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Abstract—Mobile devices are essential in our daily lives. The
hardware and software of these devices differs from their desktop
and server counterparts. Evaluating these devices fairly and
accurately requires special benchmarks. However, the computer
architecture community lacks studies analyzing the performance
characteristics of mobile benchmarks. This paper presents an
extensive workload characterization of commercial mobile bench-
mark suites using several hardware performance counters. We
analyze the temporal behaviours of benchmarks. Our findings
show the diverse load patterns across CPU core clusters. Our
clustering analysis reveals a benchmark subset that reduces
evaluation time by close to 75%, while preserving the richness of
benchmark coverage. This work contributes insights for refining
mobile benchmarking methodologies, providing a valuable com-
pass for researchers navigating the landscape of mobile system
architecture assessments.

Index Terms—Mobile benchmark suites, workload character-
ization, performance evaluation

I. INTRODUCTION

Mobile devices, ranging from smartphones and tablets to
smartwatches, are projected to exceed 18 billion units by
2025 [1]. In comparison, the total number of desktop, laptop
and server computers worldwide is estimated at over 2 bil-
lion [2]. Despite this, a mere 1% of top computer architecture
conference papers in 2018 delved into mobile computing,
highlighting a research gap [3].

Mobile System-on-Chips (SoCs) are distinct from their
desktop and server counterparts. They feature tight integration,
significant heterogeneity [4] and rapid evolution. Accelerators
in mobile SoCs have more than quadrupled in the last decade,
while multiple new CPU designs are released each year [5].
Mobile operating systems (OS) evolve at a comparable pace
to take advantage of new hardware capabilities. One challenge
faced by architects studying mobile SoCs is the absence
of benchmarks specifically designed for evaluating mobile
hardware.

Benchmarks commonly used in the architectural commu-
nity, like SPEC CPU [6] and PARSEC [7], often fall short
in representing real-world mobile applications [8]. They lack
the interactivity, heterogeneity, and reliance on shared libraries
typical of mobile workloads [9], [10]. Academic benchmark
suites targeting the mobile space are often narrowly focused
on specific aspects or domains (e.g., web browsing [10], [11],
augmented reality [12], race events [13], deep learning [14],
etc.), thus limiting their utility. Furthermore, code changes

introduced by new OS and API versions can render them
incompatible [15].

Commercial benchmarks are commonly employed in in-
dustry [16]. However, challenges arise when incorporating
them into academic settings. In contrast to desktop benchmark
suites, these benchmarks lack prior characterization, impeding
computer architects’ understanding of their impact on system
performance. Additionally, these benchmarks are not tailored
for optimal use in system simulations, a common practice in
hardware studies. Their lengthy execution times pose chal-
lenges for the efficient evaluation of new hardware designs.
Closing this gap in mobile benchmark characterization is
essential for fair evaluations of mobile platforms.

In this study, we conduct a comprehensive analysis of
the execution and performance characteristics of commercial
mobile benchmarks. Our objective is to provide researchers
with in-depth insights into the behavioural patterns of these
benchmarks and their effect on mobile hardware. Additionally,
we offer perspectives on the overall similarities and differences
among benchmark suites. This nuanced understanding empow-
ers researchers to judiciously select benchmarks aligned with
their specific requirements, thereby streamlining the evaluation
process.

In summary, we make the following contributions:
• Analysis of the performance characteristics of widely used

commercial mobile benchmark suites.
• Analysis of the temporal behaviours and heterogeneity ex-

hibited by the workloads.
• Assessment of the similarity among individual benchmarks.
• Proposal of a reduced benchmark set, allowing researchers

to reduce evaluation time by up to 75%.

II. MOTIVATION

Commercial mobile benchmark suites provide insights into
how users interact with their mobile phones, offering a realistic
representation of real-world usage scenarios. These bench-
marks, widely adopted by industry to showcase the capabilities
of new devices and remain up-to-date with the latest features
integrated into mobile System-on-Chips (SoCs). As industry
standards, they mirror evolving user behaviours and mobile
hardware.

Existing benchmarks such as SPEC and PARSEC are
designed for traditional computing environments. They fall
short when evaluating the rapidly evolving and heterogeneous
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TABLE I: Commercial mobile benchmark suites analyzed.

