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in Cache-coherent NoCs
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Abstract—Routing algorithms for cache-coherent NoCs only have limited VCs at their disposal, which poses challenges to the
design of routing algorithms. Existing fully adaptive routing algorithms apply conservative VC re-allocation: only empty VCs can
be re-allocated, which limits performance. We propose two novel flow control designs. First, whole packet forwarding (WPF)
re-allocates a non-empty VC if the VC has enough free buffers for an entire packet. WPF does not induce deadlock if the
routing algorithm is deadlock-free using conservative VC re-allocation. It is an important extension to several deadlock avoidance
theories. Second, we extend Duato’s theory [11] to apply aggressive VC re-allocation on escape VCs without deadlock. Finally,
we propose a design which maintains maximal routing flexibility with low hardware cost. For synthetic traffic, our design performs
averagely 88.9% better than existing fully adaptive routing. Our design is superior to partially adaptive and deterministic routing.

Index Terms—Networks-on-chip, Cache Coherence, Fully Adaptive Routing, Deadlock Avoidance Theory, VC Re-allocation.
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1 INTRODUCTION

The performance of Networks-on-chip (NoCs) is sen-
sitive to the routing algorithm, as it defines the
network latency and saturation throughput [8], [29].
Many novel NoC routing algorithms have been pro-
posed to deliver high performance [17], [20], [22], [25],
[27], [37], [43]. In addition to performance considera-
tions, the routing algorithm has correctness implica-
tions; any routing algorithm must be deadlock free, at
both the network- and protocol-level. The guarantee
of network-level deadlock freedom is generally based
on deadlock avoidance theories. There are many the-
ories for fully adaptive [11], [12], [16], [26], [36], [38],
[39], [41] and partially adaptive routing design [4],
[7], [17], [18]. Although most theories were originally
proposed for off-chip networks, they are widely used
in today’s NoCs [17], [20], [22], [25], [27], [37], [43].

However, NoC packets are quite different than off-
chip network packets. Abundant wires lead to wider
flits which decreases the flit count per packet; short
packets dominate NoC traffic. In contrast, the wires
in off-chip networks are limited by pin counts; the flit
width of a typical off-chip router is 32 bits (e.g., Alpha
21364 router [31]), while the typical NoC flit width is
between 128 [19] and 256 bits [10]. With such wide
flits, coherence messages with an address and control
information but no data are encoded as single-flit
packets. Fig. 1 shows that averagely 78.7% of packets
are single-flit ones for PARSEC workloads [3]; other
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Fig. 1. Single-flit packet ratio for the PARSEC benchmarks.
TABLE 1. Number of physical/virtual networks. (PN: phys-
ical network; VN: virtual network)

Industrial products
Alpha 21364 [31] 1 PN (7 VNs)
TILE64 [42] 5 PNs (1 VN/PN)
TRIPS [19] 2 PNs (4 VNs for OCN, 1 VN for OPN)

Cache coherence protocols in GEMS simulator [30]
MESI directory 5 VNs
MOESI directory 4 VNs
MOESI token 4 VNs

packets are 5 flits long with a 64B cache line.
Another noteworthy difference is that the buffers in

NoCs are more precious than in off-chip networks due
to the tight area and power budgets [15], [21], thus
NoCs generally use flit-based wormhole flow con-
trol [6]. Although buffers are limited, several physical
or virtual networks are needed for delivering different
messages to avoid protocol-level deadlock. TABLE 1
lists the number of physical and virtual networks in
some off-chip and on-chip networks. We also show
the virtual network counts for some coherence pro-
tocols in GEMS simulator [30]. Typically, four or five
virtual networks are needed to avoid protocol-level
deadlock. Considering the expense of NoC buffers,
each virtual network will have only a small number
of VCs [5]. For example, TILE64 [42] and TRIPS [19]
have one VC per virtual network. Thus, a NoC routing
algorithm is generally running with limited VCs.

In VC-limited NoCs with short packets dominating
traffic, the design of fully adaptive routing faces new
challenges. In a wormhole network, fully adaptive
routing algorithms based on existing theories require
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Fig. 2. Routing algorithms performance with bit reverse
traffic. (PSF: fully adaptive routing, DOR: deterministic
routing; Odd-even: partially adaptive routing.)

conservative VC re-allocation: only empty VCs can be
re-allocated [11], [12], [16], [26], [36], [38], [39], [41].
This scheme prevents network-level deadlock, but it
is very restrictive with many short packets [17]. Fig. 2
shows the performance of three algorithms1. Despite
its flexibility and load-balancing capability, the fully
adaptive algorithm is inferior to the deterministic and
partially adaptive ones, since the latter algorithms
apply aggressive VC re-allocation. It is imperative to
enhance the design of fully adaptive routing.

This paper focuses on improving fully adaptive
routing algorithms by designing novel flow control.
We propose two mechanisms. First, whole packet
forwarding (WPF) allows a non-empty VC which has
enough buffers for an entire packet to be re-allocated.
WPF can be viewed as applying packet-based flow
control in a wormhole network. We prove that a fully
adaptive routing algorithm using WPF is deadlock-
free if this algorithm is deadlock-free with conserva-
tive VC re-allocation. WPF is an important extension
to previous deadlock avoidance theories. Second, we
extend Duato’s theory [11] to apply aggressive VC re-
allocation on escape VCs without deadlock. Part of
this research was presented at HPCA 2012 [28].

