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Abstract
Approximate computing recognizes that many applications

can tolerate inexactness. These applications, which range
from multimedia processing to machine learning, operate on
inherently noisy and imprecise data. As a result, we can trade-
off some loss in output value integrity for improved processor
performance and energy-efficiency. In this paper, we introduce
load value approximation. In modern processors, upon a load
miss in the private cache, the data must be retrieved from main
memory or from the higher-level caches. These data accesses
are costly both in terms of latency and energy. We implement
load value approximators, which are hardware structures that
learn value patterns and generate approximations of the data.
The processor can then use these approximate data values
to continue executing without incurring the high cost of ac-
cessing memory. We show that load value approximators can
achieve high coverage while maintaining very low error in the
application’s output. By exploiting the approximate nature of
applications, we can draw closer to the ideal memory access
latency.

1. Introduction
Approximate computing is an emerging paradigm for energy-
efficient processor design. It recognizes that a wide range
of commercial, multimedia and scientific applications are in-
herently approximate. That is to say, they operate on noisy
data and perform inexact computations. These applications—
which range from audio and video processing to recognition
and mining applications—can tolerate some error in their out-
put values. This allows processor designers to trade-off data
value integrity for better performance and low power. Re-
cent work has proposed ideas for accelerating approximate
computations [1, 10], relaxing synchronization [22, 26] and
efficiently storing approximate data [15, 24].

Though these innovations improve energy-efficiency, the
memory wall persists in modern multiprocessors. Signifi-
cant attention has been paid to caches and networks-on-chip
(NoCs), which lie on the path to memory, contributing to the
latency of accessing application data. Unfortunately, high-
performance caches and NoCs tend to be power-hungry, to-
gether consuming as much as 33% of the chip power bud-
get [25]. Cache power [18] and NoC power [3] are expected
to grow infeasibly high if current designs are naively scaled
with increasing core counts. Our work aims to exploit the
approximate nature of applications to minimize the latency
and energy of accessing data in the memory hierarchy.

In this paper, we introduce load value approximation. Since
many applications can tolerate inexactness, their memory data
can be approximated. In traditional processors, upon a load
miss in the private L1 cache, the data must be retrieved from
the next-level caches or from main memory. Cache access
combined with the long latency of traversing the NoC results
in many cycles between the request and receipt of data by the
processor. We propose the use of a load value approximator,
a hardware mechanism that estimates memory values. By
approximating the load value on a cache miss, the processor
can immediately proceed without waiting to receive the data.

Load value approximation follows from previous work on
load value prediction [4, 6, 12, 13, 14]. Applications have been
found to exhibit value locality; they tend to reuse common
values in memory. This is typically due to runtime constants
and redundancy in real-world input data sets [13]. Unfortu-
nately, load value prediction introduces significant complexity
in supporting speculative values and performing rollbacks
upon mispredictions. Martin et al. note that special care must
be taken when implementing value prediction on multiproces-
sors to avoid breaking the memory consistency model [16].
Furthermore, traditional load value predictors tend to exhibit
low coverage and accuracy with floating-point data [12]. Since
floating-point values are represented with fine precision, even
small variations in their values are treated as mispredictions.
Our work aims to overcome these challenges. By approxi-
mating values instead of strictly predicting them, we can not
only achieve greater coverage and accuracy but also eliminate
the need for speculation and rollbacks. Load value approxi-
mation effectively enables us to approach the ideal latency of
accessing memory.

Our work makes the following contributions:
• We propose load value approximation and investigate its

feasibility on a diverse set of applications.
• We show that we can approximate the values of 88.80%

of load instructions while maintaining low output error of
2.87% on average (no more than 7.02%).

2. Background

2.1. Approximate Computing

Approximate computing refers to applications whose outputs
are not restricted to a single "correct" value. For example,
recognition and mining applications usually produce a range
of acceptable solutions instead of a unique solution [17]. Sim-
ilarly, the outputs of audio, video and image processing can
tolerate small variations that are not perceptible to the user [7].
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Figure 1: Approximate and precise dynamic loads.