Benchmark
Suite Benchmark Names Targeted HW / Workload

3D Mark v2

Slingshot

GPU
Slingshot Extreme

Wild Life

Wild Life Extreme

Antutu v9

CPU CPU

GPU GPU

Mem Memory subsystem

UX Everyday tasks (e.g., data/image
processing, video decoding)

Aitutu v2 - AI-related tasks

Geekbench 5
CPU CPU

Compute GPU

Geekbench 6
CPU CPU

Compute GPU

GFXBench v5

High Level GPU (overall graphics performance)

Low Level GPU (specific graphics performance,
e.g., tessellation)

Stress Test GPU (render quality performance)

PCMark
Storage 2.0 Storage subsystem

Work 3.0 Everyday activities (e.g. browsing,
video/photo editing)

components of modern mobile SoCs. Beyond conventional
CPUs, these SoCs include digital signal processors (DSPs) for
accelerated vector instructions, GPUs dedicated to tasks like
media processing, and AI accelerators tailored for machine
learning applications. The iPhone XS’s A12 chip, for instance,
integrates 42 accelerators [17] with the number steadily rising
in later models [18]. The limitations of traditional benchmarks
highlight the necessity of turning to commercial mobile bench-
mark suites. For researchers, understanding these benchmarks
is crucial. There is presently no comprehensive workload
characterization study of these benchmarks; thus, emphasizing
the need for one.

III. BENCHMARK SUITES: BRIEF OVERVIEW

In our analysis, we include some of the most popular mobile
benchmark suites [19]–[30] (Table I). In this section, we
provide an overview of them.

3DMark Android [31], published by UL, is a benchmark
suite that measures the CPU and GPU performance of mobile
devices. It is composed of two benchmarks, Wild Life and
Slingshot. Both have Extreme versions with higher resolutions,
resulting in a total of four sub-benchmarks. Wild Life runs for
approximately one minute and measures a device’s ability to
provide high levels of performance for short periods of time. It
mirrors mobile games that have short bursts of intense activity.
Slingshot tests a range of graphics API features, such as volu-
metric lighting (i.e., adding lighting effects to rendered scenes)
and instanced rendering (i.e., rendering multiple instances of
a model in a single draw call).

Antutu [32], published by Cheetah Mobile, is an all-around
benchmark suite stressing various hardware components. It is
composed of 4 parts; however, the user cannot execute those
parts individually. Antutu GPU contains five GPU benchmarks.
Three of them, Swordsman, Refinery and Terracotta, have
mobile game-like high-end graphics. The other two, Fisheye
and Blur, are simpler image processing tests. Antutu CPU
contains mathematical operations (e.g., GEMM), common
algorithms (e.g., PNG decoding) and multi-core tests. Antutu
Mem stresses the RAM and the storage subsystem. Antutu UX
includes data processing and data security workloads, image
and video processing, as well as a scroll delay test. Aitutu is a
standalone benchmark, from the creators of Antutu. It focuses
on AI workloads like image classification and object detection.

Geekbench [33], published by Primate Labs, is one of
the most popular mobile benchmark suites. It is designed
to evaluate and compare the performance of devices across
different platforms and operating systems. It is split into
two components, one for testing the CPU and the other for
the GPU. Geekbench 5 CPU contains three parts: integer,
floating point (FP), and cryptography workloads. Geekbench
6 CPU is split into five subsections: productivity, developer,
machine learning, image editing, and image synthesis work-
loads. Geekbench GPU Compute benchmarks evaluate GPU
performance. Geekbench 5 Compute contains 11 workloads,
while Geekbench 6 Compute contains 8 workloads divided in
four categories: Machine Learning, Image Editing, Image Syn-
thesis, and Simulation. Despite the different categorizations,
there are multiple workloads that are shared between the two
versions.

GFXBench [34], published by Kishonti, is a graphics-based
benchmark suite aimed at testing the GPU. It is split into three
categories: High-Level, Low-Level, and Special tests. High-
Level tests stress the GPU in a mobile game-like manner. There
are four graphics scenes: Aztec Ruins, Car Chase, Manhattan,
and T-Rex. Each scene is executed with tweaked settings (e.g.,
resolution, API used) resulting in 19 separate benchmarks. The
Low-Level category consists of 8 benchmarks. They measure
specific performance aspects, like tessellation and texturing.
Special tests measure visual fidelity.

PCMark Android [35], published by UL, is a benchmark
suite used for measuring the performance and battery life of
Android phones and tablets. It comprises of two benchmarks,
Work and Storage. Work is composed of web browsing,
data manipulation, and video, document, and photo editing
workloads. Storage measures IO performance in internal and
external storage, as well as database performance.