The novel flow control enables the design of a fully
adaptive routing algorithm with high VC utilization
and maximal routing flexibility. Compared with ex-
isting fully adaptive routing algorithms, our design
provides an average 88.9% gain for synthetic traffic. It
is also superior to partially adaptive and deterministic
algorithms. We make the following contributions:

• Proposes WPF to improve the performance of
fully adaptive routing algorithms.

• Demonstrates WPF is an important extension to
existing deadlock avoidance theories.

• Extends Duato’s theory to apply aggressive VC
re-allocation on escape VCs without deadlock.

• Proposes an efficient design which maintains
high routing flexibility with low overhead.

We organize the paper as follows. Sec. 2 reviews
related work. Sec. 3 gives the research motivation.
Sec. 4 proposes the novel flow control and routing
design. Sec. 5 analyzes the results. Sec. 6 concludes.
The supplementary material further proves the logical
equivalence of a routing algorithm with conservative

1. See Sec. 5 for experimental configuration and description.

VC re-allocation and this algorithm with WPF. It also
provides more experimental analysis.

2 BACKGROUND
Here, we discuss related work in deadlock avoidance
theories and designs for fully adaptive routing.
2.1 Deadlock Avoidance Theories
Since NoCs typically use wormhole flow control [6],
[8], [29], [33], we focus on theories for wormhole net-
works. Dally and Seitz proposed a seminal deadlock
avoidance theory [7] to design deterministic and par-
tially adaptive routing. Duato introduced the routing
sub-function, and gave an efficient design methodol-
ogy [11], [12]. The message flow model [26] and chan-
nel waiting graph [36] were used to analyze deadlock.
Taktak et al. [38] and Verbeek and Schmaltz [39] lever-
aged the decision procedure to establish deadlock-
freedom. This methodology can be also applied to our
designs. Verbeek and Schmaltz [40], [41] gave the first
static necessary and sufficient condition for deadlock-
free routing. These theories [11], [12], [16], [26], [36],
[38], [39], [41] can design fully adaptive routing.

The theories of fully adaptive routing require only
empty VCs to be re-allocated. This requirement guar-
antees that all blocked packets can reach VC heads
to access ‘deadlock-free’ paths. Yet, it limits perfor-
mance. Some deadlock-recovery designs [1] or theo-
ries [13] remove this limitation. They allow the for-
mation of deadlock, and then invoke some recovery
mechanisms. In contrast, we extend deadlock avoid-
ance theories to prohibit the formation of deadlock.

There are several partially adaptive routing algo-
rithms based on turn models [4], [17], [18]. They
allow aggressive VC re-allocation: a VC can be re-
allocated once the tail flit of last packet arrives [7],
[9]. However, partially adaptive routing algorithms
suffer from limited adaptivity: packets cannot use all
minimal paths between the source and destination.
2.2 Fully Adaptive Routing Algorithms
Duato’s theory [11] is widely used to design fully
adaptive routing. This theory classifies VCs into es-
cape and adaptive ones. Escape VCs apply more re-
strictive algorithms, typically dimension order routing
(DOR), to form deadlock-free paths. An escape VC can
only be used when the port adheres to DOR.

Many algorithms based on Duato’s theory [20], [27],
[31], [43] select the physical port first. Once selecting a
port, packets can only request VCs of this chosen port.
This requirement imposes a limitation: if a packet
enters an escape VC, it can only use escape VCs until
delivered. Otherwise, escape VCs may be involved in
deadlock. In VC-limited NoCs, this limitation easily
induces adaptivity loss. However, Duato’s theory sup-
ports the design of algorithms which can use adaptive
VCs after using an escape VC if packets can always
request escape VCs [11]. Based on these observations,
we propose a design which maintains high routing
flexibility with low hardware cost.
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Fig. 3. Deadlock in a fully adaptive algorithm violating
conservative VC re-allocation. (AVC: adaptive VC; EVC:
escape VC; Pi(H), Pi(B) and Pi(T): the head, body and tail
flit of Packet Pi; Dest(Pi): the destination of Packet Pi.)

3 MOTIVATION

In this section, we analyze the requirements and
limitations of fully adaptive routing algorithms.

3.1 VC Re-allocation
Fully adaptive routing limits only empty VCs can be
re-allocated. This requirement is reasonable since VCs
may form cycles in fully adaptive routing. For exam-
ple, Duato’s theory arbitrarily uses adaptive VCs [11];
if multiple packets reside in one VC, a deadlock con-
figuration appears, as shown in Fig. 3. Here each VN
has two VCs: an adaptive VC (AVC) and an escape VC
(EVC). Configuring more VCs cannot eliminate this
deadlock scenario since cycles exist among AVCs.

Fig. 3 involves eight packets: P0-P7. P0’s head flit is
behind P1’s tail flit in AV C1. The same is true for P1,
P2, P4, P5 and P6. Although the head flits of P3 and P7

are at VC heads, they cannot move as both AV C0 and
EV C0 are occupied. This deadlock scenario is due to
that some head flits are not at VC heads, resulting in
some packets being unable to access the ‘deadlock-
free’ path. Also, the tail flits of these packets reside in
other VCs, prohibiting other packets from reaching
VC heads. These following packets then cyclically
block aforementioned packets. For example, P0’s tail
flit resides in AV C0, blocking P3 from using this VC,
which cyclically blocks P0. If the packet length is
greater than the VC depth, putting multiple packets
in one VC may induce deadlock. Yet, we notice that
moving entire short packets into non-empty VCs will
not prevent following packets from reaching VC hea-
ds. This is an opportunity for optimization, especially
with many short NoC packets.

