
 

THEME ARTICLE: Automotive Computing 

Value-Based Deep-
Learning Acceleration 

This article summarizes our recent work on value-

based hardware accelerators for image classification 

using Deep Convolutional Neural Networks (CNNs). 

The presented designs exploit runtime value 

properties that are difficult or impossible to discern in 

advance. These include values that are zero or near 

zero and that prove ineffectual, have reduced yet 

variable precision needs, or have ineffectual bits. The 

designs offer a spectrum of choices in terms of area 

cost, energy efficiency, and relative performance 

when embedded in server class installations. More 

importantly, the accelerators reward advances in 

CNN design that increase the aforementioned 

properties. 

A few years ago, the idea of computing systems that can 
converse with us or drive cars seemed the stuff of fiction. Yet today, computing systems are 
learning to “see,” “hear,” “read,” “write,” and interact with the physical world in ways we typi-
cally associate with intelligent beings. The technology that drives these advances is machine 
learning, with most advances due to the sub-branch of deep learning (DL). While conventional 
programs have to be meticulously constructed to anticipate any possible scenario (which is often 
an impossible task), DL systems “learn” by example or by trial and error and are ultimately able 
to handle unanticipated scenarios. 

While the foundations of DL date back to the 1950s, it is only in recent years that DL has be-
come practical due to the confluence of three factors: 1) DL algorithmic innovations, 2) the 
availability of vast amounts of computerized data to learn from, and 3) the advent of sufficiently 
powerful hardware. These recent DL successes have fueled efforts for broadening the scope and 
sophistication of DL applications. However, further innovation in DL greatly depends on compu-
ting hardware systems with even greater computational power. In the past decades, hardware 
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performance advances were possible at regular intervals, primarily because semiconductor tech-
nology scaling enabled us to build hardware with more and faster transistors for the same or 
lower cost. Unfortunately, this is no longer true due to power constraints.1 

A viable way to sustain these much-needed performance advances is through hardware accelera-
tors. A hardware accelerator is designed to excel at the processing of a specific algorithm or class 
of algorithms. It sacrifices generality for greater energy efficiency and performance. Accelerators 
have been extremely successful in various application domains such as computer graphics and 
communications, where performance improvements of three orders of magnitude are routinely 
possible. We believe that DL applications can similarly benefit and have been designing such 
accelerators targeting DL applications. 

In particular, we focus on a core application of DL: image classification. Image classification 
identifies various objects in an image frame, which is in a 2D projection of the physical world as 
acquired by an imaging sensor. The building blocks used for this DL application are very similar 
and often identical to those used for other DL applications. Accordingly, techniques developed 
for accelerating image classification should be broadly applicable. For example, autonomous 
driving (AD) is an application area where DL is a key enabling technology and where the needs 
for higher data storage and processing capacity is evident.2 Many components of a complete AD 
system use DL. This article focuses on using DL to detect objects around the vehicle, a key piece 
of information needed for navigation. 

This article summarizes our recent work on value-based hardware accelerators for image classifi-
cation using Deep Convolutional Neural Networks (CNNs). We provide background on CNNs, 
and then introduce acceleration concepts, present a state-of-the-art structure-based CNN acceler-
ator, and describe our value-based approach. We explain three value properties and the corre-
sponding value-based accelerator designs. Finally, we comment on informational inefficiency 
that underlies our DL acceleration approach, as well as many other similar approaches. 

CONVOLUTIONAL NEURAL NETWORKS 
Figure 1 shows that a CNN is a software pipeline of layers. An input, which is typically a 2D im-
age, is fed into the first layer. The image is treated as a 3D array comprising three 2D images 
(one per red, blue, and green color plane). Each value is an activation, and the purpose of the 
CNN is to infer what type of object these activations represent. In its simplest form, the CNN 
outputs a vector of probabilities with one element per possible object class. This approach can be 
extended to detect the position of multiple objects or even the trajectory of objects given a se-
quence of frames. As the figure shows, the output can be an annotated image with bounding 
boxes identifying various objects of interest such as other vehicles, pedestrians, and street signs. 

While there are often many layers, there are only a few layer types. In image classification, the 
convolutional layers (CVLs) account for more than 90 percent of the execution time on modern 
graphics processors, the current commodity architecture of choice for CNNs. Fully connected 
layers (FCLs), a specialized form of CVLs, account for most of the remaining time. 

