DART: Fast and Flexible NoC Simulation using FPGAs

Danyao Wang, Natalie Enright Jerger, and J. Gregory Steffan
Department of Electrical and Computer Engineering, Uniugrsf Toronto

{wangda,enright,steffgr@eecg.toronto.edu

1. Introduction

A packet-switched network-on-chip (NoC) is be-
coming a more compelling choice for the commu-
nication backbone in next-generation multicores and
systems-on-chip [2]. NoC designs are sensitive to
many parameters such as topology, buffer sizes, rout-
ing algorithms, and flow control mechanisms. Hence,
system architects and researchers must include de-
tailed NoC simulation as part of any complete system
simulation. However, detailed NoC simulation adds
to the already burdensome computation required to
accurately perform full-system evaluation.

NoCs are normally simulated in software, as stand-
alone NoC simulators [3], [7] and also as the intercon-
nect component of large full-system simulators [1], [5].
Software NoC simulators have the advantages of being
very flexible, easy to program, fast to compile, and
deterministic (making them suitable for debugging).
However, software simulators are very slow for large
NoCs, and can require the user to reduce simulation
detail to maintain reasonable simulation times.

Several FPGA-based NoC emulators have been pro-
posed [4], [6], [8], [9] that reduce simulation time by

several orders of magnitude. These dramatic speedups

are possible because the emulator is typically imple-
mented by laying out the entire NoC on the FPGA,
allowing the FPGA to exploit all available fine and
coarse grain parallelism between events in the NoC.
However, mapping the simulated NoC directly onto
the FPGA has three key drawbacks: (i) any change
in the simulated NoC requires manual redesign of the
emulator HDL, (ii) redesign in turn requires complete
compilation/synthesis of the FPGA design (which can
take hours, or up to a day for a large design), and (iii)
the maximum simulatable NoC size is determined by
the available FPGA capacity.

A Flexible NoC Simulation Engine: To address
these challenges we propoBART, an FPGA-based
NoC simulation engine where the simulated NoC and
the architecture of DART are decoupled and indepen-
dent. In this paper, we present an implementation of
DART on a Virtex 2 Pro FPGA, demonstrating: (i) an
overlay engine that provides software-like accessibility
to the FPGA, allowing different NoC architectures to
be simulated without recompiling/resynthesizing the
DART engine; and (ii) over3B00x speedup over the

cycle-based software simulator Booksim [3], while
maintaining the same level of simulation accuracy.

2. Related Work

Genko et al. [4] describe an emulation platform
that consists of programmable traffic generators and
receptors that drive a 6-switch NoC and 4600 x
faster than a SystemC simulation of the same network.
While this platform supports programmable traffic pat-
terns and statistics counters, changing the configuration
of the network requires re-generating the emulator.
DRNoC [6] circumvents this requirement by leverag-
ing the partial reconfigurability of Xilinx FPGAs. The
DRNoC host FPGA is divided into grids; each grid
slot can be dynamically reconfigured to implement a
new component to model different networks. However,
partial reconfiguration requires a special design flow
and incurs area overheads; it's also only available
for select devices. In contrast, DART’s configuration
interface is based on a generic shift register and can
be implemented on any FPGA.

NoCem [8] improves emulation density over Genko
et al.’s design [4] and implements a 9-node mesh net-
work on a single FPGA by eliding the router pipeline
details and virtual channels. Instead of sacrificing these
important details, we employ a simple design for each
DART Router: each has multiple input ports but only
one output port, and models the all-to-all switching in
a simulated router by routing one input port per DART
cycle.

Wolkotte et al. [9] virtualize a single router on an
FPGA, allowing the simulation of a NoC with multiple
routers. An off-chip ARM processor stordscontexts
for the router model and orchestrates the emulation of
the N-node network. This approach allows the router
model to be much more detailed. However, the off-chip
ARM/FPGA communication link is a performance
bottleneck. DART is implemented entirely on-chip and
does not suffer from this bottleneck.

3. DART Architecture

A basic NoC simulation requires that flits be for-
warded around the network while modeling the timing
of flit transfers. In DART we abstract the components
of a NoC into three primitive type$:lit Queues(FQs),
Traffic GeneratorgTGs), andRouters In the DART
architecture (Figure 1), each node contains FQs, a

FPGA

Partition

!
i

Partition Partition

[>< [
.f. O=

statistics

Partition

o=

configuration &
commands

. RoutingTable

Host PC

CAD

Router

Figure 1. DART architecture. Each node models a 5-ported
router, and nodes in the same partition share a crossbar port.
The host PC communicates with the FPGA over a serial link.

