reveal that while their prefetching
scheme removes a substantial number of misses in all cases,
the removal of those misses does not always translate into sub-
stantial performance improvement.

7. Conclusions

In this work, we have developed a multiprocessor prefetch
traffic and miss taxonomy that builds on an existing uniproces-
sor taxonomy. Our taxonomy presents 29 interactions of
prefetches with both the prefetching and remote processor that
are of interest in evaluating a prefetch algorithms effective-
ness. Only 9 interactions were necessary to develop a complete
uniprocessor taxonomy [19]; this increase in interactions is
indicative of the increase in complexity associated with multi-
processor prefetching. In addition to enumerating the 29 dif-
ferent interactions, we also present 2 state transition diagrams
that summarize the characteristics of prefetches we are inter-
ested in. This means of classifying prefetches leads to a better
understanding of the effects of prefetching on the remote pro-
cessors in the system as well as on the prefetching processor.

Naive implementations of these prefetching algorithms

FIGURE 11. Performance of Program Counter Prediction Technique.

0.96

0.98

1

1.02

1.04

1.06

1.08

SPECjbb TPC-H Barnes

N
o

rm
al

iz
ed

C
yc

le
C

o
u

n
t

base
cddp-naïve
cddp-pred
seq-naive
seq-pred
wp-idealized
wp-pred

result in either insignificant performance improvement or deg-
radation. Specifically, the potential for performance degrada-
tion makes implementing a prefetch algorithm in a
multiprocessor system a risky proposition. However, this does
not have to be the case. With increased knowledge and some
additional complexity, these naive prefetching algorithms can
be modified to yield significant performance improvement for
a few benchmarks and eliminate the performance degradation
and provide modest improvement for the remaining bench-
marks. For future work, we plan to modify the prefetching
algorithms studied here to achieve performance similar to the
upper bound as well as study additional hardware and software
algorithms that have been shown to be successful in uniproces-
sor simulations.

8. References

[1] Alaa R. Alameldeen and David A. Wood. Variability in architec-
tural simulations of multi-threaded workloads. In Proceedings of
the 9th Annual International Symposium on High Performance
Computer Architecture, 2003.

[2] David N. Armstrong, Hyesoon Kim, Onur Mutlu, and Yale N.
Patt. Wrong path events: Exploiting unusual or illegal program be-
havior for early misprediction detection and recovery. In MICRO-
37: Proceedings of the 37th International Symposium on Microar-
chitecture, pages 119–128, 2004.

[3] Stanford SPLASH Benchmarks. SPLASH benchmarks. http://
www-flash.stanford.edu/apps/SPLASH/.

[4] Harold Cain, Kevin Lepak, Brandon Schwarz, and Mikko H. Li-
pasti. Precise and accurate processor simulation. In Workshop On
Computer Architecture Evaluation using Commercial Workloads,
February 2002.

[5] Robert Cooksey, Stephan Jourdan, and Dirk Grunwald. A state-
less, content-directed data prefetching mechanism. In Proceedings
of the Tenth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-X),
pages 279–290, October 2002.

[6] Fredrik Dahlgren and Per Stenstrom. Sequential hardware
prefetching in shared-memory multiprocessors. IEEE Transactions
on Parallel and Distributed Systems, 6(7):733–746, July 1995.

[7] Fredrik Dahlgren and Per Stenstrom. Evaluation of hardware-
based stride and sequential prefetching in shared-memory multipro-
cessors. IEEE Transactions on Parallel and Distributed Systems,
7(4):385–398, April 1996.

[8] M.J. Garzaran, J.L. Briz, P.E. Ibanez, and V. Vinals. Hardware
prefetching in bus-based multiprocessors: Pattern characterization
and cost-effective hardware. In Proceedings of Parallel and Dis-
tributed Processing 2001, pages 345–354, February 2001.

[9] Edward H. Gornish, Elana D. Granston, and Alexandr V. Veiden-
baum. Compiler-directed data prefetching in multiprocessors with
memory hierarchies. In Proceedings of the 4th international confer-
ence on Supercomputing, pages 354–368, 1990.