Informally, each CVL applies several filters to the 3D input activation array, producing a 3D out-
put activation array (shown at the bottom of Figure 1). Each output activation is the result of an 
inner-product of a filter and an equally sized subarray of the input activation array. The filters are 
3D arrays of weights, which are pre-determined values that contain the network’s “knowledge.” 
The weights are determined during an earlier training phase where the network, starting from 
randomly selected weight values, is trained by processing several pre-annotated example images. 
A typical CVL performs hundreds to thousands of inner products, each comprising hundreds to 
thousands of activation and weight pairs. 
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Figure 1. Top, a CNN; Bottom, a CVL. 

Formally, a CVL processes and produces 3D activation arrays of real numbers. The layer applies 
Nf  3D filters in a sliding window fashion using a constant stride S to produce an output 3D array. 
The input array contains Nx × Ny × Ni activations. Each of the Nf filters contains Kx × Ky × Ni real 
valued weights. The output activation array dimensions are Ox × Oy × Nf ; that is, its depth equals 
the filter count. Each filter corresponds to a desired feature, and the goal of the layer is to deter-
mine where in the input activation array these features appear. Accordingly, each constituent 2D 
array along the n dimension of the output activation array corresponds to a feature. The layer 
computes the inner product of a filter and a window, a filter-sized, or Kx × Ky × Ni subarray of the 
input activation array. The inner product is then passed through an activation function, such as 
the Rectified Linear Unit (ReLU) producing an output activation. If a(y,x,i) and o(y,x,i) are re-
spectively input and output activations, wf (x,y,i) are the weights of filter f, and R is the activation 
function. The output activation at position (x’,y’,n) is given by: 
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The layer applies filters repeatedly over different windows positioned along the X and Y dimen-
sions with stride S, and there is one output activation per window and filter. Accordingly, the 
output activation array dimensions are Ox = (Nx − Kx) / S + 1, Oy = (Ny − Ky) / S + 1, and Oi = Nf. 
A fully connected layer can be implemented as a CVL where the filter dimensions match those 
of the input activation array. 

For clarity, we use the term “brick” to refer to a set of 16 elements of a 3D activation or filter 
array, which are contiguous along the i dimension (for example, n(x,y,i)...n(x,y,i + 15). Bricks will 
be denoted by their origin element with a B subscript (for example, nB(x,y,i)). 
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ACCELERATION PRIMER 
Being able to process CNNs faster can yield multiple benefits for future ADs: it enables pro-
cessing higher resolution frames, it enables processing multiple imaging sources, and it reduces 
reaction times. As power has become the limiting factor in modern hardware, boosting pro-
cessing speed further requires improving energy efficiency (that is, reducing the amount of en-
ergy that is expended to perform each computation). 

Therein lies the great opportunity for hardware accelerators. Specifically, existing computing 
hardware is often general purpose in that it is designed to perform relatively well for numerous 
applications. Unfortunately, with generality comes inefficiency. For example, consider the sim-
ple task of reducing (adding 128 numbers), a subcomputation of an output activation calculation. 
We should be able to just read these 128 numbers and add them together. However, conventional 
processors perform a lot more work to achieve the same effect. As Figure 2 shows on the left, a 
conventional processor implements this reduction using a loop of several instructions. Executing 
an instruction entails several actions: reading the instruction representation from memory, decod-
ing it into a set of actions, reading the source data operands, performing a calculation, writing the 
result, and figuring out which instruction to execute next. To reduce 128 values, a processor exe-
cutes 643 instructions and performs 643 and 128 memory reads for the instructions and the data 
inputs, respectively. 

 
Figure 2: Adding 128 numbers: Left, machine code implementation; Right, structure-based 
hardware accelerator. 

Specialized reduction hardware could instead simply use an adder tree as Figure 2 shows on the 
right. It would perform just 128 data reads, or even a single wide read, and 128 additions orga-
nized in seven levels/steps. This is an example of a computation structure-based accelerator. 

The accelerators described in this work go beyond this conventional approach to acceleration by 
also relying on data content. Examining data content opens up new opportunities for accelera-
tion. For example, what if roughly 50 percent of our numbers are zero, but we do not know in 
advance which ones? Could we build a better accelerator? 