TG, and a Router, although the TG may or may not
be used. Nodes are grouped into partitions that are
interconnected by a crossbar, allowing all-to-all com-
munication between any node pairs. DART simulates a
NoC by mapping the simulated NoC to DART nodes,
and restricts the communication pattern through the
interconnect to model the connectivity of the simulated
topology. Each DART node has parameters that can be
configured to match the properties of the component
they simulate, without modifying the DART HDL.

To capture the timing of flit transfers, we define
a time stepas a flit cycle in the simulated NoC. A
global counter keeps track of current simulation time,
and is only incremented when all flit transfers for this
time step are performed. A time step may take multiple
DART cycles to simulate. This virtualization of time
allows DART to trade speed for area efficiency.

We useflit and credit descriptorsto model the
traffic within the simulator. The 32-bit flit descriptor
contains (i) the metadata for routing and flow control,
(i) a timestamp that indicates when the flit should
be forwarded to the next node, and (iii) the injection
time to compute latency at the destination. The 11-bit
credit descriptor only contains a timestamp and a VC
identifier. A flit's lifetime starts when it is injected at a
TG. It is then alternately forwarded between FQs and
Routers until it is received at the destination.

3.1. Flit Queue

The Flit Queue (FQ) component models the band-
width and latency constraints of a wire link. Each
FQ encapsulates multiple virtual channels (VCs). The
VC buffers are implemented using a block-RAM that
is statically partitioned among the VCs. A Verilog
parameter controls the number of VCs to incorporate
(set to two for this paper). Each incoming flit is queued
according to its VC and the new dequeue timestamp
is computed using the following algorithm:

N_t hrough ++

if(T_enqueue>T_last_flit || N_through>=bandwi dth)
T_dequeue = max(T_enqueue, T last_flit+l)
N_through =1

el se
T_dequeue = T_enqueue

T_dequeue += | atency

Here Niprougn counts the number of flits through

the FQ during a time stefl},s:f1;+ IS the dequeue

timestamp of the previous flit less the link latency. The

latency and bandwidth parameters are configurable

on a per-FQ basis.

3.2. Traffic Generator

When enabled, the Traffic Generator (TG) compo-
nent injects packets using a Bernoulli process. Packet
size (minimum 2 flits), destination node address, and
the average injection interval are configurable per-TG.
TGs also serve as traffic sinks. They record the number
of packets received and the cumulative packet latency.
Each TG contains two FQs; thaput buffer models
the last-hop delay to the TG, and tlitput buffer
models the source queue. We use the same technique
from Dally et al. [3] and allow a TG to lag behind the
current simulation time when its output buffer is full,
to model an infinite source queue.

3.3. Router

The Router component models a canonical five-stage
wormhole VC router with credit-based flow control [3].
The number of ports is controlled by a Verilog param-
eter, set to five for this paper. Each Router connects to
four FQs that model per-port input buffers and one TG.
Table-based routing is used, and the table content is
configurable for each Router without reprogramming
the FPGA. In contrast to a real 5-ported wormhole
router, the Router component forwards one flit per
DART cycle. A time step is simulated by iterating over
all ready input FQs and processing them sequentially
over multiple DART cycles. Meanwhile, the global
time counter is stalled so all flits appear to be routed
in the same time step. By doing so, we can use
simple arbiters to simulate the switch allocator and
the crossbar, which constitute a significant portion of
the area in a real router. Head-of-line blocking can
arise if the selected input VC cannot be routed due to
failed VC allocation or lack of credits. We solve this
by setting aninspectedflag for the offending VC so
it is not selected again until the next time step. This
creates a bubble in the Router pipeline and wastes a
DART cycle.

Pipeline latency of the simulated router is modeled
by incrementing the flit timestamp when it leaves the
Router; this value is configurable per Router. Con-
tention in VC and switch allocation are also modeled
by adjusting the timestamp appropriately.

Credit-based flow control is implemented using a
credit counter for each output VC, for which initial

! Partition
: 3

select
earliest

l_/3—
select
earliest

addr
match

‘
i Partition

8-to-1 mux

= x8

il

Figure 2. DART's 8 x 8 concentrated crossbar interconnect

credit values are configurable. When a flit is routed,
the output VC's counter is decremented, and a credit
is sent to the corresponding input FQ of the up-
stream Router through the global interconnect. The
corresponding counter is updated when the credit is
received.