To exploit these types of applications, researchers have pro-
vided programming and ISA support for approximate compu-
tations [2, 9]. In our evaluations, we use EnerJ, a framework
that allows programmers to declare data as either precise or
approximate [23]. In applications provided by EnerJ, Figure 1
shows that on average, 74.3% of all dynamic loads access
approximate data1. This demonstrates significant opportunity
for employing load value approximation.

Since approximate data can tolerate loss in value integrity,
they can be stored more efficiently. As demonstrated by
drowsy caches [11], the supply voltage of SRAM cells can
be reduced for low power at the cost of potential bit failures.
Approximate data in DRAM can be refreshed at lower rates,
saving energy while increasing the likelihood of data corrup-
tion [15]. Sampson et al. improve PCM performance and
lifetime by reducing write precision and reusing failed cells
for storing approximate data [24]. Though these techniques
allow for more efficient storage, our work instead aims to
minimize both the latency and energy of fetching data from
memory.

Floating-point operations can be made more energy-
efficient by using fewer mantissa bits, resulting in modest
imprecision [27]. This also improves the value locality of
floating-point data, since the loss in precision yields more
identical values [1]. As we show later in Section 3, we exploit
this imprecision to maximize the coverage and accuracy of
load value approximation. Sreeram and Pande have explored
approximate value locality [26]. However, their work targets
approximate store instructions instead of loads in order to
reduce conflicts in software transactional memory. This is sim-
ilar to relaxed synchronization, which selectively allows races
to occur, thus trading off output error for faster execution [22].
Our work instead focuses on the approximate value locality of
load instructions.

2.2. Load Value Prediction

Value locality is the notion that data values are likely to be
similar to previously seen values [13]. This has led to extensive
research on designing load value predictors [4, 6, 12, 14]. In
these schemes, upon a load miss in the L1 cache, a request is

1Simulation details can be found in Section 4.

sent to fetch the data from the next level of memory. Instead of
waiting for the data, the predictor generates a value and allows
the processor to continue executing instructions speculatively.
When the data arrives, the prediction is validated against the
actual value. If they do not match, the processor must roll
back the speculatively executed instructions.

Implementing load value prediction is challenging; it intro-
duces high complexity for managing speculative values and
adds the risk of costly rollbacks when prediction accuracy is
low. Due to the long latencies of cache misses, processors
must be equipped with large buffers to store all speculative
values since they need to be validated later. Upon a mispre-
diction, the processor must also be able to quickly restore its
registers and undo all speculative modifications to memory,
either in the store queue or in the L1 cache. Furthermore, in
multiprocessors, it is possible for another thread to modify a
value that has been speculated, resulting in complications with
the memory consistency model [16].

It is important for load value predictors to achieve both high
coverage (predicted loads / total loads) and high accuracy
(correctly predicted loads / predicted loads) to maximize the
performance gain. Unfortunately, coverage and accuracy tend
to be low when predicting floating-point values [12]. Since
predicted values need to be exactly identical to the actual
values, even small variations in floating-point precision result
in costly rollbacks. These challenges of implementing load
value prediction can be mitigated by taking advantage of the
approximate nature of applications.

3. Load Value Approximation
Load value approximation estimates data values to save the
processor from needing to retrieve the actual values from
memory. These approximate values must be accurate to main-
tain low error in the application’s output. Figure 2 shows an
overview of load value approximation. When a load X misses
in the private cache (1), the load value approximator generates
X_approx (2). The processor assumes that this is the actual
value of X and proceeds with its execution (3a). A request is
still sent from the private cache to the next level of the mem-
ory hierarchy to retrieve X_actual (3b). This happens off the
critical path of the application’s execution; the processor does
not need to wait for the actual data. X_actual is then used to
train the approximator for better accuracy (4).

The load value approximator effectively acts as an inter-
mediary between the private cache and the next level of the
memory hierarchy, accessing data on the processor’s behalf.
It is not a storage element but rather a learning mechanism
that learns the values in memory. Unlike a cache, the approxi-
mator is tagged and indexed by either the instruction address,
recently seen data values, or both. This allows load value
approximation to scale well with the large data sets of current
applications.

