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Abstract—Correctness is a first-order concern in the de-
sign of computer systems. For multiprocessors, a primary
correctness concern is the deadlock-free operation of the
network and its coherence protocol; furthermore, we must
guarantee the continued correctness of the network in the
face of increasing faults. Designing for deadlock freedom
is expensive. Prior solutions either sacrifice performance or
power efficiency to proactively avoid deadlocks or impose
high hardware complexity to reactively resolve deadlocks as
they occur. However, the precise confluence of events that
lead to deadlocks is so rare that minimal resources and
time should be spent to ensure deadlock freedom. To that
end, we propose DRAIN, a subactive approach to remove
potential deadlocks without needing to explicitly detect or avoid
them. We simply let deadlocks happen and periodically drain
(i.e., force the movement of) packets in the network that may
be involved in a cyclic dependency. As deadlocks are a rare
occurrence, draining can be performed infrequently and at
low cost. Unlike prior solutions, DRAIN eliminates not only
routing-level but also protocol-level deadlocks without the need
for expensive virtual networks. DRAIN dramatically simplifies
deadlock freedom for irregular topologies and networks that
are prone to wear-related faults. Our evaluations show that on
an average, DRAIN can save 26.73% packet latency compared
to proactive deadlock-freedom schemes in the presence of faults
while saving 77.6% power compared to reactive schemes.

I. INTRODUCTION

Correctness is of paramount concern in interconnection
networks. Deadlock freedom is a cornerstone of correctness.

A. The Problem: Deadlocks

A deadlock occurs when there is a cyclic resource
dependence in the network. Designing for deadlock freedom
is costly in terms of hardware resources (e.g., large buffering
requirements), design-time overheads (e.g., design verifica-
tion) and performance-limiting constraints (e.g., restrictive
routing). Furthermore, as process technology descends into
the deep sub-micro realm, continued (albeit degraded) service
must be provided by the network in the face of accumulating
hard faults over the lifetime of the chip [1]. The network’s
operation must remain deadlock-free as its network topology
evolves over time due to randomly occurring hardware faults.
There are two types of deadlock that can arise.

Routing-Level Deadlocks. A routing-level deadlock oc-
curs when multiple packets hold on to network buffers
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Figure 2: Protocol-level deadlock and solutions.

while waiting for other occupied buffers to become available,
forcing packets to stall forever. This is shown in Figure 1a,
where a packet holding an upstream buffer can only give up
its buffer once the downstream buffer becomes free.
Protocol-Level Deadlocks. A protocol-level deadlock oc-
curs when packets of different message classes (e.g., requests,
responses) are forced to wait for each other. Multiproces-
sors employ cache coherence protocols that require atomic
transactions. However, when implemented on an arbitrary
interconnect, these transactions are broken into multiple
non-atomic packets that may interleave with those of other
transactions. Since they all interact on top of the same
physical substrate, deadlocks may occur among them. This is
shown in Figure 2a where the packets of different message
classes must wait for each other. Each request (orange)
generates a response (green) at the directory, but these
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responses are blocked by other requests.

B. Prior Solutions
Some prior solutions to deadlock freedom are listed in

Table I. The common approach is proactive, where deadlocks
are avoided by design. Recent work has also proposed
reactive solutions that detect and recover from deadlocks at
run-time.

Routing-Level Deadlocks: Proactive Solutions. Common
proactive mechanisms for routing-level deadlock freedom
either impose routing turn restrictions or add escape virtual
channels (VCs), which themselves are deadlock-free often via
turn restrictions [2] as shown in Figure 1b. By construction,
turn restrictions prevent any cyclic resource dependencies
from being present in the network. There are several key
problems with this approach: 1) they are limited to static,
regular topologies, 2) they leave significant performance on
the table, and 3) they require expensive buffers in the form
of extra VCs.

Routing-Level Deadlocks: Reactive Solutions. Reactive
solutions detect a routing-level deadlock and then find a way
to recover from it. For example, SPIN [5] detects potential
resource cycles and spins the messages involved in that cycle,
as shown in Figure 1c. Reactive approaches are promising for
networks with increasing dynamic irregularity. Unfortunately,
reactive approaches like SPIN are limited in scalability
since they require significant hardware complexity for online
detection of the deadlocks, followed by coordinating a
recovery mechanism (e.g., turning on additional buffers [6],
[7] or global coordination of multiple routers to induce a
spin [5]).

Protocol-Level Deadlocks: Proactive Solutions. Shared-
memory systems that support cache coherence typically em-
ploy proactive approaches to avoid protocol-level deadlocks.
In these systems, the processing of a request in the directory
(e.g., write request) can require the creation of dependent
packets to be injected into the network (e.g., invalidation
requests). This dependency chain through the directory can
break the proactive turn-based routing restrictions used to
prevent routing-level deadlock, as shown in Figure 2a. To
address this, cache-coherent interconnects need to employ
per-message-class virtual networks. Virtual networks are
orthogonal sets of VCs that may only be used by a particular
message class. With distinct VCs per message class, it is
impossible to form a cyclic dependence between different
protocol requests and responses, as shown in Figure 2b.
This comes at a high overhead, in terms of the amount of
buffering required to implement virtual networks, with each
virtual network requiring its own set of distinct buffers. Our
experiments will show that VC buffers are the dominant
component of area and power usage in the interconnect.

Protocol-Level Deadlocks: Reactive Solutions. There are
no existing reactive solutions for resolving protocol-level

deadlocks. The dependency chains of protocol messages
extend outside the network and into the caches and directories.
These deadlocks cannot be detected nor coordinated within
the network.

C. DRAIN: A Subactive Solution

Designing routing and protocol deadlock freedom in the
face of increasing irregularity (as failures increase over
time) is challenging. We exploit the insight that deadlocks
very rarely occur in practice. Deadlocks require a specific
confluence of packet routes and timings to actually emerge
in a given network. Given the rarity of deadlocks, should
designers spend precious runtime power to mitigate this
remote possibility? We believe the answer is no.

We propose Deadlock Removal for Arbitrary Irregular
Networks (DRAIN), a solution that periodically flushes (or
drains) network resources to recover from potential deadlocks
in the network. We introduce the concept of subactive dead-
lock freedom: DRAIN neither avoids nor reacts to deadlocks
but rather lets them happen and eventually cleans them up, as
shown in Fig. 1d and 2c. DRAIN guarantees deadlock-free
operation without adding any performance restrictions nor
expensive buffers, unlike in proactive solutions. DRAIN is
the first to employ oblivious deadlock removal; it requires
no complex detection nor recovery mechanisms, unlike in
reactive solutions. This property makes DRAIN unique in its
ability to resolve both routing and protocol-level deadlocks
simultaneously without the need for virtual networks.