A Structure-Based CNN Accelerator 
An example of a state-of-the-art accelerator that relies on the computation structure of neural 
networks is DaDianNao (DaDN).3 As Figure 3 shows on the left, a DaDN chip comprises 16 
processing tiles, each with its own slice of 2-MB eDRAM weight memory (WM), and a central 
4-MB eDRAM activation memory (AM). Each tile contains 16 inner product units (IPUs), each 
containing 16 multipliers and an adder tree to compute the inner product of a weight and an acti-
vation brick each cycle. Each cycle, an input activation brick is broadcast from AM to all IPUs, 
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while each IPU fetches a different weight brick. In total, a tile processes 256 weights and 16 acti-
vations per cycle. Larger inner products are computed over multiple cycles and finally are passed 
through an activation function, R, to produce an output activation. Each cycle, the whole chip 
processes 16 activations and 256 × 16 = 4K weights, producing 16 × 16 = 256 partial sums. Pro-
cessing starts by reading from external memory the first layer’s filter weights and the input im-
age. The weights are distributed over the WMs, and the input is stored into AM. While the 
current layer is being processed, the weights for the next layer can be loaded from off-chip. 
DaDN is a structure-based accelerator because it implements the layer computations as-is, re-
gardless of the actual values being computed. 

 
Figure 3. Left, a DaDN overview; Right, a DaDN tile. 

The discussion that follows uses DaDN as the baseline design. However, the techniques de-
scribed are applicable to other accelerator organizations, as well. Because DaDN is a massively 
data-parallel design, our implementations also target this design style. Specifically, two im-
portant properties that we wish to maintain are: 1) wide, regular accesses to the various memo-
ries and 2) regular computations across all tiles and IPUs. The first property maintains high 
utilization of precious on- and off-chip memory bandwidth, while the second allows the use of a 
common control unit and, thus, avoids the cost of many little independently operating processing 
units. 

OUR APPROACH 
We mirror the design philosophy that yielded many successful techniques for improving perfor-
mance for modern general-purpose cores, which exploit the expected behavior of programs; pro-
grams do not behave randomly but rather tend to exhibit specific idiosyncratic behaviors. A well-
known example is biased branches, which branch predictors exploit. Accordingly, we target 
identifying properties in the value stream of CNNs. Additional opportunities exist by co-design-
ing the CNN software and hardware. However, not requiring any modifications to the CNN re-
sults in immediate benefits and reduces the burden on the CNN designers. 

Methodology 
All systems are modelled using the same methodology for consistency. A custom cycle-accurate 
simulator models execution time. Computation is scheduled such that all designs see the same 
weight reuse. To estimate power and area, all tile pipeline designs are synthesized with the Syn-
opsys Design Compiler for a TSMC 65 nm library and laid out with Cadence Encounter. Circuit 
activity is captured with ModelSim and fed into Encounter for power estimation. All SRAM 
buffers are modelled with CACTI. The eDRAM area and energy are modelled with Destiny. 
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Overview 
Table 1 provides details on the DaDN configuration to which we compare our designs. Table 2 
summarizes our various designs and their relative performance, energy efficiency, and area nor-
malized to DaDN.3 The following sections describe each of these designs in more detail. 

Table 1. The DaDN configuration. 

Accelerator Configura-
tion 

Performance Power Area Fre-
quency 

Tech. 
Node 

DaDN 16-16-16 3.9 Tmul/sec 17.6 Watt 78 mm2 980 
Mhz 

65 nm 

Table 2. Value-based accelerator characteristics relative to the DaDN configuration in Table 1.  

INEFFECTUAL ACTIVATIONS 
Our first observation is that many activations turn out to be zero at runtime, and even more are 
close enough to zero that they can be treated as if they were zero. In either case, the energy of the 
transfers of these ineffectual activations and of the corresponding multiplications and additions 
can be straightforwardly avoided by temporarily “powering off” the respective links and com-
pute units. While this approach reduces energy, it does not improve performance. What if we 

Accelera-
tor 

Com-
pared to 
Table 1 
DaDN 
Configu-
ration 

Relative 
Perfor-
mance 

Relative 
Energy 
Effi-
ciency 

Relative 
Area Layers Value Property 

Cnvlutin4 16-16-16 1.6× 1.47× 1.05× CVL Ineffectual Ac-
tivation Values 

Stripes5 16-16-16 1.9× 1.14× 1.32× CVL 
Per Layer Acti-
vation Preci-
sion 

Tartan6 16-16-16 

1.9× 
(CVL) 
1.6× 
(FCL) 