[10] Alexander Klaiber and Henry M. Levy. An architecture for soft-
ware-controlled data prefetching. In Proceedings of the 18th Annu-
al International Symposium on Computer Architecture, pages 43–
53, 1991.

[11] David M. Koppelman. Neighborhood prefetching on multiproces-
sors using instruction history. In IEEE PACT, pages 123–132, 2000.

[12] D.A. Koufaty, X. Chen, D.K. Poulsen, and J. Torrellas. Data for-

warding in scalable shared-memory multiprocessors. In Proceed-
ings of the 9th International Conference on Supercomputing, pages
255–264, 1995.

[13] Kevin M. Lepak, Harold W. Cain, and Mikko H. Lipasti. Re-
deeming ipc as a performance metric for multithreaded programs.
In Proceeding of 12th International Conference on Parallel Archi-
tectures and Compilation Techniques, pages 232–243, 2003.

[14] Chi-Keung Luk and Todd C. Mowry. Compiler-based prefetching
for recursive data structures. ACM SIGOPS Operating System Re-
view, 30(5):222–233, December 1996.

[15] Todd C. Mowry. Tolerating latency in multiprocessors through
compiler-inserted prefetching. ACM Transactions on Computer
Systems, 16(1):55–92, February 1998.

[16] Onur Mutlu, Hyesoon Kim, David N. Armstrong, and Yale N.
Patt. Understanding the effects of wrong-path memory references
on processor performance. In Third Workshop on Memory Perfor-
mance Issues, 2004.

[17] Richard L. Oliver and Patricia J. Teller. Dynamic and adaptive
cache prefetch policies. In Proceeding of the IEEE International
Performance, Computing and Communications Conference, pages
509–515, February 2000.

[18] Jim Pierce and Trevor N. Mudge. Wrong-path instruction
prefetching. In International Symposium on Microarchitecture,
pages 165–175, 1996.

[19] Viji Srinivasan, Edward S. Davidson, and Gary S. Tyson. A
prefetch taxonomy. IEEE Transactions on Computers, 53(2):126–
140, February 2004.

[20] Systems Performance Evaluation Cooperative. SPEC bench-
marks. http://www.spec.org.

[21] J.M. Tendler, J.S. Dodson, Jr J.S. Fields, H. Le, and B. Sinharoy.
Power4 system microarchitecture. IBM Journal of Research and
Development, 46(1):5–26, 2002.

[22] Transaction Processing Performance Council. TPC benchmarks.
http://www.tpc.org.

[23] Dean M. Tullsen and Susan J. Eggers. Effective cache prefetching
on bus-based multiprocessors. ACM Transactions on Computer
Systems, 13(1):57–88, February 1995.

[24] D.M. Tullsen and S.J.Eggers. Limitations of cache prefetching on
a bus-based multiprocessor. In Proceedings of ISCA-20, pages 278–
288, New York, 1993.

[25] Steven P. Vanderwiel and David J. Lilja. Data prefetch mecha-
nisms. ACM Computing Surveys, 32(2):174–199, June 2000.

[26] Dan Wallin and Erik Hagersten. Miss penalty reduction using
bundling capacity prefetching in multiprocessors. In Proceeding of
the International Parallel and Distributed Processing Symposium
(IPDPS’03), April 2003.

[27] Zhenlin Wang, Doug Burger, Kathryn S. McKinley, Steven K.
Reinhardt, and Charles C. Weems. Guided region prefetching: A
cooperative hardware/software approach. In Proceedings of ISCA-
2003, June 2003.

[28] S. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological consid-
erations. In Proceedings of the 22th International Symposium on
Computer Architecture, June 1995.

Appendix A

The following tables present our expansion of the PTMT.
The tables indicate which prefetches cause additional local
traffic and misses in a format similar to the original PTMT.
Each table describes the subsequent accesses to prefetched line
A by the local processor and remote processors, and the subse-
quent access to line B which was replaced by the incoming
line A. Each combination of actions has the corresponding
state from the state transition diagrams shown above in
Figures 4 and 5 in parentheses; where necessary, coherence
and data state traffic are considered separately.
• Cases 2 and 3 show the difference between a write hit and a read

hit on a read prefetched line. While the data transfer is useful, an
additional coherence request is still required to gain write permis-
sion in case 2.