3.2 Routing Flexibility
This section discusses routing flexibility. Many fully
adaptive algorithms based on Duato’s theory consist
of the routing function and selection strategy [20],
[27], [31], [43]; they are called port-selection-first since
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Fig. 5. A deadlock configuration if packets in EVCs can
request AVCs in port-selection-first algorithms.
once the selection strategy chooses a port, the packet
only requests VCs of this particular port. Assuming a
separable VC allocator with two stages of arbiters [2],
[32], [34], a port-selection-first algorithm only needs
V :1 arbiters in the first stage as shown in Fig. 4a.

A limitation of these algorithms is that once a pack-
et enters an escape VC, it must continue to use escape
VCs; the packet loses adaptivity. Violating this limita-
tion induces deadlock as shown in Fig. 5. Assuming
P1 and P2 select the south port, they can only request
AV C2 since EV C2 can only be requested when the
port adheres to DOR. Similarly, P4 and P5 select
the north port; they only request AV C0. No packet
can move. Thus, requiring that if a packet enters an
escape VC, it can only use escape VCs subsequently
is necessary for port-selection-first algorithms.

Duato’s theory supports algorithms to use adaptive
VCs after using escape VCs, if they guarantee packets
are always able to request escape VCs. To achieve this
target, a packet could request all permissible output
VCs, since at least one port must adhere to DOR and
the packet can use the escape VC of this port [11].
However, this naive design has additional overhead.
As shown in Fig. 4b, the VC allocator uses 2V :1
arbiters to cover the at most two permissible ports
for minimal routing. We propose a low-cost design to
maintain high routing flexibility.

4 FLOW CONTROL AND ROUTING DESIGNS

First, we present whole packet forwarding. Then,
we extend Duato’s theory to apply aggressive VC
re-allocation on escape VCs. Next, we give a low-
cost design to maintain routing flexibility. Finally, we
describe the implementation and overhead.

4.1 Whole Packet Forwarding
We propose whole packet forwarding (WPF). Suppose
a packet Pk with length(Pk) resides in V Ci, and V Cj
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Fig. 6. An example of whole packet forwarding.

is downstream of V Ci. Assume the routing algorithm
allows Pk to use V Cj . With conservative VC re-
allocation, V Cj can be re-allocated to Pk only if the
tail flit of its last allocated packet is sent out, i.e., it is
empty [9]. For WPF, V Cj can be re-allocated if it has
received the tail flit of the last allocated packet, and
its free buffer count is no less than length(Pk).

Fig. 6 shows a WPF example. The algorithm allows
P1 to use V C2. V C2 received P2’s tail flit and has two
free slots; this space is enough for P1’s two flits. Thus,
WPF re-allocates V C2 to P1. WPF works similarly to
packet-based flow control such as store-and-forward
(SAF) [14] and virtual cut-through (VCT) [23]. VCT
enables the design of high frequency routers [35]. Yet,
our design uses wormhole with empty VCs, which
does not require the empty VC to be large enough for
entire packets; this reduces the buffering requirement
compared with VCT, and provides more flexibility.

Our contention is that if the routing algorithm with
conservative VC re-allocation is deadlock-free, then
applying WPF will not induce deadlock. Intuitively,
this contention is true, since short packets will be ei-
ther at VC heads, or behind some packets whose head
flits are at VC heads. Thus, some packets can access
the ‘deadlock-free’ path. Yet, the ‘deadlock-free’ path
is coupled to special theories. We provide a general
proof. We label the algorithm with conservative VC
re-allocation as Alg; Alg +WPF is Alg with WPF to
forward entire packets into non-empty VCs. The proof
needs a simple assumption about the router.
Assumption 1. Assume a packet can use multiple
VCs. If any permissible VC is eventually available, the
packet must have some possibility to request this VC.

This assumption provides weak fairness among per-
missible VCs. It can be fulfilled in the following man-
ner. The router continually monitors the status of all
downstream VCs. If one permissible VC is available,
the packet requests it immediately. If the algorithm
first selects a port and limits the packet to request
VCs of the selected port, the selection strategy should
guarantee that any permissible port has some possi-
bility to be selected. As shown in Sec. 4.4, common
NoC routers adhere to Assumption 1.
Theorem 1: If Alg is deadlock-free, then Alg+WPF is
also deadlock-free.
Description: By contradiction. We prove that if
Alg+WPF has a deadlock configuration, then Alg has
a deadlock configuration as well. Using Config0 in
Fig. 7 as an example, we remove packets whose head
flits are not at VC heads, and get a new configuration
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Fig. 7. The construction of a new configuration.

Config1. We prove that Alg can achieve Config1, and
Config1 is a deadlock configuration. However, Alg is
deadlock-free, thus there is no such configuration.
Proof : By contradiction. If Alg+WPF is not deadlock-
free, then there is a deadlock configuration (Config0)
in which a set of packets, Pset0 , are waiting on VCs
held by other packets in Pset0 . We prove that there is
a deadlock configuration for Alg in three steps.

Step 1: We build a new configuration based on
Config0. Consider each packet Pi in Pset0 . If Pi’s head
flit is not at the VC head, then this VC was allocated
to Pi using WPF; all flits of Pi must reside in one
VC. We remove Pi and label these removed packets as
Psubset0 . We label the new configuration as Config1,
and the set of packets in Config1 as Psubset1 .