1.18× 
(CVL) 
1.06× 
(FCL) 

1.49× CVL and 
FCL 

Per Layer Acti-
vation and 
Weight Preci-
sion 

Dynamic 
Stripes7 16-16-16 2.6× 1.54× 1.35× CVL 

Dynamic Acti-
vation Preci-
sion 

Loom8 1-8-16 

3.25× 
(CVL) 
1.74× 
(FCL) 

2.63× 
(CVL) 
1.41× 
(FCL) 

1.34× CVL and 
FCL 

Dynamic Acti-
vation and Per 
Layer Weight 
Precision 

Prag-
matic9 16-16-16 4.3× 1.71× 1.68× CVL Ineffectual Ac-

tivation Bits 
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could completely eliminate these actions and process in their place some of the other effectual 
activations? 

Figure 4 reports the average total fraction of activation inputs to multiplications that prove inef-
fectual across all CVLs and across all inputs. On average, 44 percent of all activations are zero. 
An additional 7 percent of activations can be ignored without affecting accuracy (TOP-1). The 
position of these ineffectual activations depends on the input data values, and, hence, it would be 
challenging for a static approach to eliminate the corresponding computations. 

 
Figure 4. Average fraction of CVL multiplication input activations that prove ineffectual. 

But why would a network produce so many zero activations? The answer lies in the nature and 
structure of CNNs. At a high level, it is convenient to think that CNNs are designed so that each 
CNN layer attempts to determine whether and where the input contains certain learned “features” 
such as lines, curves, or more elaborate constructs. The presence of a feature is encoded as a pos-
itive-valued activation output and the absence as a zero-valued activation output. It stands to rea-
son that when features exist, most likely, they will not appear all over the input. Moreover, not 
all features will exist. CNNs detect the presence of features using the CVLs to produce an output 
encoding the likelihood that a feature exists at a particular position as a number. Negative values 
suggest that a feature is not present. CVLs are immediately followed by a ReLU layer that 
clamps negative values to zero. 

The Cnvlutin (CNV) Accelerator 
Modifying DaDN so that it can seamlessly avoid ineffectual activations is a challenge. When 
processing all activations, wide accesses to both AM and WM are trivially possible. Moreover, 
the positions of activation and their corresponding weights are known well in advance and are 
independent of their values. The straightforward approach to “skipping” the ineffectual activa-
tions is of no use; by the time activations are fetched from AM, there is not enough time to test 
their values and to selectively fetch additional activations and weights to replace those that are 
ineffectual. Not only would this require several narrow AM and WM accesses, but also several 
attempts might be required to find a set of 16 effectual activations that can be processed in paral-
lel by all tiles. By that time, the base design that does not attempt to skip ineffectual activations 
would be further ahead. Often, “dumb but fast” hardware is hard to beat. 

The top of Figure 5 shows a simplified DaDN accelerator with two IPUs, each processing four 
activation and weight pairs per cycle. This DaDN needs four cycles in total to process the 16 
products necessary and to produce the two output activations corresponding to filters F0 and F1. 
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Figure 5. Top, DaDN processes all activations; Bottom, CNV processes only non-zero activations. 

The bottom of Figure 5 shows how the equivalent simplified CNV design needs only two cycles. 
Activations are now augmented with relative offsets. For example, a four-activation brick con-
taining (1,0,4,0) is encoded as ((1,0),(4,2),(0,0),(0,0)) where the (4,2) pair indicates that in the 
original activation array, 4 was at offset 2 within the brick. CNV decouples the activation lanes, 
allowing them to proceed independently. By using the offset, the tiles can fetch the correspond-
ing weight from the WM maintaining wide accesses (one activation corresponds to 256 weights 
in DaDN). 

However, how are the offsets generated and the activation values neatly packed into the bricks so 
that the effectual activations appear first, thus avoiding many narrow AM accesses? Except for 
the first layer, the input activation array to each layer is the output activation array of the imme-
diately preceding layer. Moreover, several tens to hundreds of cycles are often needed to gener-
ate each output activation, given existing layer dimensions. Accordingly, there is plenty of time 
to encode activations in the desired format while generating them. Albericio et al. describe the 
process in more detail,4 but several alternatives exist. 