IV. WORKLOAD CHARACTERIZATION METHODOLOGY

In this section, we present our experimental setup and explain
our approach in characterizing existing commercial mobile
benchmark suites.
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A. Experimental Setup

Table II presents our experimental system configuration. We
use a Qualcomm Snapdragon 888 Mobile Hardware Devel-
opment Kit [36]. The Snapdragon 888 features a tri-cluster
octa-core Kryo 680 CPU. The top core is a single Kryo 680
Prime processor. The second cluster comprises of three Kryo
680 Gold processors. The third cluster includes four Kryo
680 Silver processors. The first two core clusters feature out-
of-order superscalar designs, while the latter is an in-order
superscalar pipeline. We refer to them as CPU Big, CPU Mid
and CPU Little, respectively. There are 4 MBs of L3 cache
memory that is shared across all clustered cores and 3 MBs of
system-level cache memory.1 It also features an Adreno 660
GPU and an AI engine (AIE) with a Hexagon 780 Processor.
The AIE is intended for compute-intensive multimedia appli-
cations (e.g., video, audio, image processing), neural-network-
related calculations and communications. There are 12 GB of
LPDDR5 RAM and 256 GB of flash storage. The hardware
board has Android 11 installed and is connected to an external
display with a 1920×1080 pixels (Full HD) resolution.

We use Qualcomm’s Snapdragon Profiler [37] to capture
various metrics. The tool’s real-time view option enables us to
capture over 190 hardware performance metrics that cover the
following categories: 1) CPU-related including cores, cache,
and branch predictor information, 2) GPU-related including
cores, shaders, GPU memory, and GPU stalls, and 3) metrics
about the AIE, system memory and temperature.
Benchmark Suites. We have split each suite into individual
benchmarks that users can execute independently, except for
Antutu and GFXBench. The Antutu benchmark consists of four
components, GPU, Mem, CPU, and UX. However, users are
unable to execute them individually; instead, they must run
the entire suite. During Antutu’s execution, micro-benchmarks
from each component are bundled together and executed
consecutively. Given the benchmark’s extended runtime, we’ve
organized the collected statistics into four segments, aligning
with its constituent parts. Regarding GFXBench, we group
its 29 micro-benchmarks into three categories, aligning with
the classification by the benchmark designers, as outlined in
Section III. We ran all benchmarks three times and averaged
their metrics across runs.
Limitations. We briefly describe the limitations of our current
evaluation setup:
1) Our evaluation platform and the tools available preclude the

inclusion of power or thermal information in our analysis.
The absence of a battery and casing in the development
board limits the representativeness of thermal readings for
a mobile platform. Furthermore, conducting power readings
necessitates external hardware, which is not within the
scope of our current capabilities.

2) We are limited in our analysis by the available metrics. As
such, we are unable to broaden our analysis to other IP
components.

1This is an SoC-wide accessible cache (i.e., accessible by all components).

TABLE II: Hardware platform for experiments

Development Board Qualcomm Snapdragon 888 Mobile
Hardware Development Kit

CPU

1x Kryo 680 Prime processor (ARM
Cortex-X1 based) @ up to 3.0GHz (CPU Big)
3x Kryo 680 Gold processors (ARM
Cortex-A78 based) @ up to 2.42 GHz (CPU Mid)
4x Kryo 680 Silver processors (ARM
Cortex-A55 based) @ up to 1.8 GHz (CPU Little)

Cache

CPU Big Core: 64 KB L1 Inst.,
64 KB L1 Data & 1 MB L2

Per CPU Mid Core: 512 KB L2

Per CPU Little Core: 128 KB L2

4 MB L3 (for CPU cores)

3 MB System-level

GPU Adreno 660

AI Engine (AIE) Hexagon 780 Processor

RAM 12GB LPDDR5

Storage 56GB

Manufacturing Process Samsung 5nm low power early (LPE)

OS Android 11

External Display 1920×1080 pixels

TABLE III: Correlation values between metrics.

IC IPC Cache MPKI Branch MPKI Runtime
IC 1

IPC 0.400 1

Cache MPKI -0.228 -0.845 1

Branch MPKI -0.174 -0.672 0.867 1

Runtime 0.588 -0.242 0.460 0.350 1

3) Snapdragon Profiler provides information about total sys-
tem memory usage, including the Android OS and the ser-
vices running. We gathered statistics with the system being
idle and computed the average memory usage. We then
deducted this amount from all process specific information.