Step 2: We prove that when the network is routed by
Alg, all packets in Psubset1 can move into their current
VCs in Config1. For each packet Pj in Psubset1 , we
consider each hop hopk of Pj when it is routed by
Alg+WPF . We assume that Pj ’s head flit moves into
V Ck during hopk. There are two situations.

2.1) V Ck is empty when Pj reaches it; V Ck is
allocated to Pj with conservative VC re-allocation.
Thus, when routed by Alg, Pj can use V Ck.

2.2) V Ck is not empty when Pj reaches it; V Ck is
allocated to Pj with WPF. The algorithm allows Pj to
use V Ck. Yet, when routed by Alg, Pj cannot move
into V Ck until it is empty. Since Alg is deadlock-
free, the packet currently in V Ck must move out in a
limited time. Then V Ck is available for conservative
VC re-allocation. Based on Assumption 1, Pj has some
possibility to request V Ck. Then, Pj can move into
V Ck. Thus, when routed by Alg, Pj can use V Ck.

Considering 2.1) and 2.2) together, and taking into
account that the head flits of all packets in Config1
are at VC heads, if a VC is used by Pj during any hop
when routed by Alg+WPF , this VC can be also used
by Pj when routed by Alg. Thus, Pj can be routed to
its current VC(s) in Config1 by Alg.

Step 3: We prove that Config1 is a deadlock configu-
ration for Alg. For each Pi in the removed set Psubset0 ,
all flits of Pi reside in one VC but Pi’s head is not at
the VC head. Thus, removing Pi does not create empty
VCs. Alg uses conservative VC re-allocation which
only re-allocates empty VCs; all packets in Psubset1

still wait for VCs held by other packets in Psubset1 .
Config1 is a deadlock configuration for Alg. But Alg
is deadlock-free, so there is no deadlock configuration.
Thus, Alg+WPF is deadlock-free as well.
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Fig. 8. A fairness issue example.

This proof only needs a simple assumption. WPF
can be used with many fully adaptive routing algo-
rithms if they are deadlock-free with conservative VC
re-allocation. It is an important extension to existing
theories [11], [12], [16], [26], [36], [38], [39], [41]. In
the supplementary material, we further prove that if
Alg+WPF is deadlock-free, Alg is also deadlock-free.
4.2 Aggressive VC Re-allocation for Escape VCs
We apply WPF to fully adaptive algorithms designed
based on Duato’s theory [11]. Yet, using WPF directly
may bring fairness issues for long packets, as shown
in Fig. 8. Both three-flit packet P3 and single-flit packet
P0 are waiting to move forward. The free buffers in
EV C2 and AV C2 allow P0 to move. P3 must wait for
EV C2 or AV C2 to have 3 free slots, or for them to be
empty. If P4 moves forward in the next cycle, a similar
situation happens again: the free buffers in EV C2 or
AV C2 only allow P1 to move. Under the extreme case,
P3 will be permanently waiting if single-flit packets
are continuously injected into AV C1

2.
A design to address this fairness issue is to deploy a

time counter and a priority allocator. Once the counter
crosses the threshold value for the blocked packet P3,
a high priority is assigned to P3’s VC allocation so
as to prevent single-flit packets from occupying the
buffers in EV C2 and AV C2. This design involves ad-
ditional costs including the time counter and priority
allocator. Also, an appropriate threshold value needs
to be configured to provide the desired fairness.

Instead of using this complex design, we lever-
age a more elegant observation. We notice the es-
cape VCs in Duato’s theory can apply aggressive
VC re-allocation without deadlock. With aggressive
re-allocation, P3 and P0 can equally use EV C2; P3

cannot be blocked forever. Under the worst case with
a stream of continuous short packets using AV C2,
P3 may cannot acquire AV C2; this may cause long
packets to have less adaptivity than short ones. Yet,
two factors mitigate the possible negative effect. First,
network streams generally consist of both short and
long packets. Second, our routing design in Sec. 4.3
can request adaptive VCs after using escape VCs, thus
this limitation only causes minor adaptivity loss. Also,
our design has less overhead than the complex design,
and aggressive VC re-allocation further improves the
VC utilization and performance. This design is cou-
pled to Duato’s theory; we reiterate some definitions

2. This extreme case never appears in our simulation as short and
long packets are randomly injected.

from Duato’s paper [11], [12] to make this paper self-
contained.
Definition 1. [Network path] A network path consists
of a set of VCs, V C0, V C1, ... , V Ci. Along this path,
packets can be sent from V C0 to V Ci.
Definition 2. [Connected routing function] A routing
function is connected iff it can always establish a path
for every packet from its current VC to its destination.
Definition 3. [Routing sub-function] A routing sub-
function is based on a routing function. The input VCs
of the routing sub-function are the same as the routing
function. The output VCs supplied by the routing sub-
function are a subset of the routing function.
Definition 4. [Direct dependency] If a packet can use
V Cj immediately after using V Ci, there is a direct
dependency from V Ci to V Cj .
Definition 5. [Indirect dependency] There is an indi-
rect dependency between two escape VCs, EV Ci and
EV Cj , iff there is a network path consisting of EV Ci,
AV C0, ... , AV Ck(k�0), EV Cj . In other words, EV Ci

and EV Cj are the first and last VCs in this path, and
all intermediate VCs are adaptive VCs.
Definition 6. [Extended VC dependency graph] The
extended VC dependency graph DE is defined for
escape VCs. The vertices of DE are escape VCs. The
arcs of DE are the pairs of escape VCs (EV Ci, EV Cj)
such that there is either a direct dependency or an
indirect dependency from EV Ci to EV Cj .