PRECISION 
Conventional general-purpose hardware and many accelerators support one or a few precisions 
for numerical values. For example, DaDN uses 16-bit fixed-point values. However, the precision 
required by CNNs varies significantly not only across networks but also across the layers of the 
same network.10 Nevertheless, because most existing implementations rely on a one-size-fits-all 
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approach, they use the worst-case numerical precision for all values and cannot benefit from the 
variable precision requirements of CNNs. 

Stripes (STR) allows per-layer selection for activations providing a new dimension upon which 
to improve performance.5 To do so, STR’s execution units are designed so that execution time 
scales linearly with the length in bits of the numerical precision needed by each layer. Compared 
to DaDN that uses a 16-bit fixed-point representation, STR would ideally improve performance 
at each layer by 16/pL where pL is the layer’s required precision length in bits. 

Before we touch on the key design decisions in STR, Table 3 reports the precision profile per 
network, which is the set of the per-layer fixed-point representation lengths needed for activa-
tions to maintain the network’s classification accuracy.10 For each network, the per-layer preci-
sions are shown separated with dashes. Overall, the precision needed varies from as much as 14 
bits (Layer 1, GoogLeNet) to as little as 5 bits (Layer 3, AlexNet). The Ideal Speedup column 
reports the speed that is possible over DaDN if performance scales by 16/pL where pL is the pre-
cision used for activations in layer L. Proteus takes advantage of this precision variability to re-
duce off-chip memory traffic by storing and transferring only as many bits as necessary.11 

Table 3: Per-CVL activation precision profiles needed to maintain the same TOP-1 accuracy as in 
the baseline (100 percent). 

Network Per-Layer Activation Precision in Bits  Ideal Speedup 

AlexNet 9-8-5-5-7 2.38 

NiN 8-8-8-9-7-8-8-9-9-8-8-8 1.91 

GoogLeNet 10-8-10-9-8-10-9-8-9-10-7 1.76 

VGG M 7-7-7-8-7 2.23 

VGG S 7-8-9-7-9 2.04 

VGG 19 12-12-12-11-12-10-11-11-13-12-
1313-13-13-13-13 

1.35 

STR’s Approach 
Figure 6 shows (in the top left) a simplified DaDN IP block computing the inner product of vec-
tors (A0,A1) (activations) and (B0,B1) (weights), where all values are encoded using 2 bits of preci-
sion and are shown in binary. The IP uses bit-parallel multipliers and, in a single cycle, computes 
the pairwise element products of A and B, (1×1,0×3), or (1,0). The two products are then added 
through a bit-parallel adder to calculate the final inner product A·B = (1), which is then truncated 
to 2 bits. In total, the input bandwidth of this unit is 8 bits per cycle (two activations of 2 bits per 
cycle and two weights of 2 bits per cycle), and its output bandwidth is 2 bits per cycle. 

The top right of Figure 6 shows STR’s approach where A’s values have been transposed and are 
now processed bit-serially over two cycles. However, because the upper bits of A0 and A1 are 
both zero, both can be represented in just 1 bit of precision. Hence, one cycle is sufficient to cal-
culate the inner product. In general, execution time now becomes proportional to the bit-width of 
A’s values, and, as long as there is enough precision in the partial output buffer and the adders, a 
range of A precisions can be naturally supported. 
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Figure 6. Exploiting precision to boost performance: Top Left, bit-parallel computation; Top Right, 
bit-serial computation for Ax (execution time depends on Ax’s precision); Bottom, bit-serial 
computation for more activations matching bit-parallel computation’s throughput. The same weights 
are used for both pairs of activations. 

However, as described, the unit in the top right of Figure 6 would at best match the performance 
of DaDN; if both bits of precision are needed, it will be twice as slow. Fortunately, there is abun-
dant parallelism in the CVLs that STR exploits to offer at least the same computational band-
width as the bit parallel design. As the bottom of Figure 6 shows, STR could process another 
pair of activations A2 and A3 in parallel. In the worst case, this unit would produce two inner 
products every two cycles, matching the bit-parallel design’s throughput. In the best case, it will 
need just one cycle, which is twice as fast as DaDN. 