Our work makes the following primary contributions:
• Introduces the first subactive solution to both routing-

level and protocol-level deadlock freedom.
• Proposes DRAIN, a network architecture that neither

avoids nor reacts to deadlocks, ensuring deadlock-free
operation with low hardware complexity.

• Develops an offline algorithm for deciding when and
what to drain for arbitrary irregular networks that is
robust to link failures.

• Evaluates DRAIN on a wide range of applications,
demonstrating the best of both worlds in terms of
performance and power compared to prior proactive
and reactive solutions.

II. MOTIVATION

First, we illustrate that deadlocks are sufficiently rare, jus-
tifying the need for an ultra-low-cost, low-overhead solution
to achieve correctness without sacrificing significant area,
power or performance. Then, we highlight key advantages
and disadvantages of prior techniques. Finally, we motivate
the growing importance of designing interconnects with fault
tolerance in mind.

A. Observation: Deadlocks are Rare

To demonstrate the rare and unlikely occurrence of
deadlock, we look at both application workloads and synthetic
traffic. In Figure 3, links are randomly removed from an
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Type of High Low Area Low Hardware Resolves Routing- Resolves Protocol-
Solution Performance and Power Complexity Level Deadlock Level Deadlock

Turn Restrictions [2] Proactive 7 3 3 3 7
Escape VCs [3] Proactive 3 7 3 3 7

Virtual Networks [4] Proactive 3 7 7 7 3
SPIN [5] Reactive 3 3 7 3 7
DRAIN Subactive 3 3 3 3 3

Table I: Comparison of solutions for routing-level and protocol-level deadlock freedom.
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Figure 3: Likelihood of deadlocks for PARSEC workloads
as links are removed.

8×8 mesh to simulate faulty, irregular topologies.1 All nodes
remain connected to the network when links are removed.
Here the routing algorithm is fully adaptive and not deadlock-
free. Each PARSEC [8] workload is run five times with 1 VC
and 4 VCs per virtual network. The color scale corresponds
to the percentage of runs that result in a deadlock. No
deadlocks are observed for the fully functional case (i.e., 0
links removed). Note that because the routing algorithm is
not deadlock-free, even with no links removed, deadlocks are
possible in this network. Only upon removing four links do
we begin to encounter deadlocks for canneal, which has
the highest injection rate of these five workloads. A higher
injection rate implies that there may be enough packets
in the network at any given moment for a deadlock to
emerge. As more links are removed, deadlocks become more
common across several of the workloads; removing more
links increases the likelihood that packets can coincidentally
form a cycle on the remaining links. Note that the presence
of additional VCs may delay the onset of deadlock but is
not sufficient to provide deadlock freedom.

Previous work [7] has also shown that faulty topologies
are more deadlock-prone than fault-free topologies. This is
because faulty topologies limit the path diversity, resulting in
higher hop counts in the network. Thus packets stay longer
in the network and have a higher chance of being involved
in a deadlock cycle. This is why deadlocks can occur at a
lower injection rate in faulty topologies.

Takeaway. Even in the absence of any explicit deadlock
avoidance or prevention mechanism, the occurrence of

1See Section IV for our detailed methodology and workloads.
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deadlocks is quite rare. Thus, we aim to follow the adage of
“make the common case fast”: deadlocks are uncommon but
still need to be handled correctly. We do not want to devote
significant hardware resources to such an uncommon case nor
do we want to cripple the performance of the common case
of deadlock-free operation by imposing routing restrictions
on all network packets. We use this insight to guide us
towards a new design: we eventually resolve deadlocks,
should they occur, but we achieve this at very low cost
and design complexity while maintaining flexibility.

B. Observation: Virtual Networks are Costly

Figure 4 shows the total power consumed by virtual
networks, the de facto solution to protocol-level deadlock
freedom. The number of virtual networks depends on the
cache coherence protocol of the system. In this figure, active
power refers to power expended transfer packets through
the virtual network, while wasted power refers to power
expended even though no packet is in flight. We observe the
vast majority of power consumption in virtual networks is
wasted.

Takeaway. Despite the wasted power, virtual networks are
still needed; otherwise correct execution is not guaranteed
due to protocol-level deadlock. We strive for a solution that
is capable of simultaneously resolving both protocol- and
routing-level deadlocks.

C. Prior Work: Proactive and Reactive

Here, we examine the characteristics of existing schemes
for routing and protocol-level deadlock freedom and make
a case for a new class of subactive techniques. Table I
breaks down the major categories of existing solutions: turn
restrictions [2], escape VCs [3], virtual networks [4] and
SPIN [5].
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Figure 5: Gap between low-load latency and saturation
throughput for up*/down* routing and ideal (shown as a
black line at 1).

Turn Restrictions. The simplest way to avoid routing-
level deadlock is to place turn restrictions in the routing
algorithm so that cyclic resource dependences can never
form. This proactive deadlock avoidance scheme prevents
deadlocks from ever emerging in the network. There are
several limitations to this approach. First, it suffers from lower
performance. Turn restrictions reduce path diversity, which
reduces the achievable saturation throughput. A particular
form of turn restriction-based deadlock avoidance often used
for routing in irregular and faulty networks is up*/down* [9]
routing. Here, all routers in the network are arbitrarily
numbered such that each node has a unique number. During
operation, turns are only allowed from lower numbered
routers to higher numbered routers (or vice versa). Figure 5
shows the performance gap between up*/down* routing and
ideal deadlock-free fully adaptive routing.2 The presence of
non-minimal routes in up*/down* increases low-load latency
for all fault rates: in the worse case, there is a 24% gap
between the ideal latency and the achieved latency with a 22%
gap on average. At low fault rates, up*/down* only achieves
19% of the possible saturation throughput. As the number
of faults increase, the ideal and up*/down* configurations
converge on throughput. As faults increase, the network
has substantially less available bandwidth, which hurts all
approaches uniformly.