3.4. Interconnect

The global interconnect provides all-to-all communi-
cation between DART nodes. By restricting the actual
communicating pairs in the routing tables, DART can
simulate any regular or irregular topology, provided the
maximum node radix is less than the number of input
ports in the Router component. Although a crossbar
is a first intuition, its area increases quadratically with
network size which can be expensive as DART's size
increases. Instead, DART nodes are grouped into par-
titions and interconnected by a concentrated crossbhar
(Figure 2). Both intra- and inter-partition arbitrations
use the three LSBs of the flit timestamp as priority
to guarantee chronological simulation of flit transfers.
The partitions are the main throughput bottleneck of
the interconnect since each partition can only send and
receive one flit per DART cycle. Varying the degree of
concentration trades crossbar area for performance. We
currently use ar8 x 8 crossbar as it strikes a good

area/performance balance. Section 4 discusses these,

trade-offs in more detail. Credit traffic uses a separate
interconnect that is similar but narrower.

3.5. Configuration and Data Collection

As mentioned earlier, each DART node has con-
figurable parameters (packet size, latency, bandwidth,
etc.). With the exception of the routing tables, these
parameters are chained in a 16-bit shift register. A
software tool on the host PC sends the configuration
bits over an RS232 serial interface. The block-RAM-
based routing tables are connected to the input end of
the shift register. An finite state machine captures a
chunk of the configuration bits to populate the block-
RAM. When configuration completes, an enable signal
is asserted to start the simulation.

Similar to the configuration registers, a 16-bit shift
register is used to read simulator output performance

counters. We currently have three counters per TG to
measure the number of injected and received packets
and the cumulative packet latency. More counters can
be easily added to this shift register chain. Since con-
figuration and stats collection are only performed once
before and after the simulation, the host PC-FPGA
communication latency is not performance critical.

3.6. Using DART

We have automated the process of mapping a user’s
simulated NoC to DART. In the current implemen-
tation, the configuration management tool runs on a
host PC and communicates with DART over an RS232
serial link. This interface is not performance critical,
since it is only used for configuration, commands, and
gathering results. We use a round-robin scheme to
evenly distribute the simulated NoC nodes across the
DART partitions—because the global interconnect is
symmetric, balancing the load this way is sufficient to
achieve good performance.

4. Evaluation

In this section, we quantify the trade-offs made in
the design of DART and evaluate its performance by
comparing with Booksim 2.0 [3], which is widely used
in NoC studies. The results presented are obtained
using a cycle-accurate simulator of the DART archi-
tecture, which has been verified to be identical to our
actual HDL implementation.

DART’s simplified Router component allows a 9-
node DART engine to fit on a Virtex Il Pro (XC2VP30)
FPGA while modeling detailed VCs, wormhole rout-
ing, credit-based flow-control, and providing run-
time configurability. However, there is a performance
penalty because DART serializes the switching that
is normally performed concurrently in a real router.
Using the number of time steps simulated per DART
cycle SPQ as a performance metric, Figure 3 shows
the Router component’s impact on performance for two
simple benchmarks. Both cases use 2 VCs, 5-flit VC
buffers, and permutation traffic with 2-flit packets and
flit injection rates between 0.1 and 0.8. While the ideal
SPC is 1.0, we expect DART's achievable SPC to be
inversely proportional to the average number of busy
input ports per time step. This agrees with the figure,
since DART’s performance degrades gracefully with
increased network load.

A second trade-off in DART is the use of the concen-
trated crossbar interconnect to allow the simulation of
arbitrary topologies without modification to the DART
HDL. The contention at the crossbar input and output
ports is the main performance bottleneck. For a DART
simulator with a fixed number of nodes, increasing the
crossbar size alleviates this contention by reducing the
size of the partitions. However, crossbar area grows
quadratically with the number of ports. Figure 4 shows
the scalability of various crossbhar configurations for

Sim cycles / DART cycle (SPC)
o
I
b

(a) 3x3 Torus

1 1 1 1
0 02 04 06 08 1
Injection rate (flits / node / sim cycle)

45 0.4

4

35

25

15

Avg. # of busy ports / sim cycle
Sim cycles / DART cycle (SPC)
o
N
&

05 0.1

(b) 3x3 Mesh

1 1 1 1
0 02 04 06 08 1
Injection rate (flits / node / sim cycle)

45

35

25

15

05

Avg. # of busy ports / sim cycle

Speedup

380

370

360

350

340

330

320
01 02 03 04 05 0.6 0.7 08

(a) 3x3 Torus on 9-node DART

3x3 Mesh

Injection Rate (flits / node / sim cycle)

Speedup

1000
i

950
900
850
800
750
700
650

(b) 6x6 Torus on 36-node DART

[6x6 Torus —TF—1]

1]

0.1 0.2 0.3
Injection Rate (flits / node / sim cycle)