V. EVALUATION

A. Metrics

Figure 1 shows the average values of a few important per-
formance metrics for all benchmarks. These metrics are the
Dynamic Instruction Count (IC), Instructions per Cycle (IPC),
Cache Misses per Kilo Instructions (MPKI), Branch MPKI
and Runtimes. We split and colour the benchmarks into 5
groups, based on the clustering in Section VI. Table III shows
the correlation between metrics, calculated using the Pearson
correlation coefficient [38]. The correlation coefficient is an
important measure that quantifies the extent of interconnection
among these metrics. Correlation values of above 0.8 or below
−0.8 are strong positive and negative associations, respec-
tively. Values between |0.4 − 0.8| are moderate associations,
while lesser values indicate that there is no association present.

The dynamic instruction counts of the included bench-
marks are in the order of billions. There is an order of magni-
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tude difference between the smallest benchmark (GFXBench
Special Tests at 1 billion) and the largest one (Geekbench
6 CPU at 57 billion). The average IC is 14 billion. For
comparison, SPEC CPU 2017 benchmarks are in the order of
trillions. [39]. We observe that newer benchmarks tend to have
higher instructions counts (e.g., Geekbench 6 vs Geekbench 5,
3DMark Wild Life vs 3DMark Slingshot).

The IPC metric is a critical measure for assessing the
efficiency and performance of processors. A high IPC is
indicative of high instruction-level parallelism. In general,
a CPU-centric benchmark’s IPC value tends to be higher
than one [40]. In our evaluation platform, the CPU Big core
can theoretically achieve a maximum IPC value of 8 [41].
All benchmarks explicitly targeting the CPU (i.e., Antutu
CPU, Geekbench 5 CPU and Geekbench 6 CPU) have an
average IPC of 1.16. We observe that benchmarks with a focus
on graphics (e.g., GFXBench High Tests) exhibit lower IPC
values, averaging at 0.55. Typically, 3D-graphics applications
employ a strategy of pre-allocating textures anticipated for
imminent use, leading to heightened memory bandwidth usage
and significant occupancy of cache memory space [42], [43].
Our analysis reveals a notable correlation between IPC values
and the utilization of GPU shader cores. We posit that the
diminished IPC values can be attributed to cache contention
arising from the substantial loading of graphics-related data
into the cache. The only outlier is Antutu Mem with an IPC
of 0.45, affected by its high number of cache misses.

Cache misses per thousand instructions (MPKI) is
a strong indicator of data retrieval inefficiency. Similarly,
branch MPKI reflects the efficiency of the processor’s branch
prediction mechanism. Both metrics impact performance by
introducing delays, necessitating data retrieval from slower
memory levels and causing missteps in program execu-
tion. Moreover, both metrics are dependent on the micro-
architectural design choices and intricacies of the SoC. We
capture the misses across all levels of the cache hierarchy.
We see that these metrics have similar trends and they exhibit
negative correlations with IPC.

It is important for researchers to be cognizant of benchmark
runtimes, as they impact the time spent on evaluating new
designs. The average runtime is slightly over 200 seconds.
Dynamic instruction count is frequently used as a predictor
for the runtime of a program.2 However, we see that there
is only a moderate correlation of 0.588 with the benchmark
runtimes, as shown in Table III.

B. Temporal Behaviour

Averaging values across a time series condenses the informa-
tion and offers a succinct summary. While this simplification
aids in clarity, it comes with inherent limitations. It can
obscure nuances and variations present in the complete data.
Examining the entire time series preserves detailed temporal

2We theorize that GFXBench High Level’s long runtime is due to its heavy
use of shaders and texture mapping which is not captured well by the other
statistics.
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Fig. 1: Benchmark metrics. Dash lines show the average
values of each metric.

information, enabling a more granular understanding of work-
load fluctuations and system behaviour.

Figure 2 shows the normalized values of six metrics across
the normalized execution time for all benchmarks. We normal-
ize the values of the metrics to the [0 – 1] range. The highest
values recorded for each metric across all benchmarks serve as
the normalization’s upper bound, while the inverse is true for
the lower bound. Coloured regions indicate a value exceeding
0.5. Table IV shows these metrics with an explanation. We opt
for CPU Load instead of CPU utilization as it incorporates
the frequency the CPU cores are running at. High CPU
utilization levels at low frequencies can be misleading in terms
of the stress the CPU cores are under. Following the same
reasoning, we pick GPU and AIE Load. Percentage Shaders
Busy and Percentage GPU Bus Busy show the amount of
execution time that the GPU Shaders and the GPU bus are
used. We chose these metrics because they collectively serve as
important indicators of heterogeneous components’ behaviour
in a mobile SoC. We can make several observations.

Observation #1: Benchmarks that include multi-core or
multi-threaded components show high CPU load levels.