Unlike value prediction, load value approximation does not
require speculative execution. Since approximate computing
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Figure 2: Load value approximation overview.

applications can tolerate output error, the values generated
by the approximator do not need to be validated against the
actual values in memory. This eliminates rollbacks and takes
the memory access off the critical path, allowing the processor
to execute with near-ideal memory latency. This also offers
opportunity for energy savings. Low-power techniques—such
as heterogeneous NoCs [19] and memory modules [21]—can
be employed when accessing approximate data in memory
since they are off the critical path. Furthermore, as shown
in Figure 2 (4), the main purpose of fetching approximate
data is to train the approximator. By employing confidence
estimators, we can selectively decide not to fetch the data at
all if the approximator is deemed sufficiently accurate, thus
saving energy. These ideas will be explored in future work.

3.1. Context-Based Approximator

In this paper, we focus on how to design an accurate load
value approximator that can maintain low output error. In
traditional value predictors, the values of the most recent loads
provide the context for deriving the prediction. The context
can serve either as an index into a prediction table or as a
value buffer from which we select a prediction [4]. In our
approximator design, global context (values from all load
instructions) serves as the index while local context (values
per load instruction) serves as the value buffer. Figure 3 shows
the general structure of our load value approximator. A global
history buffer (GHB) stores the most recent load values in the
processor. This provides the global context, which has been
shown to improve accuracy since it incorporates global control
path information [20]. Our approximator uses a direct-mapped
table, indexed and tagged by a hash h of the instruction address
and the values in the GHB. Each table entry contains a local
history buffer (LHB), which stores the most recent load values
for the entry’s tag. This provides the local context and is used
in some function f to generate an approximate value. The
processor then uses this value to continue executing.

Global Context. The global context and the instruction
address are hashed together to index into the table. Any hash
function h can be used; for example, h can be the exclusive-or
of the instruction address with each value in the GHB. The
ideal size of the GHB varies per application; we evaluate
different GHB sizes in Section 5.1. It can be challenging to
train the approximator with floating-point context. Due to their
fine precision, floating-point values that are approximately
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Figure 3: Context-based load value approximator.

similar but not exactly identical end up indexing into different
table entries. To address this, we can reduce the number
of mantissa bits in the GHB to improve floating-point value
locality [1]. Though this introduces imprecision in the global
context, it can map approximately similar values to the same
table entries.

Local Context. To generate an approximate value, each entry
stores the tag of hash h and the local context, which tracks the
most recently seen values for that tag. The ideal LHB size may
vary; we evaluate different sizes in Section 5.2. In a traditional
load value predictor, a selection mechanism simply picks one
of the values in the LHB as the prediction [5]. Load value
approximation extends this to use any function f to generate
a more educated estimate. For example, f can compute the
average of the LHB values. Unlike value prediction, value
approximation does not trigger a rollback if the generated
value does not exactly match the actual value in memory; the
generated value only needs to be approximately close enough
that the error in the application’s final output is low.

Value Delay. As in value prediction, an important chal-
lenge in implementing context-based approximators is value
delay [29]. Value delay occurs when the actual values of pre-
ceding loads have not yet been retrieved and inserted into the
history buffers. As a result, the approximator must generate an
estimate based on older (potentially stale) values in the GHB
and LHB, limiting its accuracy. This is a significant problem
for traditional load value predictors. Say we have a load miss
on A; a value prediction is made, and the processor saves its
state and enters speculative execution. Now if we encounter a
load miss on B, the value prediction for B may be less accurate
since the predictor has not yet been trained with the actual
value of A. Unfortunately, value predictors typically only save
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Word size 8 bytes
Table size 2048 entries

Value delay 4 load instructions
Hash h XOR (inst addr, GHB[0], GHB[1], ...)

Function f AVERAGE (LHB[0], LHB[1], ...)

Table 1: Default parameters for load value approximator.

the processor state on the first load miss (A) to keep complexity
low [6]. Thus if B is mispredicted—which is likely to happen
due to value delay—the processor must rollback to A, even if A
was predicted correctly. Value delay is more tolerable for load
value approximation since rollbacks are eliminated. However,
value delay still affects the accuracy of the approximator; we
evaluate this in Section 5.3.