Escape Virtual Channels. Performance loss can be miti-
gated by increasing the number of VCs in the network. A
common approach is to designate one VC as an escape VC.
A packet that enters an escape VC is never allowed to
enter a non-escape VC thereafter. Turn restrictions are only
applied to the escape VC; as long as every packet has a
chance of acquiring the escape VC, routing-level deadlock is
avoided. This yields better performance and routing flexibility
(which in turn can decrease the likelihood of deadlocks [10])
by allowing fully adaptive routing on non-escape VCs but
costs additional area and power since VCs are expensive to
implement in networks-on-chip (NoCs). Furthermore, this
is an expensive solution that must be made proactively at
design time; extra VCs must be provisioned even if the overall

2This idealized case quickly detects and recovers from deadlock without
imposing any overheads on the network.

network load is low and the chance of deadlock is rare. As a
result, prior work has shown that the escape VC tends to be
highly underutilized under common operating conditions [5].
Performance also suffers because fully adaptive routing
can only be paired with conservative VC allocation, which
reduces throughput [11].

Virtual Networks. VC buffers can also be used to construct
effectively orthogonal virtual networks which share the datap-
ath of a given router but have orthogonal storage [4]. Shared-
memory systems that support cache coherence typically
employ virtual networks to avoid protocol-level deadlocks,
as discussed in Section I. In these systems, each packet
class is only allowed to occupy VCs within its assigned
virtual network. While this orthogonality prevents protocol
deadlocks, it comes at the high cost of multiplying the per-
router VC storage times the number of virtual networks.
Further, since different packet classes typically have differing
amounts of traffic, this can lead to highly divergent VC
utilization between the virtual networks.

Deadlock Detection and Recovery. An alternative ap-
proach to the above techniques is to implement a deadlock
detection and recovery mechanism. One example is SPIN [5],
which requires neither routing restrictions nor extra buffers to
ensure routing-level deadlock freedom. Instead, deadlocks are
detected via probes that are sent out at specific intervals. Once
a deadlock has been identified, the nodes in the deadlock
make a coordinated movement to resolve the deadlock. These
types of techniques are attractive as they do not require
additional VCs nor suffer performance loss in the nominal
operating case. However, they suffer from additional complex-
ity in terms of the detection and resolution of the deadlock.
This type of reactive approach can have significant added
complexity that limits the scalability of these designs. We
discuss additional recovery-based techniques in Section VII.

Our Subactive Approach. We propose a new class of
techniques that we characterize as subactive (Table I). As
we will show, this allows for 1) high performance since no
restrictions are placed on routing in the nominal operating
mode; 2) low complexity since there is no need for explicit
detection nor global coordination; and 3) significantly reduced
area and power since multiple virtual networks are no longer
required for protocol-level deadlock freedom.

D. Use Case: Deadlock-Free Faults

As process technologies continue to shrink into the deep
sub-micron domain, the breakdown of Dennard Scaling
has meant that on-chip current densities are increasing
as device density increases. Thus individual devices and
wires are exposed to higher operating temperatures and
currents, both of which are known to accelerate their eventual
breakdown by one of a number of wear-out mechanisms,
including Bias Temperature Instability [12], Time-Dependant
Dielectric Breakdown [13], Hot-Carrier Injection [14] and
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Electromigration [15]. In each case, heat and/or current
accelerate wear, increasing the odds of individual device
failure. When put together with increasing device and
wire density, the odds of component failures on-chip are
rising dramatically with each process generation. Traditional
techniques, such as adding extra timing guard bands and wire
thickening in vulnerable locations are no longer sufficient to
address this growing problem; thus architectural techniques
to deal with wear-out failures during product lifetimes must
be developed [1].

These eventual component failures imply the expectation
that individual cores and other components may fail during
the lifetime of the product. An individual core or other
redundant component failure can be dealt with via detection
hardware and associated fail-over software, allowing contin-
ued operation at lower capacity [16]. However, failures of the
interconnect components (e.g., links, routers) can be more
challenging. In NoCs, applying routing restrictions is the most
common deadlock-freedom mechanism; yet it requires static
and regular network topologies. Thus as links and routers fail,
these routing restrictions may be violated, leading to potential
deadlocks. Similarly, for topologies that are irregular [17]
or random [18] by design, traditional deadlock avoidance
techniques that rely on network regularity do not work.

Existing mechanisms to handle router and link wear-out
failure [19], [20], [21], [22] require significant extra hardware
to support runtime routing reconfiguration and often create
strong network hot spots due to the need to ensure deadlock
avoidance in the newly irregular network. A scheme such as
DRAIN that allows unrestricted adaptive routing in arbitrary,
irregular and dynamically changing networks would be a
significant improvement on the state-of-the-art for fault-
tolerant interconnection network design.

III. DRAIN

This section describes the design of our DRAIN architec-
ture, from theory to implementation.

Theory. The premise behind DRAIN is that routing-level
and protocol-level deadlocks fundamentally need neither be
detected nor strictly avoided; they just need to be subactively
removed. Deadlocks are so rare that the cheapest solution is
to simply let them happen (if ever) and periodically and
obliviously drain resources in the network that may be
in a deadlock. Even if no deadlock exists, correctness is
maintained; draining would merely incur an infrequent and
minimal performance overhead.

Analogy. Consider an analogy to street sweepers: period-
ically, sweepers will traverse the city streets along a pre-
defined route to clear out leaves and other debris. This sweep
is executed regardless of whether it is needed; fall may come
late and the sweepers do their cleaning prior to the majority
of leaves falling or fall may come early and the sweepers
effectively clear away accumulated debris. DRAIN operates
similarly, periodic draining of packets will occur regardless of

need (ie., deadlock); ideally, these drains will coincide with
the occurrence of an actual deadlock. Should the draining
occur just prior to a deadlock, that deadlock will persist until
the next scheduled draining.

Implementation Overview. Figures 1d and 2c show a
high-level overview of DRAIN. Draining can be performed
by any operation that 1) can eliminate a deadlock among
packets if one exists, and 2) does not hurt correctness if
no deadlock exists. In DRAIN, we employ a very low-
cost draining mechanism that is inspired by the forced
movement introduced in SPIN [5] yet avoids its complexity.
Conventionally packets in a deadlock cannot move forward
until they have observed that the packets in front of them
have moved forward. In DRAIN, we periodically drain the
network: we force all packets to move in a predetermined
cyclic path (drain path). This unhinges any deadlocked
packets and gives them the opportunity to eventually exit the
deadlock cycle—by either making a turn or ejecting from
the network—thus eliminating the deadlock. DRAIN does
not need to globally coordinate the deadlocked packets via
complex probe messages at runtime (as SPIN does, Figure 1c).
Instead, DRAIN determines, offline, a cyclic path through
the entire network that covers all links. Then routers locally
drain the packets in their VC buffers along this path, at preset
periods at runtime (drain windows), even if no deadlock exists.
Since both when to drain (i.e., drain window) and where to
drain (i.e., drain path) are statically predetermined, DRAIN
incurs very low hardware complexity. Though draining may
misroute any packets currently in the VCs, misrouting does
not hurt correctness. As our results demonstrate, misroutes
are sufficiently infrequent that they have no significant impact
on performance.