Duato’s necessary and sufficient theory [12] defines
the direct cross and indirect cross dependency. Our
research is mainly based on Duato’s necessary theo-
ry [11], thus we omit these two types of dependency.
Duato’s Necessary Theory. An adaptive routing func-
tion is deadlock-free if there exists a routing sub-
function that is connected and has no cycles in its
extended VC dependency graph [11].

The routing sub-function is defined on escape VCs.
As the extended VC dependency graph is acyclic,
we can assign an order among escape VCs so that if
there is a direct or an indirect dependency from EV Ci

to EV Cj , then EV Ci>EV Cj [11]. Moreover, since
the routing sub-function is connected, any packet can
move to its destination by using escape VCs [11].

Theorem 1 applies WPF to both adaptive and es-
cape VCs. This section further applies aggressive VC
re-allocation to escape VCs. We label the deadlock-free
algorithm based on Duato’s theory with conserva-
tive VC re-allocation as Alg; Alg+WPF+Agg is Alg
with WPF for adaptive VCs and aggressive VC re-
allocation for escape VCs. We prove Theorem 2.
Theorem 2: If Alg is a deadlock-free routing algo-
rithm designed based on Duato’s theory [11], then
Alg+WPF+Agg is also deadlock-free.
Description: The structure of our proof is similar
to the proof of Theorem 2 in Duato’s paper [11].
The difference is that we prove that even with WPF
on adaptive VCs and aggressive VC re-allocation on
escape VCs, there is still a movable packet in a hypo-
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thetical deadlock configuration. Two key points are:
the routing sub-function on escape VCs is connected,
and there is an order among escape VCs.
Proof : Suppose Alg+WPF+Agg has a deadlock con-
figuration (Config0), in which no packet head has
already reached the destination. There are two cases.

1: All escape VCs are empty; Config0 only consists
of adaptive VCs. Let AV Ci be an adaptive VC in
Config0, and Pi is the packet whose flit is at AV Ci’s
head. There are two situations.

1.1) The flit at AV Ci’s head is Pi’s head flit. Since
the routing sub-function on escape VCs is connected,
there is an escape VC EV Ci that Pi can use. As all
escape VCs are empty, Pi can move into EV Ci.

1.2) The flit at AV Ci’s head is not Pi’s head flit; Pi

spans multiple VCs. Since WPF moves entire packets,
Pi is not forwarded by WPF. Pi’s head flit must reside
at another adaptive VC’s head. Similar to 1.1), Pi can
move into an empty escape VC as well.

2: Config0 involves escape VCs. There is an order
among escape VCs; let EV Ci be the non-empty escape
VC in Config0 such that all escape VCs with an order
less than EV Ci are empty. Let Pi be the packet whose
flit is at EV Ci’s head. There are two situations.

2.1) The flit at EV Ci’s head is Pi’s head flit. Since
the routing sub-function is connected, there is an
escape VC EV Cj that Pi can use. It implies there is
a direct dependency from EV Ci to EV Cj ; thus, the
order of EV Cj is less than EV Ci. EV Cj is empty; Pi

can move into EV Cj .
2.2) The flit at EV Ci’s head is not Pi’s head flit.

Aggressive VC re-allocation may make Pi’s head flit
reside in another escape VC (EV Cj). In such a case,
there is a direct or an indirect dependency from EV Ci

to EV Cj . The order of EV Cj is less than EV Ci. EV Cj

should be empty; Pi’s head flit cannot reside in EV Cj .
As Pi spans multiple VCs, it was not forwarded by

WPF. Pi’s head flit must be at the head of an adaptive
VC. Since the routing sub-function is connected, there
is an escape VC EV Ck that Pi can use, which implies
there is an indirect dependency from EV Ci to EV Ck.
Thus, EV Ck is empty. Pi can move into EV Ck.

In all cases, a packet can move. There is no deadlock
configuration for Alg +WPF +Agg.

4.3 Maintain Routing Flexibility
This section proposes a low-cost design to maintain
high routing flexibility. This design is based on Dua-
to’s theory [11]. The design should allow the use of
adaptive VCs after using escape VCs. Otherwise, once
a packet enters escape VCs, it will lose adaptivity. The
design must guarantee that a packet can request an
escape VC at any time [11]. Once this condition is
satisfied, packets can always find a path which is not
involved into cyclic dependencies, since the extended
dependency graph of escape VCs is acyclic [11].

In port-selection-first algorithms, the only time a
packet cannot use escape VCs is when the selected

port violates DOR. We make a simple modification by
violating the selection in this case; the packet requests
the escape VC of the non-selected permissible port in
addition to adaptive VCs of the selected one. Using P1

in Fig. 5 as an example, if the south port is selected,
our design allows P1 to request the escape VC of
the east port. If there is only one permissible port,
this port must adhere to DOR, and the packet can
request its escape VC. This design guarantees that a
packet can always request an escape VC. It allows a
packet to move back into adaptive VCs after using an
escape VC. Also, it only needs V :1 arbiters in the first
stage of the VC allocator. Large arbiters result in more
hardware overhead and introduce additional delay.