4. Methodology

We implement load value approximation using the EnerJ
framework [23]. We evaluate benchmarks provided with
EnerJ—fft, lu, raytracer, smm and sor—which are represen-
tative of common scientific and multimedia workloads in ap-
proximate computing. We use the default inputs with two
exceptions: we input a musical audio sample for fft and a
DNA electrophoresis sparse matrix [8] for smm. We evaluate
the quality of each benchmark’s final output using the error
metrics defined by Sampson et al. [23], which measure the
differences of the final output values when running with and
without load value approximation. For our EnerJ applications,
output error below 10% is generally acceptable [24]. Note that
all of our error results pertain to the application’s final output,
not the individual error of each load instruction.

The applications in the EnerJ framework have already been
modified with programmer annotations to distinguish approx-
imate data from precise data. We modify the EnerJ runtime:
upon a load access to approximate data, the runtime returns
a value generated by our approximator instead of the actual
value in memory. In our evaluations, we invoke the approxima-
tor only on load accesses to arrays stored in DRAM; we ignore
data structures that are small enough to fit in the private L1
cache. These loads make up 74.3% of all dynamic loads (both
precise and approximate), as shown previously in Figure 1.

Table 1 lists our default parameters for implementing the
load value approximator. Though we use exclusive-or and
average for h and f respectively, other functions may be used
for approximation. To simulate a value delay of 4, we impose
the restriction that each invocation of the approximator is
unaware of the values of the last 4 loads. We explore different
value delays in Section 5.3. Our load value approximator
uses a 2048-entry table, a typical size used in value predictor
implementations [4, 6].

5. Evaluation

We evaluate the feasibility of implementing load value approx-
imation. We explore the approximator design space and show
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(a) Output error.
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Figure 4: Varying size of GHB (LHB-1).

that it is possible to achieve high coverage while maintaining
low output error. Since the approximator table is tagged, cov-
erage is defined as the fraction of approximate loads that hit
in the table. This ensures that destructive aliasing only affects
coverage and not output error. Our results suggest that there
is great potential in employing load value approximation to
minimize the latency and energy of accessing memory.

5.1. Global Context

Figures 4a and 4b show the output error and approximator
coverage while varying the GHB size. The LHB size is kept
constant at 1, which implements a last value approximator.
With a GHB size of 0, the approximator table is indexed only
by the instruction address. This scenario yields the highest
coverage since the number of static load instructions is typ-
ically small enough to fit inside the 2048-entry table. For
benchmarks fft and sor, a GHB size greater than 0 yields too
much destructive aliasing and thus limits coverage. This is
due to poor floating-point value locality, as discussed in Sec-
tion 3.1. For the other benchmarks, the coverage remains
high, and the output error generally declines as the GHB size
increases. This is expected since a larger GHB provides more
global context information from which the approximator can
make a more accurate estimate. However, the GHB must not
be too large since older values become stale and can actually
degrade the accuracy, as can be seen with lu for GHB sizes
greater than 3.
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benchmark GHB size LHB size approximator size approximator coverage output error predictor accuracy

fft 0 2 49.152 kB 99.77% 7.02% 0.00%
lu 3 1 32.792 kB 71.48% 0.55% 99.90%

raytracer 1 1 32.776 kB 97.44% 2.26% 92.26%
smm 5 1 32.808 kB 75.40% 0.01% 99.70%
sor 0 2 49.152 kB 99.92% 4.50% 0.02%

Table 2: Best approximator configurations for each benchmark.
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Figure 5: Approximator coverage in fft (GHB-5, LHB-1), vary-
ing number of bits removed from mantissa.