Routing-Level and Protocol-Level Deadlocks. DRAIN
guarantees both routing-level and protocol-level deadlock
freedom simultaneously. They share the same hardware
implementation. If a cyclic dependence exists in the network,
regardless of whether the packets belong to the same message
class or different classes, the dependence is guaranteed to
break eventually via periodically forcing packets to move.

Before describing the details of the architecture, we first
state our baseline assumptions (Section III-A). We then
describe the two key components of DRAIN:
• An offline algorithm that finds a drain path composed

of all links in the network (Section III-B).
• A low-cost router architecture that periodically drains

packets along this path (Section III-C).
We conclude this section with the necessary proofs (Sec-
tion III-D) and a walk-through example (Section III-E).

A. Assumptions and Definitions

We make three assumptions about the topology, which are
commonly found in networks:

1) All routers are reachable by all other routers, even in
the presence of faults. In other words, the network is
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connected, and all source-destination pairs are possible.
This is a typical assumption since disconnected topolo-
gies serve little value in real-world multiprocessors.

2) All routers are connected via bidirectional links (i.e., two
opposing unidirectional links). We find that this is
true for most topologies. If a single unidirectional link
becomes faulty, we assume that both opposing links
(and their VC buffers) are disabled.

3) All turns (including U-turns) are possible in every
router (i.e., every input port can route to every output
port). Networks that employ adaptive routing often
already provide this capability. Allowing for U-turns
only requires modest changes to the allocators and
crossbars.

Any topology that holds all the above assumptions is
guaranteed to have at least one cycle (i.e., drain path)
that spans all links. Since the network is connected, it is
always possible to construct a spanning tree that covers all
bidirectional links in the topology. Since each bidirectional
link allows for an implicit turn to itself via a U-turn, the
spanning tree is equivalent to a unidirectional cycle that
covers all links and all routers. This cycle is equivalent to
the path taken by a depth-first traversal through the spanning
tree.

Definitions. We list key terminology:
• Drain: Force all packets currently in the network to

take a specific turn, regardless of whether or not they
are in a deadlock.

• Drain Path: A cycle that covers all links in the network,
specifying where each drained packet must turn.

• Pre-Drain: Before draining, let any packets currently
traversing a link complete.

• Drain Window: The predetermined time period reserved
for all routers to perform draining.

• Pre-Drain Window: The predetermined time period
reserved for all routers to perform pre-draining. This
immediately precedes the drain window.

• Epoch: The time between drain windows.
• Full Drain: Allows all packets in the network to traverse

the whole topology and eject out when they visit their
destination router during traversal.

Protocol-Level Deadlocks. For protocol-level deadlocks,
we make two additional assumptions. First, each router’s
injection and ejection ports use separate queues per message
class. This is typical in modern shared-memory multiproces-
sors, which have dedicated queues for different coherence
messages outside the network. Second, we assume that it is
not possible for packets of a single message class to occupy
all buffers in the network, leaving no space for other message
classes. This is typical, since miss status handling registers
(MSHRs) are often few enough relative to the amount of VCs
in the network, bounding the number of packets per message
class. With these assumptions, if the network eliminates
protocol-level deadlocks within it, then the multiprocessor
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Figure 6: Sample outputs of our offline algorithm for (a) an
irregular topology and (b) a regular topology. Each arrow
represents a unidirectional link in the drain path.

system is guaranteed to be free of protocol-level deadlocks.

Draining Only Escape VCs. In networks with multiple
VCs per port, we perform draining only on one VC and
designate it as an escape VC. Every packet has an opportunity
to enter the escape VC, and if it does, it is no longer allowed
to move to any non-escape VCs. In contrast to typical escape
VCs, our escape VC has no turn restrictions placed on it.
Other VCs do not need to be deadlock-free since DRAIN
ensures that the escape VC is deadlock-free.
B. Offline Algorithm

DRAIN ensures deadlock freedom by conservatively,
periodically draining all escape VC buffers in the network.
Given any arbitrary network topology, the goal of our offline
algorithm is to find the drain path: a single cycle composed
of all unidirectional links in the network. This can be done
offline and rerun whenever a link becomes faulty. At runtime,
during each drain window, all packets in the escape VCs
are circulated along this path in unison, for some number
of hops. Fig. 6 shows example outputs of our algorithm for
an irregular topology and a regular topology. In the figures,
each edge represents two opposing unidirectional links. All
unidirectional links in these topologies are covered by the
drain path found by our algorithm. During each drain window,
any packet currently in an escape VC buffer is forced to
make a turn following the path.

DRAIN supports irregular network topologies in the
presence of faulty links. The input topology is represented as
a dependency graph G where each node is a unidirectional
link in the topology, and each directed edge is a turn
between two unidirectional links. We denote the set of all
unidirectional links as L. A cycle in G is defined as a sequence
of links l = {l1, ..., ln} where li is connected to li+1 via a turn,
and ln is connected to l1 via a turn. Only elementary cycles
need to be considered: an elementary cycle visits each link
at most once. Non-elementary cycles are impossible since
a link can only transfer at most one packet at a time. Our
algorithm’s goal is to find a cycle C where l = L. We are
guaranteed to find at least one such cycle given our baseline
assumptions in Section III-A. Our implementation builds
upon the cycle-finding method proposed by Hawick and
James [23], with complexity O((V +E)× (C+ 1)), where
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V , E and C are the number of vertices, edges and cycles
in G, respectively. This method employs a recursive tree
search with efficient structures for tracking vertex adjacency
lists. We augment this to terminate early as soon as a single
cycle is found that covers all links in L. Since the algorithm
only needs to be computed whenever the topology changes
(i.e., when a fault occurs, upon a system reboot), we expect
its runtime to be negligible to overall system performance.