4.4 Router Microarchitecture
The pipeline of a canonical NoC router consists of
routing computation (RC), VC allocation (VA), switch
allocation (SA) and switch traversal (ST) [9], [14], [32],
[34]. We apply several optimizations. The speculative
allocation parallelizes SA with VA at low loads [34].
Look-ahead routing calculates at most two permissi-
ble ports one hop ahead and the selection strategy
chooses an optimal one [20], [24], [27]. The router
delay is two cycles plus one cycle for link traversal.

This baseline router adheres to Assumption 1 in
Sec. 4.1. First, a common selection strategy guarantees
that any permissible port can be selected. For exam-
ple, Sec. 5 uses a strategy which prefers the port with
more free buffers. This strategy will not prohibit any
permissible port from being selected since once the
permissible ports have equal free buffers, it randomly
selects one from them. Second, the router continually
monitors the status of all downstream VCs using
credits [9]. If one permissible VC of the selected port
is eventually available, the packet can find out this sit-
uation, and requests this VC immediately. Therefore,
a NoC router generally provides weak fairness among
permissible VCs, even when selecting the port first.

Our design only requires simple modifications to
the VC allocator. Any type of allocator can be used; we
assume a low-cost separable allocator which consists
of two stages of arbiters [2], [32], [34]. We modify the
first stage arbiters to apply WPF on adaptive VCs and
aggressive VC re-allocation on escape VCs. WPF re-
quires calculating whether the free buffers are enough
for an entire packet, which has some overhead. Yet,
considering cache coherence packets exhibit a bimodal
distribution and the majority is single-flit packets, we
apply WPF only on single-flit packets.

Fig. 9 shows the proposed VC allocator. Reg0 and
Reg1 record whether a downstream VC can be re-
allocated. If a downstream VC is an adaptive VC,
the corresponding bit in Reg0 records whether it can
be re-allocated with conservative re-allocation. If a
downstream VC is an escape VC, the corresponding
bit in Reg0 records whether it can be re-allocated with
aggressive re-allocation. The criterion is that the VC
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holds the tail flit of its last allocated packet and still
has free buffers. Reg1 records whether a VC can be re-
allocated with WPF for single-flit packets. Its criterion
is the same as applying aggressive VC re-allocation on
single-flit packets. Thus, we use Reg0 or Reg1 based
on the incoming packet type. If it is a single-flit packet,
we apply WPF, sending Reg1 to MUX1. Otherwise,
Reg0 is sent to MUX1. Updates to Reg0 and Reg1 are
off the critical path as the router monitors the status of
downstream VCs. The increased delay is an additional
2-input multiplexer: MUX0.

To maintain routing flexibility, we modify MUX1
and DEMUX1, as shown in Fig. 9. MUX1 needs two
additional signals: DOR and the other output port. The
DOR signal indicates if the selected port obeys DOR.
The other output port signal records the non-selected
permissible port. The routing logic produces these
signals. If DOR is ‘0’, the selected port violates DOR.
Then, the status of the escape VC for the other output
port rather than the selected one is sent to the V :1
arbiter. This is accomplished with a 2-input multiplex-
er whose control signal is DOR. DEMUX1 also needs
these signals. If DOR is ‘0’, the result of V :1 arbiter
is de-multiplexed to the second stage arbiter for the
escape VC of the other output port. This is accomplished
with a 2-input demultiplexer. The increased delay is
an additional 2-input multiplexer and demultiplexer.

We implement the three VC allocators (Figs 4 and 9)
in RTL Verilog for an open-source NoC router [2] and
synthesize in Design Compiler with a TSMC 65nm
standard cell library. The designs operate at 500 MHz
under normal conditions (1.2V, 25◦C). We use round-
robin arbiters [9]. This router has 5 ports (P=5) and
4 VNs; each VN has 2 VCs (V =2). TABLE 2 gives
the area and critical path delay estimates. The naive
design uses 4:1 arbiters in the first stage, resulting in
a 7.9% longer critical path and 13.4% more area than
the port-selection-first design. Our design uses 2:1
arbiters in the first stage and only increases the critical
path by 0.5% and the area by 0.2%. An allocator’s
power consumption is largely decided by the arbiter
size [2], [43]; given the small arbiters in our design,
there should be negligible power overhead compared
with the port-selection-first design.

5 EVALUATION

We modify Booksim [9] for evaluation. Fully adaptive
routing includes the high flexibility design (FULLY)

TABLE 2. The critical path delay and area results.
Design Delay (ns) Area (μm2)
Port-selection-first (Fig. 4a) 1.78 49437.4
Naive design (Fig. 4b) 1.92 56045.4
Proposed design (Fig. 9) 1.79 49512.6

in Sec. 4.3 and the port-selection-first design (PSF).
FULLY and PSF are evaluated with conservative re-
allocation (named as FULLY and PSF), and with WPF
on adaptive VCs and aggressive re-allocation on es-
cape VCs (named as FULLY+WA and PSF+WA). The
deterministic routing is DOR. West-first, negative-first
and odd-even represent partially adaptive routing. We
use a local selection strategy for all adaptive routing;
when there are two permissible ports, it chooses the
one with more free buffers. If the ports have equal
free buffers, it randomly chooses one of them.