In our example, two additional activations were sufficient to always match the performance of 
DaDN, because we assumed that activations used up to 2 bits of precision. Because DaDN uses 
16 bits of precision, STR needs to process 16 times as many activations in parallel. The top of 
Figure 7 shows a portion of an STR tile that replaces a single DaDN IP and that uses exactly the 
same number of external connections. Instead of using the 256 activation wires to communicate 
16 16-bit activations, STR communicates 1 bit from each of 256 activations. Whereas DaDN had 
one IP multiplying 16 pairs of 16-bit activations and weights, STR has 16 serial inner product 
units (SIPs), each multiplying 16 pairs of a 16-bit weight and a single-bit activation. Whereas 
DaDN needed multipliers, STR can use AND gates instead. The same set of 16 16-bit weights is 
used by all 16 SIPs in the row. However, each SIP is given a different set of 16 activations each 
corresponding to a different window of the input activation array, as the bottom of Figure 7 
shows. 
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Figure 7. Top, STR’s tile detail; Bottom, where STR finds the parallelism it needs. 

Dynamic Precision 
STR relies on profile-derived precisions per layer. However, in practice, these precisions will 
probably exceed those necessary for two reasons: 1) the precisions are meant to be sufficient for 
any possible input, and 2) the precisions are for the full layer. Given a specific input image, it 
stands to reason that the precisions needed might be narrower. Moreover, at any given point of 
time, STR processes only 256 activations in parallel. The precision needed to represent these 256 
specific values will most likely be narrower than that needed to represent all activations for the 
layer. Dynamic Stripes extends STR to trim precisions “on the fly” and at every cycle by adjust-
ing to the set of activations that are being processed concurrently.7 

Fully Connected Layers 
It is possible, at an additional area cost, to achieve performance improvements for FCLs, as well. 
STR cannot improve performance for FCLs because they only contain one window and, thus, at 
least 16 cycles are needed to load a different set of weights per SIP. As a result, it always takes 
16 cycles to process a set of activations and weights regardless of the precision used for the acti-
vations. The TARTAN extension to STR takes advantage of the variable precision requirements 
for weights.6 In TARTAN, performance for FCLs improves by 16/max(PwL, PaL) where PwL and 
PaL are the precisions of the activations and weights respectively for layer L. The key insight be-
hind TARTAN is that the 16 wires that are used during CVL processing to broadcast the same 
weight to all SIPs along the same row can be used to bit-serially load a different weight to each 
SIP over Pw cycles for FCLs. The loading of the next set of weights can be overlapped with the 
processing of the current set. 
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Exploiting Weight and Activation Precision 
So far, our designs are capable of exploiting the precision of activations only for CVLs, or of ei-
ther activations or weights for FCLs (TARTAN). Loom takes advantage of the precisions of 
both.8 In Loom, execution time scales with 256/(PwL x PaL) and 16/max(PwL, PaL) for CVLs and 
FCLs, respectively, where PwL and PaL are the weight and activation precisions needed for layer 
L. However, Loom requires 256× the parallelism to guarantee that it will always be as fast as an 
equivalent DaDN configuration. For this reason, it is appropriate for smaller scale designs such 
as those appropriate for mobile or embedded devices. Still, a configuration that is equivalent to 
just half of a tile of DaDN can saturate a high-bandwidth memory interface offering 512 GB/s. 
Table 2 reports the characteristics for a Loom configuration that operates at a single-bit granular-
ity. Better energy efficiency is possible when operating at a 2- or 4-bit granularity. 

EFFECTUAL BIT CONTENT 
The final value property that we exploit is “bit density,” which is the fraction of activation bits 
that are one. Binary multiplication can be broken down into a summation of single-bit multipli-

cations (ANDs). For example, a×w is calculated as ( )
0

 
p

i
i

a w i
=

⋅  , where ai is the i-th bit of a. 

The multiplier computes p terms, each a product of the shifted operand w and a bit of a, and adds 
them to produce the final result. With this in mind, any time an activation bit that is zero is mul-
tiplied with a weight, it adds nothing to the output activation. 

 
Figure 8: Sources of ineffectual computation with conventional positional representation and fixed-
length hardware precision. 