C. Router Microarchitecture

Three changes are necessary to the router microarchitecture,
highlighted in grey in Figure 7, each described in the
following sections:

1) The epoch register for determining when it is time to
pre-drain and drain.

2) The credit freeze for preventing new packets from
allocating a VC during each pre-drain.

3) The turn-table for determining where each input port
turns during each drain.

1) When to Drain and Pre-Drain: We denote the pre-drain
window and drain window as the time periods (i.e., clock
cycles) reserved for pre-draining and draining, respectively.
Every drain window is preceded by a short pre-drain window.
When to pre-drain and drain is established ahead of time and
known by all routers in the network; these values are loaded
at boot time and require no subsequent global coordination.
We add an epoch register per router that counts down until
the next pre-drain and drain window. As is common in chip
multiprocessors, all routers operate on the same clock; thus all
epoch registers are always in sync. This means that routers do
not need to communicate and coordinate their draining with
each other. This is an important advantage of DRAIN over
reactive deadlock resolution mechanisms (e.g., SPIN [5]) that
must perform additional synchronization between routers to

detect and eliminate deadlocks. Such synchronization limits
scalability and incurs significant hardware complexity despite
the fact that deadlocks very rarely arise.

Epoch. The time between drain windows (the epoch) is
parameterizable and statically chosen at design time. On
one hand, draining more frequently incurs higher energy
and performance overhead since it drains (and potentially
misroutes) packets more often even if no deadlocks exist.
On the other hand, draining too infrequently runs the risk of
allowing deadlocks to persist for longer periods and impeding
system performance. We explore these trade-offs in our
evaluation.

2) How to Drain and Pre-Drain: We describe how
the network operates and what architectural changes are
necessary for draining.

Pre-Drain Window. When the epoch counter reaches zero,
each router initiates a pre-drain. To implement pre-draining,
credit allocation is frozen for all packets that are currently
not in-flight (i.e., not traversing a link). This ensures that
when the drain window begins, no packets are in motion.
The length of the pre-drain window is statically determined
by the maximum packet size supported in the network (in
our evaluation, this is 5 cycles).

Drain Window. At every drain window, the drain path
specified by our offline algorithm (Section III-B) is drained.
As shown in Figure 7, draining employs a turn-table per
router that overrides the VC and switch allocators. The turn-
table stores the output port for which each input port is
bound, corresponding to the drain path. Since only one entry
is needed per input port, the turn-table is small and scales
with the number of ports per router; the table size does not
increase as more routers are added to the network. Turn-
tables can be configured at boot time, which will permit a
new drain path to be computed by our offline algorithm in
the event of a link fault.

When draining, the turn-table overrides the allocators and
grants the packet exclusive priority to turn onto the specified
output port. Every packet currently occupying an escape VC
buffer is forced to move; they must follow the drain path
by turning onto the next output port in the cycle, specified
by the turn-table. Draining moves each packet by one hop.3

If packet arrives at its destination router during draining, it
may immediately eject if there is a free slot in the ejection
queue.

Full Drain. To address livelock, DRAIN performs a full
drain once every N drain windows, for very large N (full
drain counter in Figure 7). A full drain involves draining the
entire path such that each packet in an escape VC can visit
all routers and may eject upon arriving at its destination. This
incurs a high performance overhead but only needs to be

3While it is possible to perform more than one hop, we find this to always
perform worse than the single hop case
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done very rarely, since the likelihood of livelock is extremely
low under typical operating environments.

3) Discussion: Here we discuss how DRAIN eliminates
the need for virtual networks and supports flit-based flow
control.

Virtual Networks. As discussed previously, the convention
is to use virtual networks to avoid protocol-level deadlocks,
regardless of what mechanism is used to resolve routing-level
deadlocks. The number of virtual networks is dependent on
the number of message classes in the system’s communication
protocol. Each virtual network requires a distinct set of
VCs across all routers, so that the packets of one message
class never block the packets of any other message classes.
This imposes a significant area and power overhead. Unlike
prior solutions for routing-level deadlocks, DRAIN provides
protocol-level deadlock freedom implicitly and does not
require any virtual networks. This is due to two properties
of DRAIN: 1) the act of draining guarantees the movement
of all packets along the drain path, and 2) the drain path
passes through all routers in the network by design. As a
result, DRAIN ensures that any packet of any message class
will eventually have the opportunity to reach its destination
router, regardless of what other packets are in its way. A
detailed proof is provided in Section III-D2.

Flit-Based Flow Control. DRAIN is straightforward to
implement on networks that use packet-based flow control;
we opt for virtual cut-through in our implementation. To
support flit-based flow control (e.g., wormhole), DRAIN
leverages packet truncation mechanisms from prior work [24],
[25]. Since DRAIN forces flits to turn obliviously, packets
may be truncated by the draining; i.e., some flits are forced
to turn in one direction while others turn elsewhere. Routers
are augmented with additional logic for generating a new
packet whenever a packet is truncated. Specifically, the router
dynamically 1) encodes the downstream flit as a tail flit and
2) embeds header information to the upstream flit. Upon
ejection, all flits are buffered at the MSHRs of the cache
controllers. When all flits have been ejected, the full packet
is reassembled and processed as usual. Unlike in prior work
on deflection routing [24], [25], packets are rarely truncated,
only once every drain window.

D. Correctness

1) Proof of Routing-Level Deadlock Freedom: If a routing-
level deadlock is present in a network, there must exist some
cyclic dependence among packets in escape VC buffers along
a set of links l. Deadlocks cannot exist in non-escape VCs
since these packets will always have an opportunity to move
to an escape VC. At every drain window, each escape VC in
every link in l is drained, forcing any deadlocked packet in it
to move one hop in some direction. After moving all packets
by one hop, the deadlock will now be in one of two states:
1) the deadlock will either be broken, or 2) the deadlock
will remain. The deadlock is broken if at least one of the

deadlocked packets now has the opportunity to either eject
from the network or turn away from the deadlock cycle onto
a minimal path to its destination. If the deadlock remains,
then all of the deadlocked packets in l must have moved
one hop to a different link in l. Since the network is fully
reachable (an assumption we make in Section III-A), for
each deadlocked packet, there is always at least one link
in l that would arrive at the packet’s destination router and
offer the opportunity to eject. All deadlocked packets are
guaranteed to eventually arrive at such a link, since at each
subsequent drain window, each packet will continue to move
one hop to the next link in l. Though each individual drain
window is not guaranteed to break a deadlock, all deadlocks
are guaranteed to be broken eventually in a future drain
window or full drain (Section III-C2).

