
ZCache Skew-ered

Richard Sampson Thomas F. Wenisch
Advanced Computer Architecture Lab

University of Michigan

Abstract

Reducing the number of last-level cache misses in multi-
cores while maintaining low on-chip hit latencies remains a
critical challenge. The recently proposed ZCache improves
on-chip hit rates by indexing via a sophisticated H3 hash-
ing function and selecting victims through a multi-level re-
placement scheme. By using different hashing functions in
each way, ZCache, like earlier skewed-associative caches,
ensures that different subsets of addresses conflict in each
way for a given index. The diversity of replacement can-
didates allows ZCache to provide an effective associativity
greater than the number of physical ways while still having
low look-up costs.

In this paper, we deconstruct and re-examine the var-
ious differences between ZCache and earlier proposals
for skewed-associative caches using commercial server
applications, multi-threaded applications, and scientific
workloads. We find that: (1) ZCache’s H3 hash functions
are unnecessarily complex—previously proposed skewed
indexing schemes provide similar performance with less
overhead; (2) two-level replacement provides useful en-
ergy/performance gains for commercial server applications,
but additional replacement levels may not be justified; and
(3) ZCache’s timestamp-based replacement scheme is its
most critical innovation—when this replacement scheme
is integrated into a skewed-associative cache, the design
achieves most of ZCache’s performance gains without the
need for multi-level replacement.

1. Introduction

Reducing the number of last-level cache misses in multi-
cores while maintaining low on-chip hit latencies remains a
critical challenge. Modern multicores typically have highly-
associative (16-way or higher) last-level caches to miti-
gate conflict misses [7]—misses that arise when numerous
frequently-accessed blocks map to the same set in the cache.
However, high associativity comes at a price in static power
(due to larger tags) and access latency/energy (due to set-
associative lookup).

To mitigate conflict misses in low-associative caches, Seznec
proposed a new cache indexing scheme called skewed asso-
ciativity [20]. By using simple hashing functions that mix

index and tag bits to map an address to distinct sets in each
way of the cache, skewed-associative caches ensure that ad-
dresses that conflict in one way do not conflict in others.
Over time, blocks that conflict in one way settle into non-
conflicting locations in other ways, reducing conflict misses
and increasing the effective associativity of the cache. How-
ever, skewed-associative caches complicate cache replace-
ment; least-recently-used (LRU) replacement is difficult to
implement and past skewed-associative designs have relied
on simple not-recently-used (NRU) schemes [20, 21].

ZCache [17] further builds on this body of work to provide
even greater effective associativity from a low-associative
(e.g., 4-way) cache. ZCache combines sophisticated H3

hash-based indexing, a new bucketed pseudo-LRU replace-
ment algorithm, and a multi-level replacement scheme in-
spired by cuckoo hashing [13]. Instead of evicting a victim
block from the cache, in ZCache, a victim block can displace
yet other victims to alternate locations, thereby allowing a
large number of replacement candidates to be considered.
This cascading replacement is possible because the hash
function maps each block to distinct alternate sets, enabling
better cache utilization without increasing the number of
ways. However, this flexibility comes at a cost in imple-
mentation complexity and additional energy to shift blocks
between locations.

In this paper, we deconstruct the ZCache design and eval-
uate each of its differences from prior skewed-associative
designs. In particular, we contrast ZCache’s H3 based hash
with simpler skew functions, we examine the hit rate and en-
ergy trade-offs of multi-level replacement, and we consider
the impact of ZCache’s bucketed LRU replacement. First,
we show that the H3 hashing functions used by ZCache are
unnecessarily complex and equivalent performance is pos-
sible using the simpler skew function. Second, we demon-
strate that, for commercial applications, two-level replace-
ment provides a useful power/performance trade-off, making
it a good candidate for designs geared towards server work-
loads; however, additional replacement levels provide neg-
ligible improvement for the added complexity and energy.
Moreover, we find that multi-level replacement is not neces-
sary for scientific workloads. Third, we show that ZCache’s
bucketed LRU with skew provides substantial benefit over
Seznec’s 2-bit NRU scheme, and is a preferred pseudo-LRU



algorithm for skew-associative caches. Finally, we propose
small enhancements to skewed-associative indexing to im-
prove its impact in large caches.

The rest of this paper is organized as follows. In Section 2,
we describe skewed-associativity and ZCache. In Section 3,
we present our evaluation methods, and discuss our results in
Section 4. In Section 5, we discuss related work and finally,
we conclude in Section 6.

2. Background

2.1 Skewed Associativity

Skewed-associative caches [20,21] were proposed to reduce
conflict misses by using different mappings for each way of
a set-associative cache. Each mapping function mixes low
order tag bits into the index under a different permutation,
ensuring that addresses conflicting in one way do not con-
flict in the other ways. As a result, more distinct combi-
nations of blocks can be concurrently cached. Over many
accesses, conflicting blocks tend to spread out to alterna-
tive non-conflicting locations, resulting in a significant re-
duction of conflict misses over conventional set-associative
lookup [3].