• Cases 4 and 5 highlight the notion that timeliness of a prefetch is
important from a remote perspective. The timeliness of the local
reference with respect to the remote reference determines
whether a prefetch is harmful or useful. This notion of timeliness
is not incorporated in the uniprocessor prefetch taxonomy.

• Cases 5 and 6 represent the purely harmful prefetches. These
prefetches could later be locally referenced (resulting in a miss)
or they could be useless.

• Case 7 represents conflict/useless prefetches. The additional local
traffic caused by these prefetches is the same as presented in the
PTMT [19].

• Case 8 represents conflict/useful prefetches. These prefetches do
not introduce any remote harmful transitions but do require addi-
tional data and coherence traffic to reinstall line B in the cache.

• Case 9 and 10 are the most harmful of the read prefetches. These
cases evict a useful line from the local cache and downgrades the
remote line which subsequently sees a write.
Table 5 looks at the effects of write prefetches for the

cases where the prefetched line is not present in the cache. In

these cases write prefetches, acquire both the data and owner-
ship of the line. Column 5 in Table 5 and columns 4 and 5 in
Table 6 convey the change in coherence and data traffic and
whether a miss is saved (-1), induced (1) or neither (0) due to
the prefetch.
• Case 11 is useful because a write hit occurs in the prefetching

processor before any reference to the line in the remote processor
or before a conflicting reference in the local processor. Specula-
tively issuing this store was successful and should be allowed by
any mechanism that attempts to filter harmful prefetches.

• Cases 12, 13, and 14 are harmful to the remote processor’s perfor-
mance because the line is invalidated before the remote processor
is finished reading or writing it. Case 12 is labeled as data useful
because had the write prefetch been converted to a read prefetch,
it would have not caused any harm to the remote processor.

• Cases 17 and 18 are conflict harmful prefetches because they
have invalidated the remote processor’s copy of the line rather
than just downgraded exclusive access. Case 17 does not induce
additional coherence traffic because the remote line previously
existed in the shared or owned state in the remote cache and
would have required an upgrade request to write the line in the
base case.
Table 6 also looks at the effects of write prefetches; how-

ever, for the cases presented in this table the prefetched line is
already present in the prefetching cache in either the shared or
the owned state. In this case, exclusive prefetching only
prefetches ownership and not data. The column that considers
the next reference to line B, the line replaced by prefetch A is
removed from Table 6 because when the line is already present
in the shared or owned state in the prefetching cache, the
notion of conflicting references does not exist.
• Cases 19 and 20 represent harmless/useless prefetches. The first

because there is no subsequent demand reference to the line and
the second because all subsequent references are reads, rendering
the upgrade transaction issued by the prefetch unnecessary.

Table 4: MPTMT Read Prefetches

Case
Prefetched block A in local

cache
Reference to block B in local

cache (replaced by A)

Remote access to A (in E
or M state before

prefetch)

Caused
Additional
Coherence

Transaction

Classification

1 Replaced due to conflict/capacity Replaced in base case No reference or Read no Harmless/Useless(1)

2 Write Hit Replaced or hit (later in logical
time than demand reference to A)

No reference no Useful Data (2)
Useless Address (1)

3 Read Hit Replaced in base case No reference or Read no Useful (2)

4 Read Hit Replaced in base case Write hit (ordered later than
local reference to A)

no Useful (2)

5 Hit (later in logical time than
remote reference to A)

Replaced in base case Write Yes Harmful(3)

6 Replaced due to conflict/capacity Replaced in base case Write Yes Harmful(3)

7 Replaced due to conflict/capacity Miss (hit in base case) No reference or Read no Conflict/Useless(4)

8 Hit (later in logical time than refer-
ence to B)

Miss (hit in base case) No reference or Read no Conflict/useful(5)

9 Replaced due to conflict/capacity Miss (hit in base case) Write Yes Conflict/Harmful(6)

10 Hit (later in logical than remote
reference to A)

Miss (hit in base case) Write Yes Conflict/Harmful(6)

• Cases 21, 22, and 23 distinguish between data and coherence
degrees of harmfulness. In these three cases, the coherence traffic
is useless because either there is no subsequent reference or the
reference is a read. The invalidation of data in the remote proces-
sor is harmful though because the remote processor subsequently
reads the line again.