Our evaluation for synthetic traffic uses one VN sin-
ce each VN is independent. We use a 4×4 mesh with
2 VCs that are each 4 flits deep. The packet lengths
exhibit a bimodal distribution; there are single-flit and
five-flit packets. The single-flit packet ratio is 80%. The
simulator is warmed up for 10,000 cycles and then
the performance is measured over another 100,000
cycles. We also perform sensitivity studies on sever-
al configuration parameters and evaluate full-system
performance using PARSEC applications [3]. These
results are shown in the supplementary material.

5.1 Performance of Synthetic Workloads

Fig. 10 gives the performance with four synthetic
traffic patterns [9]. Across the four patterns, PSF and
FULLY perform worst. Although PSF and FULLY
offer adaptiveness for all traffic, conservative VC re-
allocation significantly limits their performance. In
contrast, DOR and partially adaptive routing use ag-
gressive VC re-allocation. PSF is inferior to FULLY.
PSF is further limited by its poor flexibility: once a
packet enters an escape VC, the packet can only be
routed by DOR using escape VCs until delivered.

For bit reverse, a node with bit address {s3,s2,s1,s0}
sends traffic to node {s0,s1,s2,s3}. 62.5% of the traffic
is between the north-east and south-west quadrants;
negative-first offers adaptiveness for this traffic. 37.5%
of the traffic is eastbound; west-first offers adap-
tiveness for this traffic, and performs worse than
negative-first. Although WPF and aggressive VC re-
allocation improve the VC utilization for PSF+WA,
PSF+WA is inferior to odd-even and negative-first.
PSF+WA is limited by poor flexibility. FULLY+WA
provides high VC utilization and routing flexibility
leading to the highest saturation throughput3.

Transpose-1 sends message from node (i, j) to node
(3 − j, 3 − i). Negative-first deteriorates to DOR for
this pattern. West-first still offers adaptiveness for
37.5% of the traffic, thus it is superior to negative-
first. Odd-even offers greater adaptiveness than the

3. The saturation point is measured as the injection rate at which
the average latency is 3 times the zero load latency.
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Fig. 10. Routing algorithm performance for the baseline configuration.

TABLE 3. Average saturation throughput improvement.
Algorithm Improvement Algorithm Improvement
FULLY 88.9% Odd-even 16.3%
DOR 64.5% PSF 130.9%
West-first 58.6% PSF+WA 31.3%
Negative-first 26.6%

other two partially adaptive algorithms and achieves
higher performance. FULLY+WA offers adaptiveness
for all traffic, performing 15.7% better than odd-even.

Transpose-2 is favorable to negative-first; node (i, j)
communicates with node (j, i). Negative-first offers
adaptiveness for all traffic and performs best. Al-
though FULLY+WA offers adaptiveness for all traffic,
it is limited by the restriction on escape VCs: only
if the port adheres to DOR, can the escape VC be
used. The performance of FULLY+WA and odd-even
with transpose-2 is similar to their performance with
transpose-1 since the two patterns are symmetric and
these designs offer the same adaptiveness for them.

With hotspot traffic, four nodes are chosen as hot
spots and receive an extra 20% traffic in addition to
uniform random traffic. This pattern mimics mem-
ory controllers receiving a disproportionate amount
of traffic. FULLY+WA and odd-even are worse than
negative-first and west-first. Due to the limited adap-
tiveness offered by odd-even, it is inferior to FUL-
LY+WA. DOR outperforms negative-first and west-
first, since DOR more evenly distributes uniform traf-
fic which is the background in this pattern.

TABLE 3 gives average throughput gains of FUL-
LY+WA over other designs. The 88.9% gap between
FULLY+WA and FULLY reflects the effect of novel
flow control. The gap between FULLY+WA and PS-
F+WA represents of the effect of routing flexibility;
high flexibility brings a gain of 31.3%. The supple-
mentary material provides further insights about per-
formance trends by analyzing the buffer utilization.

5.2 Detailed Analysis of Flow Control

Here, we analyze aggressive VC re-allocation and
WPF by measuring the buffer utilization for network
VCs. Since escape VCs can only be used when the port
adheres to DOR, not all escape VCs are allowable for
a particular traffic pattern. To clearly understand the
system bottleneck, we leverage a recursive algorithm
to calculate the allowable escape VCs (EVCs) for all
evaluated patterns. As shown in TABLE 4, some traffic
patterns, such as bit reverse, cannot use all EVCs,

while other patterns including bit complement and
uniform random can use all EVCs. The recursive
algorithm is shown in the supplementary material.

Fig. 11 gives the saturation throughput and buffer
utilization for fully adaptive designs. ‘PSF+WPF’ and
‘FULLY+WPF’ apply WPF on both adaptive and es-
cape VCs. The difference between ‘PSF+WA’ and ‘PS-
F+WPF’ (or ‘FULLY+WA’ and ‘FULLY+WPF’) is that
‘PSF+WA’ (or ‘FULLY+WA’) applies aggressive VC re-
allocation on escape VCs. The adaptive VC utilization
and escape VC utilization are shown in ‘Average
AVC utilization’ and ‘Average EVC utilization’ bars.
The ‘Average allowable EVC utilization’ bar gives the
average utilization of allowable EVCs.

There are several insights from Fig. 11. First, the
performance gain of FULLY+WPF over FULLY (or
PSF+WPF over PSF) is due to the improvement of
buffer utilization for both adaptive and escape VCs.
The gain of FULLY+WA over FULLY+WPF (or PS-
F+WA over PSF+WPF) is due to the improvement of
buffer utilization for escape VCs; aggressive VC re-
allocation more efficiently utilizes escape VCs than
WPF. For example, in bit reverse, the EVC utilization
of FULLY+WA and FULLY+WPF is 0.377 and 0.247.