2) Proof of Protocol-Level Deadlock Freedom: If a
protocol-level deadlock is present in a network, there must
exist some packet pA of some message class A that is blocking
a packet pB of another message class B, and message class
A is dependent on message class B in the coherence protocol.
If pB were to reach its destination router, the deadlock would
be broken since all ejection queues are separated by message
class, as stated in our assumptions (Section III-A). The
problem is that pA is occupying a VC buffer that pB needs to
reach its destination router. By design, at every drain window,
every packet must leave its current VC buffer and move in
some direction, as designated by the drain path. After moving
all packets by one hop, pA and pB will now be in one of
two states: 1) pA and pB have moved in different directions,
breaking the deadlock, or 2) both pA and pB have moved in
the same direction. Even though the deadlock may still exist
in the latter case, pB is now waiting in the next router of the
drain path. Since the drain path is guaranteed to pass through
each router in the network at least once, pB is guaranteed to
eventually reach its destination router at some future drain
window.

What if ejection queues are full? Though ejection queues
may be full sometimes, they will never be full due to deadlock
since we assume separate ejection queues per message class
(Section III-A). Thus ejection queues are guaranteed to
eventually free up. There will always be at least one sink
message class (e.g., response messages) that corresponds to
the end of a coherence transaction; the ejection queue of a
sink message class can always be consumed.

What if there are a burst of deadlocks? Though dead-
locks occur with low probabilities, there could be scenarios
where packet injection leads to a burst of deadlocks one after
the other. Each drain will resolve one/more deadlocks as the
packets get re-distributed. In some cases, multiple drains may
be required for the deadlocks to get resolved. The periodic
full-drain (Section III-C2) will guarantee that no deadlock
will be persistent.

3) Livelock and Starvation Avoidance: If ejection ports
are busy, blocked packets may require multiple drains before
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Figure 8: Step-by-step process of how DRAIN resolves deadlocks. (a) Packets have routed into two deadlock cycles in a
faulty network. (b) During the drain window, all packets follow the predefined drain path in unison. (c) After draining for
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they eventually exit the network. Though highly unlikely,
this has the risk of continuously misrouting packets to
the point where they never reach their destination. Both
livelock and starvation are avoided by full draining, as
discussed in Section III-C2. Though a full drain incurs a
performance overhead, it is very infrequent; for the vast
majority of applications, a full drain is never needed. To
further reduce the likelihood of livelock and starvation, we
set the epoch (i.e., time between drain windows) to be no
less than the expected worst-case latency of a packet in
the network, which is proportional to the network diameter
(i.e., the largest number of hops between any pair of routers).
This ensures that if a packet is misrouted, it will have
sufficient time to reach its final destination before the next
drain window where it may be misrouted again. For most
cache-coherent multiprocessors, the worst-case packet latency
can be statically estimated because 1) the routers use well-
known VC and switch arbiters that are proven to be fair, and
2) the caches and directories have finite queues and MSHRs,
bounding the total number of in-flight transactions in the
system.

E. Walk-Through Example

Figure 8 presents a walk-through example showing how
DRAIN eliminates deadlocks. The X indicates a faulty link
in the network between routers 2 and 5. Figure 8a shows
two deadlock cycles. Packets are indicated by blue circles
with their destinations specified; e.g., Packet 0 at Router 3
needs to travel south to Router 0 but is stalled waiting for
Packet 1. During the drain window (Figure 8b), all packets
follow the drain path for one hop, as highlighted by the
magenta arrows. The complete drain path, as computed by
our offline algorithm (Section III-B), is shown; the bolded
arrows indicate the turns taken by the deadlocked packets.
Figure 8c shows the resulting location of the packets after one
hop along the drain path. For example, Packet 4 follows the
drain path to Router 2; this is a misroute. When the drain
window ends, Packet 4 will need to travel back towards
its destination. Similarly, Packet 0 is also misrouted away
from its destination to Router 6. Packets 1, 3, 5 and 7

are routed closer to their destination. Draining for one hop
successfully breaks both deadlocks. In some cases, more than
one drain window may be required to clear all deadlocks.

IV. METHODOLOGY

DRAIN is evaluated using gem5 [26] with the Gar-
net2.0 [27] network model and the Ruby memory model.
We use DSENT [28] to model power and area for a 11 nm
process. We simulate 16 and 64-core processors with a 2-
level cache hierarchy. The cache architecture uses 32KB
and 64KB L1 instruction and data caches respectively and
2MB last level cache (LLC) with MESI directory coherence
protocol.

DRAIN is compared against escape VCs (with routing
restrictions) [3] and SPIN [5]. While DRAIN only needs
one virtual network, the baseline designs need multiple
virtual networks to prevent protocol-level deadlocks. In our
evaluations, we provision each virtual network with two VCs.
Unless otherwise specified, our default implementation of
DRAIN uses 64K-cycle epochs and a single virtual network
with two VCs; we refer to this configuration as VN-1, VC-2.
For completeness, we also evaluate DRAIN with 1) the same
number of virtual networks as the baselines (VN-3, VC-2)
and 2) one virtual network with the same number of total
VCs as the baselines across all virtual networks (VN-1, VC-6).
Note that only the escape-VC baseline requires two VCs
per virtual network; SPIN can operate with a single VC per
virtual network. However, for a fair performance comparison,
we evaluate our baselines with two VCs per virtual network.

DRAIN’s performance is evaluated on a fault-free 2D mesh
and faulty irregular networks. Faults are injected randomly
as link failures in the network topology while ensuring
connectivity is maintained. For the 4×4 network, we model 0
and 8 faulty links; for the 8×8 network, we consider a range
of faulty links up to 12. For each fault case, 10 different
simulations with 10 randomly selected fault patterns of the
given link failures are chosen. These different patterns result
in a wide range of irregular topologies. The results presented
are averaged across all 10 cases. In our results graphs, latency
is shown in cycles and saturation throughput is shown in
packets received/node/cycle.
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Table II: Key Simulation Parameters.