As mentioned earlier, approximately similar floating-point
values end up mapping to different entries in the table. With
an infinite-size table, this is not a problem. However, with
only 2048 entries, this can result in low coverage due to de-
structive aliasing. Figure 5 shows how coverage in fft can be
improved by reducing the number of mantissa bits in the GHB
(assuming double-precision floating-point values). Though not
shown, the output error stays below 10% for all imprecision
levels in the figure. The GHB and LHB sizes are fixed at 5
and 1 respectively. With full precision (0 bits removed), the
approximator covers only 16.15% of all approximate loads.
By removing 32 bits from the mantissa, we can dramatically
increase the coverage to 88.02% while maintaining low output
error.

5.2. Local Context

Figure 6 shows how the output error varies with LHB size.
The GHB size is kept constant at 0; the approximator table
is indexed only by the instruction address, and thus coverage
(not shown) is nearly 100% in all cases. Increasing the LHB
size tends to improve accuracy since more local context is
available for making approximations. For lu and smm though,
the error remains high regardless of the LHB size. This is
because the GHB size is held at 0; these benchmarks benefit
from more global context, as shown earlier in Figure 4. Note
that too much local context can lead to stale data. This is
evident in raytracer where a last value approximator (LHB-1)
is sufficient for low error. Some benchmarks—such as fft
and sor—benefit immensely from looking beyond just the last
value. This is because the function f allows us to make better
estimates (in this case, taking the average) using recently seen
values. This is not possible with traditional value prediction
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Figure 6: Output error, varying size of LHB (GHB-0).

since computing an estimate is far less likely to exactly match
the actual value in memory.

Table 2 lists the best configurations (from our experiments)
for each of the benchmarks. The table shows the correspond-
ing output error and approximator coverage. Notice that there
is no single ideal configuration for all benchmarks. This is
expected since each application exhibits its own data value pat-
terns. To address this, load value approximators can employ
dynamic or hybrid schemes to adapt to the application [28].
We leave this to future work.

Table 2 shows that it is possible to implement load value
approximators that achieve high coverage (88.80% on average)
while keeping error low (2.87% on average). The table also
lists the prediction accuracy, if we were to use our approxima-
tor as a traditional value predictor instead. To be considered
accurate for a traditional value predictor, the predicted value
must exactly match the actual value in memory. Despite im-
perfect prediction accuracies—in fact, nearly 0% for fft and
sor—the output error remains very low. This shows how load
value approximation is able to exploit the approximate na-
ture of applications. Though traditional load value prediction
achieves high accuracy with lu, raytracer and smm, load value
approximation is a more attractive solution since it avoids the
high cost and complexity of supporting speculative values and
rollbacks.

5.3. Value Delay

So far, our results have assumed a value delay of 4 load instruc-
tions; the values of the 4 most recent loads are not visible to
the approximator. Figure 7 shows how larger value delays im-
pacts output error, with the best approximator configurations.
With a value delay of 12, the average output error increases
from 2.87% to 4.84%. This is expected since older values in
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varying value delay.

the GHB and LHB are likely to become stale, thus making the
approximator less accurate. Despite this, we see that it is still
possible to maintain low output error (within 10%) even in the
presence of very large value delay.

6. Future Work

In this paper, we focus primarily on the design of load value
approximators and assess the feasibility of load value approx-
imation on different applications. In future work, we first
plan to implement dynamic and hybrid schemes to expand
our design space [28]. We will then focus on evaluating load
value approximation using full-system simulations. This will
allow us to quantify the performance speedup and assess how
closely we approach the ideal memory access latency. Further-
more, as discussed in Section 3, we will implement low-power
techniques—such as heterogeneous NoCs [19] and memory
modules [21]—for accessing approximate data. We can then
quantify the energy savings of load value approximation. Ap-
proximate computing introduces endless research opportuni-
ties for exploiting inexactness and rethinking how approximate
data is accessed from memory.

7. Conclusion

We present load value approximation and evaluate its fea-
sibility across a diverse set of applications. By generating
approximate values, we can avoid the high latency and en-
ergy of fetching data from memory. We explore the design
of load value approximators and show that we can achieve
high coverage of dynamic loads (88.80% on average) while
keeping the output error very low (2.87% on average). Load
value approximation opens up new possibilities for designing
high-performance, energy-efficient processors to accomodate
the immense growth of data sets in emerging applications.
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