Second, the efficiency of aggressive VC re-allocation
depends on routing flexibility. FULLY can use adap-
tive VCs after using escape VCs; aggressive VC re-
allocation offers more gains for FULLY+WA than
PSF+WA. In bit reverse, FULLY+WA performs 26.6%
better than FULLY+WPF; the 52.9% EVC utiliza-
tion improvement of FULLY+WA over FULLY+WPF
brings this gain. In contrast, PSF+WA only achieves
16.3% higher EVC utilization than PSF+WPF, which
brings a 9.7% performance gain for PSF+WA.

Third, PSF+WPF requests an escape VC only when
the selected port adheres to DOR. Meanwhile, it al-
ways applies WPF on adaptive VCs. These two factors
induce higher pressure on adaptive VCs than escape
ones for PSF+WPF. For example, in transpose-1, the
AVC utilization of PSF+WPF is 0.228, while the EVC
utilization is 0.158 and the allowable EVC utilization
is 0.210. FULLY can always request an escape VC. Its
allowable EVC utilization is higher than the AVC uti-
lization for most patterns; FULLY puts more pressure
on escape VCs than adaptive ones.

Fourth, the aggressive VC re-allocation in FUL-
LY+WA further increases the pressure on escape VCs;

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



9

TABLE 4. Allowable EVC count for synthetic traffic patterns (Total network EVC count = 48).
bit reverse transpose-1 transpose-2 hotspot uniform shuffle bit complement bit rotation

Allowable EVC 36 36 36 48 48 36 48 40
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Fig. 11. The buffer utilization and saturation throughput of fully adaptive routing algorithms.

the allowable EVC utilization of most patterns is
more than 60% higher than the AVC utilization.
FULLY+WA is limited by allowable escape VCs, and
mechanisms to improve the capacity of escape VCs,
such as dynamically sharing buffers between escape
and adaptive VCs will be helpful to FULLY+WA.

5.3 The Effect of Flow Control on Fairness
As shown in Sec. 4.2, aggressive VC re-allocation on
escape VCs can address the fairness issue of WPF on
long packets. To illustrate this point, Figs 12 and 13
show the latency distribution of short and long pack-
ets for FULLY+WPF and FULLY+WA with bit comple-
ment traffic; the overall network average latencies are
both 52 cycles. Other patterns have similar trends. The
short packet latency of FULLY+WPF has three distinct
peaks at 11, 17 and 23 cycles, corresponding to packets
which take 3, 5 and 7 hops without any queuing
delay, respectively. Since each flit of a long packet may
face different switch allocation congestion, the long
packet latency only exhibits one peak at 27 cycles,
corresponding to packets with 7 hops.

The short and long packet latencies of FULLY+WA
both have one peak, at 23 and 27 cycles respectively.
To illustrate the difference between FULLY+WA and
FULLY+WPF, we subtract Fig. 12 from Fig. 13, as
shown in Fig. 14. The ratio of short packets with a
latency between 9 and 23 cycles for FULLY+WA is
13.2% less than that for FULLY+WPF. On the other
hand, FULLY+WA has 8.8% more long packets with a
latency between 19 and 42 cycles than FULLY+WPF.
Compared with FULLY+WPF, FULLY+WA accelerates
long packets, while sacrificing short packets.

The effect on fairness can be also observed from
the average latency of packets injected from different
sources, as shown in Fig. 15. In FULLY+WPF, middle
nodes have very high latency as their injected long
packets are always inferior to short packets from edge
nodes. FULLY+WA reduces the peak latency for these
middle nodes from 134 cycles to 104 cycles, and in-
creases the latency for the edge nodes, achieving more
even latency distribution throughout the network.
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Fig. 12. The latency distribution of FULLY+WPF when the
average latency is 52 cycles for bit complement traffic.
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Fig. 13. The latency distribution of FULLY+WA when the
average latency is 52 cycles for bit complement traffic.
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Fig. 14. The latency distribution difference between FUL-
LY+WPF and FULLY+WA for bit complement traffic.
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Fig. 15. The latency of each source node when the average
latency is 52 cycles for bit complement traffic.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



10

The latency shown in Figs 12-15 are snapshots when
the network average latencies are 52 cycles. With de-
creasing injection rate, the latency differences between
FULLY+WA and FULLY+WPF become insignificant as
the network contention becomes less likely. Converse-
ly, the differences become more pronounced as the
network approaches saturation. For example, when
the average network latencies of FULLY+WPF and
FULLY+WA are both 75 cycles, FULLY+WA has 10.3%
more long packets with a latency between 21 and
48 cycles than FULLY+WPF, while FULLY+WPF has
15.7% more short packets with a latency between 11
and 25 cycles than FULLY+WA.

6 CONCLUSION

An abundance of short packets and a limited VC
budget increase the importance of flow control on
the performance of cache-coherent NoCs. We propose
two novel flow control designs for fully adaptive
routing in wormhole networks. WPF is an important
extension to several deadlock avoidance theories. It
re-allocates a non-empty VC if the VC has enough
buffers for an entire packet. Then, we extend Duato’s
theory to apply aggressive VC re-allocation on escape
VCs. Based on the proposed flow control, we present
a low-cost design to maintain high routing flexibility.
Our design outperforms several fully adaptive, par-
tially adaptive and deterministic routing algorithms.
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