Real application simulation parameters

Core 64 cores and RISCV ISA (LIGRA), 1GHz
16 cores and x86 ISA (PARSEC, SPLASH-2), 1 GHz

L1 Cache Private, 32KB Instruction + 64KB Data
4-way set associative

Last Level Cache
(LLC)

Shared, distributed, 2MB
8-way set associative

Cache Coherence MESI (LIGRA, PARSEC, SPLASH-2); VNet=3
Network parameters

Topology Irregular 8x8 Mesh (LIGRA and synthetic workloads)
Irregular 4x4 Mesh (PARSEC and SPLASH-2)

Routing Algorithm

DoR (Regular Mesh, Escape VC)
Up*/Down* (Irregular topologies, Escape VC)
Fully adaptive random (SPIN)
Fully adaptive random (DRAIN)

Router Latency 1-cycle

Virtual Network
3-VNet (Escape VC, SPIN)
1-VNet (DRAIN)
2 VCs/VNet

Buffer Organization Virtual Cut Through. Single packet per VC
Link Bandwidth 128 bits/cycle

Number of faults 0, 8 (LIGRA, PARSEC, SPLASH-2)
0, 1, 4, 8, 12 (Synthetic traffic)
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Figure 9: Router area and static power comparison.

A. Workloads

DRAIN is evaluated on both real-world applications and
synthetic traffic. Applications are drawn from the PARSEC,
SPLASH-2 and Ligra benchmark suites [8], [29], [30]. For
synthetic traffic, we focus on uniform random and transpose
traffic with a mix of 1-flit and 5-flit packet sizes; results for
other traffic patterns are qualitatively similar. The simulator
is warmed up for 1000 cycles; thereafter network statistics
are collected by injecting a fixed number of tagged packets
at each node in the system. Simulation completes when all
the tagged packets are ejected from the network. We use
an 8×8 network for Ligra and synthetic traffic and a 4×4
network for PARSEC and SPLASH-2.

V. EVALUATION

We first compare DRAIN against prior proactive (escape
VCs with up*/down* routing and virtual networks) and
reactive (SPIN) solutions in terms of area and power. We then
evaluate performance, under both synthetic traffic and real
application execution. Finally we sweep the key design-space
parameters of DRAIN and quantify the impact on packet tail
latency, compared against the baselines.

A. Area and Power

In this section, we highlight the advantage of DRAIN in
terms of area and power consumption. Figure 9 shows both
the router area and static power normalized to the baseline
escape VCs. The total router power includes that of the
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Figure 10: Saturation throughput for synthetic traffic patterns
with increasing number of faults in an irregular 8×8 mesh.
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Figure 11: Low-load latency for synthetic traffic patterns
with increasing number of faults in an irregular 8×8 mesh.

baseline hardware resources (i.e., buffers and allocators) and
the power consumption of the additional resources that are
required to handle deadlock. Escape VCs require an extra
VC to proactively avoid deadlocks, which leads to significant
overhead. Both baseline systems (escape VCs and SPIN)
require multiple virtual networks to ensure protocol-level
deadlock freedom. DRAIN, on the other hand, inherently
eliminates protocol-level deadlocks and thus improves router
power by about 77% compared to the baselines.

As shown in Figure 9, the simplified design of DRAIN
yields almost 72% reduction in area compared to escape VCs.
The majority of the area reduction comes from the elimination
of extra virtual networks; however, it is worth noting that
SPIN imposes a ∼15% overhead compared to a basic router
design with dimension-order routing (DoR) to handle the
extra control complexity for global coordination. In our
comparison, both escape VC and SPIN have an equal number
of virtual networks, but escape requires at least two virtual
channels per virtual network, while SPIN can work with a
single virtual channel per virtual network. DRAIN works
with a single virtual network (as it is protocol level deadlock-
free) and a single virtual channel within the single virtual
network. This yields significant savings in router area and
power with DRAIN.

Though our MESI protocol requires only three virtual
networks, other coherence protocols may require even more;
e.g., MOESI requires six virtual networks. In these cases, the
area and power savings of DRAIN would be even greater.

B. Performance

This section evaluates DRAIN’s performance compared
to prior deadlock-freedom solutions.

Synthetic Traffic. Figure 10 shows the saturation through-
put for DRAIN and the baseline designs with increasing
faults. Escape VCs yield the lowest throughput of the
three techniques. The routing restrictions on the escape VC
significantly reduce performance for all packets regardless of
the low probability of deadlock. SPIN increases throughput
by reacting to the rare case of deadlock. DRAIN achieves
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Figure 12: Packet latency and runtime of LIGRA applications on an 8×8 mesh with 0 and 8 faults.
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Figure 13: Packet latency of PARSEC and SPLASH-2 applications on a 4×4 mesh with 0 and 8 faults.

the same throughput as SPIN for uniform random traffic
and slightly lower throughput for transpose traffic. In the
event of a deadlock, DRAIN may wait longer than SPIN to
resolve the deadlock, since DRAIN is an oblivious approach
(i.e., it has no detection mechanism). SPIN uses a time-out
of 1024 cycles, while we evaluate DRAIN with an epoch of
64K cycles. With substantially lower complexity than SPIN
(Section V-A), we achieve nearly equivalent performance.

Figure 11 compares the low-load packet latency for the
three designs. DRAIN achieves the same latency as SPIN
and both techniques achieve better latency than escape VCs.
The escape VC with up*/down* routing forces non-minimal
paths on the majority of packets leading to higher hop counts.
At low loads, we expect deadlock to be extremely rare; thus
DRAIN achieves equivalent low-load latency to SPIN. For
all techniques, low-load latency increases with increase in
number of faults; faults reduce path diversity and some
packets must route non-minimally around faults for all three
techniques.

Application Results. Figures 12 and 13 show the per-
formance results of SPIN and DRAIN, normalized against
escape VCs on the Ligra and PARSEC workloads, respec-
tively. We evaluate on mesh networks with 0 and 8 faults.
For the topology with 0 faults, we configured the escape
VCs to use minimal dimension-order routing while all other
non-escape VCs use fully adaptive routing. For 8 faults, we
configured the escape VCs to use non-minimal up*/down*
routing, since DoR is not possible in the presence of failed
links.

We evaluate three configurations of DRAIN: same number

of virtual networks as the baselines (VN-3, VC-2), one virtual
network with the same number of total VCs as the baselines
(VN-1, VC-6) and the default configuration (VN-1, VC-2). In
general, DRAIN and SPIN show similar average performance
on our applications. The average packet latencies across these
workloads, as shown in Figures 12a and 12b for Ligra and
Figures 13a and 13b for PARSEC, are fairly close between
DRAIN and SPIN. In our default DRAIN configuration (VN-
1, VC-2), packet latency is higher since there are 1/3 less
total VCs than the baselines. Despite this, the application
runtimes are not harmed, as shown in Figures 12c and 12d.
Thus, DRAIN achieves the same performance as SPIN at
∼ 1/3 the hardware cost (Figure 9).