Geekbench 5 CPU and Geekbench 6 CPU exhibit a spike
in CPU load when the multi-core segment of the benchmark
is running. The single-core part has a significantly lower CPU
load of close to 30% for both benchmarks. Similarly, Antutu
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Fig. 2: Values of various metrics across the normalized runtime of all benchmarks. Coloured regions indicate that a metric’s
normalized value exceeds 0.5. Dash lines show the average values across the entire benchmark execution. 3

CPU contains a multi-core micro-benchmark near the end
that focuses on multi-threading and multi-tasking performance.
The uptick in the beginning of Antutu CPU is due to a general
matrix multiplication (GEMM) routine, commonly used in
benchmarks due to its intensity [44], [45]. Most efficient
matrix multiplication routines are multi-threaded. The steep
increase in CPU load in 3DMark Slingshot and 3DMark
Slingshot Extreme is due a physics tests. This test measures
CPU performance, while minimizing the GPU workload. It
has three levels, successively more intensive, and is highly
multi-thread.

Observation #2: Benchmarks that use the Vulkan API
have lower GPU load than the ones that use OpenGL.

GFXBench benchmarks that use OpenGL have 9.26% higher
GPU load compared to Vulkan ones. This is due to Vulkan
being a more efficient API [46], [47].

3GFXBench Special Test appears to have AIE Load over 50% near the
end of its execution time. The region does not appear coloured due to the
timestamps with high loads not being contiguous.
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TABLE IV: Performance Metrics.

Metric Explanation

CPU Load Load on CPU Core
(CPU Frequency × CPU % Utilization)

GPU Load Load on GPU
(GPU Frequency × GPU % Utilization)

% Shaders Busy Percentage of time that
all Shader cores are busy

% GPU Bus Busy Percentage of time the GPU’s bus
to system memory is busy

AIE Load Load on AIE
(AIE Frequency × AIE % Utilization)

Used Memory Percentage of total system memory used

Observation #3: Usage of GPU resources is not limited
to GPU-related benchmarks.

We observe that GPU shaders are not used exclusively by
benchmarks that include 3D graphics workloads (e.g., 3DMark
and GFXBench). PCMark Work exhibits sustained periods
where the majority of shaders are used. This is attributed to the
video and photo editing workloads that it contains. Similarly,
we see that the percentage of time the GPU memory bus is
busy is not proportional to a workload’s graphical intensity.

Observation #4: Newer benchmarks are not always
more computationally intensive.

Antutu version 9 introduced a new GPU-focused micro-
benchmark, Swordsman, that is executed at the beginning
of the benchmark. It is followed by the Refinery and Ter-
racotta Warriors micro-benchmarks and two short image-
processing micro-benchmarks. The normalized running times
of the benchmarks are 15%, 30%, and 49% of the total
duration of Antutu GPU, respectively. Figure 2 shows that
the CPU load of Antutu GPU spikes at 16% and 49% of the
execution. Both of these moments are not during the newest
benchmark’s execution. Swordsman, Refinery and Terracotta
Warriors have 28%, 31%, and 35% CPU load, respectively.

Observation #5: Benchmarks make little use of AIE.

While there are parts of benchmarks that stress the AIE
more, the average load is just 5%. Antutu UX exhibits short
peaks close to 50% in the scroll delay, webview rendering
and video decode tests. In general, Antutu UX includes photo-
and video-related tests, leading to increased AIE usage. Antutu
CPU’s mathematical functions (e.g., fast Fourier transform
(FFT), map [48]) and the PNG decoding test result in in-
creased load. All the previously mentioned workloads are
encompassed within the domain of DSP tasks, supported by
the AIE. Similarly, 3DMark Wild Life and 3DMark Wild Life
Extreme use FFT operations as part of the post-processing
techniques. Aitutu focuses on AI workloads. It has three
image-oriented tasks, image classification, object detection
and super resolution. We also observe higher AIE load levels
on GFXBench Special tests. They compare a single rendered

frame against a reference frame using a Peak-Signal-to-Noise-
Ratio (PSNR) metric, based on the Mean Square Error (MSE).
It is split into two sections, with the latter doing computations
in higher precision. We theorize that the increase in AIE usage
is due to the computation of the PSNR metric at the end of
each part. Lastly, PCMark Work has an uptick in AIE load
due to the video editing part of the test.

Observation #6: The memory footprint of benchmarks
is moderate.