We can categorize these zero bits as either statically or dynamically ineffectual. Statically inef-
fectual bits are those that can be determined to be ineffectual a priori. They result from using a 
data format with more precision than is necessary. In this case, the number 1 might also be stati-
cally ineffectual. Figure 8 shows an example illustrating these ineffectual bits using an 8-bit un-
signed fixed-point number with 4 fractional and 4 integer bits. Assume that we know ahead of 
time that our data only needs 5 bits, then we have 3 statically ineffectual bits as a prefix and suf-
fix to the required precision. While 10.101(2) requires just five bits, two dynamically generated 
zero bits appear at positions 0 and -2. In total, 5 ineffectual bits will be processed generating five 
ineffectual terms. STR and its variants do exploit these statically ineffectual bits. Dynamic 
Stripes can exploit some of the dynamically ineffectual zero bits, as well. No STR variant can 
exploit the dynamically ineffectual zero bits that appear in between bits that are one. 

The non-zero bits can instead be encoded with their corresponding exponents (1,-1,-3). While 
such a representation might require more bits, which is undesirable for storage, dynamically gen-
erating the exponents and only computing the non-zero terms might benefit performance and en-
ergy efficiency.  For the networks studied, only 7.6 percent and 28 percent of the activation bits 
are effectual for the 16-bit fixed-point and 8-bit quantized12 representations, respectively. These 
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results point to a potential performance improvement of nearly 13× over DaDN. Even if we as-
sume that the zero-valued activations can be removed, the corresponding fractions of effectual 
bits remain low at 19 percent and 41 percent, respectively. 

Pragmatic 
Pragmatic (PRA) is an accelerator whose goal is to process only the effectual (non-zero) bits of 
activations. PRA processes the activations bit-serially while compensating for the loss in compu-
tation bandwidth by exploiting the abundant parallelism of CVLs, similar to STR. However, 
PRA skips the activation bits that are zero, a task that required the confluence of several design 
choices and techniques to realize. Albericio et al. describe the design in more detail.9 Configura-
tions of PRA that use less activation lanes per tile are 7.8× faster than an equivalent DaDN con-
figuration.  

CONCLUSION 
Hardware acceleration of DL is an active area of research; unfortunately, we cannot fully review 
this area due to limited space. However, most recent advances exploit various forms of informa-
tional inefficiency in CNNs and other DNNs. 

At the value level, many activations and weights are ineffectual. Han et al. retrain NNs to elimi-
nate computations with zero-valued activations and ineffectual weights.13 Other work shows that 
much smaller networks than the originally proposed ones can maintain accuracy,14 suggesting 
that networks are often over-provisioned. SCNN avoids computations with both ineffectual 
weights and activations.15 Recent evidence suggests that, for a given storage budget, weight 
pruning large networks offers better accuracy than naively scaling down networks to size.16 
However, the occurrence of ineffectual activations appears to be an intrinsic property of CNNs, 
as their neurons are designed to detect the presence of relevant features in their input. Combining 
ineffectual weight skipping with STR or PRA offers benefits for all activations and would be in-
teresting to explore further.  

Informational inefficiency also manifests in excess of precision, which STR exploits. Various 
forms of quantization also exploit this phenomenon,12 whereas other designs hardwire different 
per-layer precisions.17 At the extreme end of the spectrum are “binarized” networks18 that use 
binary weights and/or activations. Where such networks are possible, they are preferable due to 
their reduced area, power, and complexity. 

In all, the aforementioned body of work suggests that existing networks exhibit informational 
inefficiency at various levels and for various reasons. Whether these inefficiencies are best ex-
ploited statically, dynamically, or both is an open question. Furthermore, it remains to be seen 
which forms of inefficiency will persist as networks evolve. 

Our designs work with out-of-the-box NNs, thus offering immediate benefits. More importantly, 
they open up new opportunities and incentives for NN designers, providing a safe path towards 
innovation while offering rewards for even small advances. For example, STR, if deployed, can 
accelerate innovation in low-precision NN design with an eye towards binary and ternary net-
works. This is because it enables experimentation with the whole spectrum of precision choices 
while also delivering excellent performance for full-precision networks. This will incentivize the 
ML community to further invest in this direction, delivering immediate, proportional rewards. 
Eventually, if extremely low-precision networks take over, more efficient hardware platforms 
can be deployed. 
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