C. Sensitivity Studies

This section explores DRAIN in greater detail.

Epoch. Figures 14a and 14b show the impact of varying the
drain epoch from 16 to 64K cycles on low-load packet latency
and saturation throughput, respectively. These experiments
are performed on uniform random traffic. In the extreme case
of 16 cycles, the network is continuously flushing the drain
path, leading to poor throughput and latency due to frequent
misrouting. As the epoch is increased, latency is reduced
and saturation throughput is increased. Draining is best done
very infrequently due to the low likelihood of deadlocks.

Tail Latency. Figure 15 shows the effect of DRAIN on the
99th-percentile network packet latency compared to escape
VCs and SPIN. Since DRAIN is oblivious to deadlocks,
there is a risk of allowing deadlocks to clog the network
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Figure 14: Low-load latency and saturation throughput of DRAIN as a function of the epoch, with increasing number of
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and degrade performance for a long period of time. In
our experiments, we find that despite infrequent draining
(i.e., large 64K epochs), the impact on tail latency is small.
We observe a modest increase in 99th-percentile latency only
when DRAIN is configured with less total VCs than the
baselines (VN-1, VC-2), running the most memory-intensive
applications.

VI. DISCUSSION

In this section, we briefly discuss how DRAIN can be
useful in fault-free networks that are challenging to make
deadlock-free using existing proactive and reactive methods.

Heterogeneous Systems. Designing routing algorithms
for chiplet-based architectures [17] is challenging. Multiple
independently designed and verified networks must be
connected through an interposer network while maintaining
deadlock freedom. Just because each individual network is
deadlock-free does not guarantee that the composed network
will be deadlock-free. Recent work provides deadlock free-
dom through turn restrictions when entering and leaving
chiplet-level networks. An alternative and potentially higher
performance solution would be to enable deadlock recovery
through DRAIN. DRAIN would allow arbitrary vendor
topologies to be connected together in a deadlock-free manner
without requiring any costly hardware overheads.
Random Topologies. Random topologies [31], [18] offer
reduced diameter and lower average hop count making them
attractive from a performance standpoint; however, high-
performance, deadlock-free routing on random topologies is
challenging. For example, Dodec [18] uses turn elimination to
achieve deadlock freedom; however, given that its low radix
routers lead to fewer turn options, some routing schemes

result in non-minimal paths which can hurt performance.
Maintaining all available turns would result in better perfor-
mance for these networks and easier design flow; to achieve
high performance, Dodec uses fully adaptive routing coupled
with an escape virtual channel that uses a deadlock-free
routing scheme. Similarly, Koibuchi et al. [31] use an adaptive
routing algorithm combined with up*/down* routing on the
escape virtual channel for deadlock freedom. Additional
virtual channels increase the cost of interconnection networks;
lower-cost solutions that mitigate deadlock, such as DRAIN,
could be a significant improvement.

VII. RELATED WORK

This section highlights some key related work in proactive
and reactive solutions for deadlock freedom. It also briefly
touches upon routing challenges in fault-tolerant NoCs.
Proactive Deadlock Freedom. Many NoC designs use
Dally’s theory [32] as the underlying mechanism to provide
deadlock freedom. The commonly used turn model [33] is
a restrictive implementation of Dally’s theory. Escape VC-
based solutions [3] are also used extensively to improve
path diversity while ensuring deadlock freedom. EbDa [34]
proposes a new approach that improves the scalability of
analysis for designing deadlock-free routing algorithms.
Bubble Flow Control (BFC) [35], [36], [37], [38] is a
proactive mechanism that avoids deadlocks in ring and tori
networks by ensuring that there is at least one free buffer in
any ring via careful packet injection. Bubble coloring [39] has
been proposed for deadlock freedom in irregular topologies.
However, it incurs frequent misroutes and is less robust to
dynamic faults, requiring complex router logic to track virtual
bubble rings. Reactive Deadlock Freedom. DISHA [6],
Ping-Bubble [40] and Static Bubble [7] introduce additional
buffers at design-time that remain off, and are turned on
upon detection of a deadlock via timeout counters. These
buffers can be used to make forward progress. DISHA uses
a circulating token to control access to these buffers, while
Ping-Bubble and Static Bubble rely on probes to detect a
deadlock and allow packets that are part of the deadlock to
get access to these extra buffers.
Fault-Tolerant NoCs. Vicis [19] uses a heuristic to de-
termine routing turn restrictions for deadlock avoidance.
However, this heuristic fails to guarantee deadlock free-
dom [41]. Immunet [42] uses local BFC [35] in a ring
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constructed using the spanning tree of remaining nodes
in the network. Ariadne [41] adapts the topology-agnostic
off-chip up*/down* [9] routing algorithm to find deadlock-
free paths in a faulty topology. uDIREC [43] extends this
work to cover unidirectional link failures by modifying the
methodology of spanning tree construction. BLINC [44]
divides the network into segments, each with a different turn
restriction, to enhance path diversity.

VIII. CONCLUSION

In this paper, we propose an entirely new class of deadlock-
freedom technique for interconnection networks: subactive
deadlock freedom. Traditional, well-studied approaches are
either proactive, i.e., deadlock is avoided by design through
turn restrictions, or reactive, i.e., deadlock is detected and
recovered from. In contrast, a subactive approach periodically
sweeps away potential deadlocks. We propose DRAIN, a
low-cost mechanism to flush potentially deadlocked packets
from their current location, which is unique in its ability
to eliminate both routing-level and protocol-level deadlocks
simultaneously. This new theory and approach leverages
the critical observation that deadlocks are extremely rare in
practice. While it is imperative that we handle deadlocks, we
need not devote extra resources (VCs and virtual networks),
extra complexity (detection and recovery mechanisms) nor
reduce nominal operating performance (turn restrictions).
DRAIN solves this problem with lower complexity and
similar performance to the state-of-the-art reactive technique
(SPIN) and can be implemented with minimal VCs and
virtual networks. Finally, DRAIN can be reconfigured to
handle random hard faults, thus increasing the usable lifetime
of interconnected many-core architectures.
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