The average system memory usage across all benchmarks
is 21.6%. This is 2.55GB out of the 11.83GB of system mem-
ory. GPU-oriented benchmarks have higher memory usage
compared to others. Our analysis reveals a strong correla-
tion between utilized memory, the processing load on GPU
shaders, and L1 Texture misses. As highlighted in Section V-A,
benchmarks with intensive graphics demands exhibit elevated
memory occupancy, attributed to the loading of textures. The
highest recorded usage is 4.3GB during the execution of
Antutu GPU. The highest average memory consumption is
3.8GB (34.5%) during the execution of 3DMark Wild Life
Extreme.

In the rest of section, we focus on some interesting bench-
mark behaviour characteristics.

• Antutu UX has high CPU load near the end due to the video
encoding and decoding tests. These micro-benchmarks use
common video formats like H264, H265, VP9 and AV1 [49].
All formats except the last are supported by the SoC’s AIE
component. We speculate that the lack of support for AV1
leads to a considerable increase in CPU load, as it cannot
be processed by the AIE.

• GFXBench High and Low benchmarks have two varieties
of tests, on-screen and off-screen. In the former, the GPU
drawing operations are performed on a region of memory
that goes directly to the display output. This means that
the tests run at a Full HD resolution. In the latter, the
computations in memory are not directed to the display
output. Off-screen rendering is used to generate intermediary
images in computer graphics, like post-processing filters
(e.g., blur). The off-screen tests have various resolutions. All
tests can be executed at Full HD. The Manhattan test can
also be executed at 2K QHD, while Aztec Ruins contain all
previous options and a 4K one. In our tests, we observe that
High level off-screen benchmarks result in a 14.5% increase
in GPU load. Low level off-screen benchmarks exhibit a
62.85% increase.

C. CPU Heterogeneity Analysis

Designing and evaluating mobile SoCs comprehensively is
challenging, due to the heterogeneity of both their hard-
ware components and workloads [50]. It is imperative for
researchers to be aware of the level of heterogeneity exhibited
by mobile benchmarks. Thus, they can ensure the fair and
comprehensive testing of proposed techniques by picking
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Fig. 3: Load levels of CPU core clusters across the sub-benchmarks.

appropriate target workloads.
So far, we have looked into CPU load as one metric that is

the mean of the load of all cores. However, there are 8 cores
in the SoC we are using, divided into 3 clusters. Work is not
spread equally among all these cores and clusters.

In this part of the analysis, we examine the degree of CPU
load exhibited by the benchmarks. Figure 3 shows the results.
We categorize normalized CPU core load metrics into four
levels (each covering 25% of the [0 – 1] range) and count their
occurrences. This is averaged across CPU core clusters, as the
load values for cores belonging to the same cluster are almost
identical. The x-axis indicates the load of the three CPU core
clusters as defined in Table II, while the y-axis represents the
normalized benchmark runtimes. We use colours to represent
the four load levels. Table V shows the average percentage
of execution time each CPU core cluster spends in each load
level across all benchmarks.

Observation #7: Bigger, more powerful cores have
higher load levels than medium cores.

CPU Big has high load levels (i.e., 50% – 100%) sustained
for longer than CPU Mid in all but one of the benchmarks that
they are actively used. In 3DMark Wild Life, GFXBench Low
and GFXBench High both CPU Mid and CPU Big clusters see
minimal use. Aitutu is the only benchmark where the CPU Mid
cluster exhibits high load levels sustained for longer compared
to CPU Big.

Observation #8: GPU tests tend to use only the energy-
efficient cores.

CPU Big and CPU Mid have fewer instances of high load
than CPU Little in all GPU tests (lower row of Figure 3)
The computational demands of GPU-oriented benchmarks can
mostly be satisfied with just the energy-efficient CPU cores.

Observation #9: Workloads tend not to exploit more
than one type of core concurrently [51].

TABLE V: Percentage of execution time spent by the CPU
core clusters in the load levels.

CPU Cluster 0% - 25% 25% - 50% 50% - 75% 75% - 100%
CPU Little 21% 32% 25% 22%
CPU Mid 76% 8% 8% 8%
CPU Big 69% 7% 6% 18%

We observe a consistent load on all CPU core clusters only
in Aitutu, Antutu CPU, Geekbench 6 CPU and Geekbench 5
CPU. As highlighted in Section V-B under Observation #1,
these benchmarks are distinct in having workloads explicitly
designed for multi-core architectures. Among them, the latter
is the only benchmark that exhibits sustained high load levels
in CPU Mid for more than half of its execution time.

Overall, we observe that few benchmarks utilize all CPU
core clusters, even though heterogeneous mobile architectures
have existed commercially since at least 2011 [52], [53]. Using
the cores in the CPU Little cluster proves adequate in most
cases. There is potential for future benchmark designs to fully
utilize all CPU core clusters.