• Cases 24 and 25 are the two useful cases because the local pro-
cessor sees its reference before the remote processor. Delaying
the prefetch in case 27 would turn it into a prefetch of type 25.

• Cases 26, 27, 28 and 29 are harmful. Cases 28 and 29 are harmful
because of the ordering of the remote write with respect to the
local write. Delaying the write prefetch could prevent this harm-
ful effect.

Table 5: MPTMT Write Prefetches. Remote interactions remote blocks in present in the remote cache and the block initially invalid in the local
prefetching cache

Case
Next reference to Prefetch A

in local cache

Next reference in local
cache to block B (replaced

by A)

Next remote access to A (valid
before prefetch)

Remote
Address/

Data/Miss
Classification

11 Write Hit Replaced or hit (later in logi-
cal time than reference to A)

Read or Write Hit (later in logical
time than local reference to A)

0/0/0 Useful (2)

12 Read Hit Replaced or hit (later in logi-
cal time than reference to A)

Read Hit (later than local refer-
ence to a)

1/1/1 Useful Data (2)
Harmful Address (3)

13 Hit (later in logical time than
remote reference)

Replaced or hit (later in logi-
cal time than reference to A)

Read or Write (Remote cache in
O or S prior to prefetch)

0/1/1 Useless Address (1)
Harmful Data (3)

14 Hit (later in logical time than
remote reference)

Replaced or hit (later in logi-
cal time than reference to A)

Read or Write (Remote cache in
E or M prior to prefetch)

1/1/1 Harmful (3)

15 Never demand referenced Miss (Hit in base case) No reference 0/0/1 Conflict/Useless (4)

16 Hit (later in logical time than
reference to B)

Miss (Hit in base case) No reference 0/0/0 Conflict/Useful (5)

17 Never demand referenced Miss (Hit in base case) Write (Remote cache in O or S
prior to prefetch)

0/1/1 Conflict/Harmful (6)

18 Never demand referenced Miss (Hit in base case) Read or Write (Remote cache in
E or M prior to prefetch)

1/1/1 Conflict/Harmful (6)

Table 6: MPTMT Write Prefetches. The local cache already has a shared or owned copy at the time the prefetch is issued

Case
Next reference to Prefetch A (S or

O state before prefetch) in local
cache

Next remote access to A
(valid before prefetch)

Remote
Coherence/
Data/Miss

Local Coherence/
Data/Miss

Classification

19 No reference No reference 0/0/0 1/0/0 Harmless/Useless (1)

20 Read No reference 0/0/0 1/0/0 Harmless/Useless (1)

21 No reference Read 1/1/1 1/0/0 Address Useless (1)
Data Harmful (3)

22 Read Read 1/1/1 1/0/0 Address Useless (1)
Data Harmful (3)

23 Write (ordered later than remote ref-
erence to A)

Read 1/1/1 1/0/0 Address Useless (1)
Data Harmful (3)

24 Write Read (ordered later than local
reference to A)

0/0/0 0/0/-1 Useful (2)

25 Write Write (ordered later than local
reference to A)

0/0/0 0/0/-1 Useful (2)

26 No reference Write (remote cache in O or S
prior to prefetch)

0/1/1 1/0/0 Harmful (3)

27 No reference Write (remote cache in E or
M prior to prefetch)

1/1/1 1/0/0 Harmful (3)

28 Write (ordered later than remote ref-
erence to A)

Write (remote cache in O or S
prior to prefetch)

0/1/1 1/0/0 Harmful (3)

29 Write (ordered later than remote ref-
erence to A)

Write (remote cache in E or
M prior to prefetch

1/1/1 1/0/0 Harmful (3)