Simulation speed (SPC
Avg. busy ports / sim cycle —l—

Figure 5. Speedup of DART vs. Booksim

Figure 3. Performance impact due to the serialization in the

Router component 5. Conclusions and Future Work

(a) Injection rate = 0.1 flit / node / sim cycle
0.35

In this paper, we introduced a flexible NoC simu-
lation engine that provides software-like accessibility
to the FPGA and achieves significant speedup over
software simulators while maintaining the same level
of accuracy. The DART simulator architecture is de-
coupled and independent from the simulated NoC and
allows us to trade speed for programmability and area
efficiency. Moving forward, we plan to add multiple
contexts to each DART node to allow the user to
further trade speed for simulated network capacity if
necessary. It is also possible to integrate DART with a
full system simulator by replacing the synthetic Traffic
different DART sizes. Each data point is evaluated Generators with application or trace driven ones to
using a torus with permutation traffic. The results for enable comprehensive evaluation of the entire system.
the 4 x 8 and 8 x 16 configurations are not shown
here because their performance is similar to that of the References
8 x 4 and 16 x 8 configurations respectively. Relative |17 N. aAgarwal, T. Krishna, L.-S. Peh, and N. Jha, “GAR-
to a square crossbar, doubling the number of either the NET: A detailed on-chip network model inside a full-
input ports or output ports only improves performance system simulator,” inPerformance Analysis of Systems
slightly as the asymmetric configurations do not fully and Software, ISPAS3pr 2009. o
remove the contention due to concentration. Hence, th_e [2] \(,:\I{].iFE)?I!:%/E?Cr;)dnr?éctic:)ﬁler?ét\ﬁoc:'l;;?' pi%:é(;t;ﬁ let\(;vrlrr;?ib?]n_
largest square crossbar that meets the area constraint conference, DAC2001.
should always be used, which §x 8 for the FPGA [3] —, Principles and Practices of Interconnection Net-
hardware in use. works San Francisco, CA, USA: Morgan Kaufmann

Our current _implementation of the 9-node DART E%chléser:l?(z)s, lrI]DCA?t?:nSza G. De Micheli, J. Mendias,
uses 13,050 slices (95% available) on the XC2VP30 R. Hermida, and F. Catthoor, “A complete network-on-
FPGA and runs at 50 MHz. The critical path includes chip emulation framework,” irDesign, Automation and
the logic that selects the earliest flits to cross the Test in Europe, DATEMar 2005.
global interconnect. Using the same benchmarks as in [°] 'alérﬁgr:dage”caﬁér? fomi?yiét,:'zggﬁni?hé RHE'eW;r?é
Figure 3, we compare _the nu,mber of m,"llseconds I A. G. l\]owatzyk, ‘:Simflex: ’a fast, accu’rate, flexible’full-
takes DART and Booksim to simulate a time step. We system simulation framework for performance evaluation
measured Booksim’s runtime on a 2.66 GHz Intel Core of server architecture,SIGMETRICS Perform. Eval.

2 Quad linux workstation and averaged the measure- Rev, vol. 31, no. 4, pp. 31-34, 2004. _

ments over 20 runs. Both simulators simulated approx- (€] E KtraEstevla,t_F. Cé'adod El %eFI)a Tto;re,_ a”?:T' RIESQE,H"_A
imately 30K cycle; gnd the reported average packet R;;iom%%;';g szfputir?g anrc? ;’ggﬂgec rg(%%v_vor N
latencies agree within 5%. Figure 5a shows DART'S (7] v. puente, J. Gregorio, and R. Beivide, “SICOSYS:
speedup. The upward trend is because the 9-node an integrated framework for studying interconnection
benchmarks do not saturate the global interconnect network performance in multiprocessor systems Ein
even at high injection rates. As a result, DART’s per- romicro Workshop on Parallel, Distributed and Network-
formance degrades more slowly than Booksim. Under [

similar network load, Booksim exhibits worse scaling

than DART when network size increases (Figure 5b);
however, the interconnect can become the bottleneck

based Processin@2002.
8] G. Schelle and D. Grunwald, “Onchip interconnect ex-
in larger DART systems, in which case additional
network load results in declining speedup.

0.3

Sim steps / FPGA clock cycle
< P o b
& N
Sim steps / FPGA clock cycle

.04 =
9 16 25 36 64
Torus Size (number of nodes)

9 16 25 36 64
Torus Size (number of nodes)

x4 —@—

Bx8 —&— 16x16 |
8x4 —M— =

16x8

Figure 4. Performance impact of crossbar sizes

(4]

ploration for multicore processors utilizing FPGAS,” in
2nd Workshop on Architecture Research using FPGA
Platforms 2006.

] P. Wolkotte, P. Holzenspies, and G. Smit, “Fast, Accurate
and Detailed NoC Simulations,” ilNetworks-on-Chip,
NOCS May 2007.