VI. SIMILARITY AND REDUNDANCY

The benchmark suites we have included in our analysis contain
41 sub-benchmarks that can be individually executed. Their
combined runtime on a real device is over 110 minutes.
Architectural research often employs simulators (e.g., gem5
[54]) that are thousand times slower than native execution
[55]. While limiting simulation to smaller regions of interest is
commonly employed [56], [57], it is not always an option. The
closed-source nature of these commercial benchmark suites
renders modifications to their source code nearly impossible.
Moreover, choosing a Region of Interest (ROI) poses chal-
lenges, given our observations that these benchmarks can en-
compass various types of workloads (e.g., 3DMark Slingshot).
Thus, simulating all benchmarks or even natively running them
can result in prohibitively expensive execution times.

In this section, we perform a statistical analysis on the sim-
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ilarity exhibited between benchmarks of different suites. We
also discuss methods for subsetting the benchmark set while
retaining its behavioural and performance characteristics.
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Fig. 5: Benchmark clustering results of a Hierarchical
clustering algorithm.

A. Similarity

Clustering is a method for finding subgroups of observations
within a larger dataset. In this section, we present some issues
that arise with the use of clustering algorithms.
Optimal number of clusters. Selecting the optimal number of
clusters is challenging in unsupervised learning. In scenarios
like workload characterization with diverse benchmarks, the
ideal number of clusters may not be evident. Most algo-
rithms lack prior knowledge, often relying on user input for
cluster count. However, real-world workload differences are
not always clear-cut, making the number of clusters am-
biguous. Consequently, evaluating the produced clusters using
validation measures becomes crucial in ensuring meaningful
insights.
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Fig. 6: Benchmark clustering results with K-Means
clustering.

We use two methods, Internal and Stability validation [58].
Internal validation measures the compactness, connectedness,
and separation of the clusters. That is, we want the average
distance within a cluster to be as small as possible and the
average distance between clusters to be as large as possible.
We use two popular measures that demonstrate the above
characteristics, the Dunn Index [59] and the Silhouette Width
[60]. Higher values are better for these measures. Stability
validation evaluates the consistency of a clustering result by
comparing it with the clusters obtained after each column is
removed, one at a time. We use two cluster stability measures,
the average proportion of non-overlap (APN) and the average
distance (AD) [61]. Lower values are better for these measures.

Clustering Algorithms. There are several clustering algo-
rithms, some of which see widespread use. However, there is
no single method that is universally considered the best. Thus,
we use three common clustering techniques, K-means [62],
Partitioning Around Medoids (PAM) [63] and Agglomerative
Hierarchical clustering [64]. Instead of just using a single
algorithm, we try to find common patterns that emerge across
different techniques.
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Figure 4 shows the results of the clustering validation
analysis. The two sub-figures to the left show the internal val-
idation measures, while the two right ones show the stability
validation measures. We observe that the optimal number of
clusters is 5 for both the internal measures, regardless of the
clustering technique used. As for the stability measures, APN
shows a tie among various number of clusters with a general
preference towards the lower range. The AD measure indicates
a strong bias for a higher number of clusters. Considering that
three out of four measures have 5 clusters as their top pick,
we select this number.

Figures 5 and 6 depict the clusters created after applying a
Hierarchical and a K-Means clustering algorithm, respectively.
We omit the results of a PAM algorithm as they are similar
to K-Means. We average the metrics across the benchmarks’
runtime. The resulting data are provided as input to all these
techniques. We see that all three algorithms group the sub-
benchmarks identically. This validates the correctness of our
clusters.

B. Reduced Benchmark Set

Computer architects frequently subset benchmark suites to
streamline evaluations and focus on specific aspects relevant
to their research [65]. The goal of a subset should be to
provide the same information as the full benchmark suite [66].
Researchers have to navigate a fine balance between efficiency
gains and the need for comprehensive coverage.

A commonly employed subsetting technique is to select a
single benchmark from every benchmark cluster. However,
this method introduces potential challenges, as it does not
guarantee coverage of all application domains. Furthermore,
it does not take into account the unique circumstances of the
benchmarks in our original set. Thus, we choose to showcase
and evaluate multiple subsetting techniques.
Naive Subset. We select one benchmark from each cluster.
We make the decision based on the benchmarks’ execution
times, since we want to minimize time spent on evaluation.
The Naive subset is comprised of PCMark Storage, Geekbench
5 CPU, GFXBench Special, 3DMark Wild Life and Geekbench
5 Compute.
Select Subset. As we explain in Section IV-A, the different
parts of the Antutu benchmark cannot be executed individually.
The user can only run it in its entirety. All of Antutu’s segments
(i.e., Antutu CPU, Antutu Mem, Antutu UX) are grouped in
the purple cluster except Antutu GPU. We begin our selection
with Antutu instead of PCMark as it has the additional benefit
of covering the GPU. Our goal is to ensure that the reduced
set stresses all of the SoC components. Thus, we include
GFXBench Special Tests as it provides the highest AIE load.
Finally, we select Geekbench 5 CPU as it covers the need
for stressing all CPU core clusters, while having a shorter
execution time than Geekbench 6 CPU.
Select + GPU Subset. The previous reduced set included
Antutu GPU for stressing the GPU subsystem. However, it
does not provide the highest GPU load. We present a third

TABLE VI: Running times and percentage reductions for all
proposed subsets.

Original Set Naive Set Select Set Select + GPU Set

Running Time (sec) 4429.5 401.7 865.2 1108.36
Running Time
Reduction - 90.93% 80.47% 74.98%
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Fig. 7: Normalized Euclidean distances for reduced
benchmark subsets.

reduced set option that includes Geekbench 6 Compute, as
it has the highest average GPU load exhibited among all
benchmarks.

Table VI shows the total running times for all benchmarks
and the proposed reduced sets. It also shows the running time
reduction percentages compared to executing all benchmarks.
We observe that even the subset with the slowest running time
(Select + GPU) results in a close to 75% reduction in execution
time.

Careful consideration is crucial when creating a benchmark
subset. The objective is to choose a subset of benchmarks
that, when executed, yields nearly equivalent information as
the full suite but in considerably less time. We measure the
representativeness and coverage of our presented subsets by
using a technique presented by Yi et al. [67]. We follow these
steps:

1) Create a vector containing the values of all performance
metrics of each benchmark.

2) Normalize the performance metrics to the maximum
recorded value of each.

3) Compute the Euclidean distance between each benchmark
vector not in the subset to each benchmark vector in the
subset.

4) For each benchmark vector not in the subset, we pick the
minimum Euclidean distance with a benchmark vector in
the subset.

5) Sum the Euclidean distances for all benchmark vectors and
assign that value as the total minimum Euclidean distance
for that subset.

A smaller total minimum Euclidean distance means that
the benchmarks that are not in the subset are very close to
a benchmark that is in the subset. This means that every
benchmark not in the subset is accurately represented by one
in the subset. Also, it means that the coverage extends to all
benchmarks in the original set.

Figure 7 shows the total minimum Euclidean distances for
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the three subsets. We start by having a single benchmark
in each subset. For example, the Naive subset begins with
PCMark Storage, while the Select subset has Antutu CPU.
We continue by adding one of the benchmarks that belongs in
each subset at each step. After all benchmarks that belong in
a subset have been added, we add the rest of the benchmarks.
We measure the total minimum Euclidean distance at each
step. The dashed lines indicate the total minimum Euclidean
distance of each subset as they were presented in Section VI-B.
Notably, the Select + GPU subset, comprising 7 benchmarks,
exhibits a total minimum Euclidean distance of 11. This
positions it towards the lower end of the range of Euclidean
distances, specifically at the 32.5% percentile. This signifies a
reduction of 22.96% and 9.78% when compared to the Naive
subset with 5 and 7 benchmarks, respectively. Therefore, our
technique for selecting a reduced benchmark set is proven
to create a representative subset that accurately captures the
characteristics of the entire starting set of benchmarks.

VII. CONCLUSION

In summary, our research thoroughly explores and explains
commonly used commercial mobile benchmark suites, offering
important insights for the computer architecture community.
We analyze hardware performance metrics, uncovering the
details of workload similarities and their impact on different
parts of the system-on-chip (SoC). Our study not only looks
at how workloads change over time but also presents the
complexities in how CPU core clusters are used.

Moreover, we find a smaller set of benchmarks, the Select
+ GPU combination, which significantly reduces the time
needed for evaluations by almost 75%. This reduction in
time does not compromise the thorough assessment needed
for robust designs. Our discoveries highlight the importance
of choosing the right benchmarks for efficient evaluations,
especially considering the ever-changing landscape of mobile
system architectures.

We believe that these insights contribute to the ongoing
discourse on benchmarking methodologies, providing valuable
considerations for researchers engaged in mobile system archi-
tecture assessments.
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