The main drawback of skewed-associative caches is that one
cannot readily implement a least recently used (LRU) re-
placement algorithm for them. Because the set of candidate
victim blocks varies for each lookup, exact LRU can only
be implemented by maintaining large last-access timestamps
for each block, an impractical solution. Instead, Seznec pro-
posed a complexity-effective 2-bit not-recently used (NRU)
replacement scheme [21].

The skewed indexing scheme adds minimal hardware, re-
quiring only static bit rotations and a single level of XOR
gates. An access address is divided into four segments,
A3, A2, A1, A0, where A0 are the block offset bits, A1 the
conventional n-bit index, A2 the n low-order bits of the tag,
and A3 the remaining tag bits as shown in Figure 1(a). The
index skewing function fi(A) of way i is given by:

fi(A) =σi(A2)⊕A1

where σ is the perfect shuffle operation shown in Figure 1(b).
Since binary perfect shuffles require only a permutation of
the wires, the skewed lookup introduces only a single level
of XOR gates in the critical path of each way.

Skew lookup in large caches. Skewed lookup relies on vari-
ability in A2 to spread otherwise-conflicting blocks across
sets of the cache. It is most effective when there is a great
deal of variability in all bits of A2. However, present-day
L2 caches have far more sets than when skewed lookup was
proposed, and higher-order tag bits tend to vary little. To in-

troduce better distributions in the skewing, we modify fi(A)
to duplicate the lower half of A2 into its upper half, yield-
ing A′

2. We find that this modified skewing function gives
consistently better performance given the footprints (up to
1GB) of the applications we study.

2.2 ZCache

ZCache [17] at its core is similar to skewed-associativity, as
it uses a hashing function to create distinct indexing func-
tions for each way. In addition, ZCache introduces a multi-
level replacement scheme, inspired by cuckoo hashing [13],
to consider more candidates for replacement than there are
ways in the cache, without affecting the critical path of cache
lookup. Finally, ZCache makes use of a bucketed-LRU re-
placement algorithm that provides near-LRU performance
with reasonable overhead.

ZCache uses sophisticated H3 hash functions [4, 15] to cre-
ate distinct index functions for each cache way. In the H3

hash, shown in Figure 1(c), n address bits select multiple
rows of a pre-generated n by m binary matrix, where n is
the desired number of selection bits, and m is the length
of the index. The matrix is generated randomly with each
bit having a 50% probability of being set [19]. The selected
rows (for which the corresponding address bits are set) are
passed to an n bym XOR array, which sums each column to
produce an m-bit index. Distinct index functions are created
by using a different random matrix for each way. The H3

hash generally performs better for larger n; we use all avail-
able address bits (all bits above the block offset) to maxi-
mize variation. The hardware overheads of a generic H3 al-
gorithm are considerable; each way requires matrix storage,
selection logic, and an XOR array, all of which lie on the
cache access critical path. By pre-selecting and hard-coding
the hash functions for each way, these hardware overheads
can be reduced (e.g., [19] demonstrates an implementation
with a five-level tree of two-input XOR gates). In our work,
we assume the hard-coded design; nonetheless, even these
optimized H3 implementations have greater hardware over-
head than skewed indexing.

ZCache also introduces two-level and three-level replace-
ment mechanisms, which consider more candidates for evic-
tion as shown in Figure 1(d). The key idea of this multi-level
replacement scheme is to displace (rather than evict) a victim
block to one of its alternate locations, which in turn might
displace another block, until the best candidate for eviction
is found. When a victim block must be selected, an initial
set of victims are identified as in conventional single-level
replacement. In a 4-way cache, there are four such possible
victims. Then, a second level of possible victims is identi-
fied by hashing each of these first four candidate addresses,
providing 12 more candidates. These can be hashed a third
time, yielding 52 total replacement candidates. The eldest
block of all of the candidates is evicted from the cache, and

2



A0A1A2A3

n bits n bits

m bits

Address A

Binary 
Matrix

n bits

m
 b

its

rows selected
from upper

m address bits

⊕
⊕
⊕
⊕
⊕

n-bit X
O

R
s

f0(A)

c.) H3 Hashb.) Skewing Function

f0(A) = A2 ⊕ A1

f1(A) = σ(A2) ⊕ A1

f2(A) = σ (A2) ⊕ A1

f3(A) = σ (A2) ⊕ A1

2

3

Perfect Shuffle: σ()

00
01
10
11

00
01

10
11

00
10
01
11

Create
2 "Decks"

Alternate 
From Them

d.) Multi-level Replacement
(2-level)

A

B

C

D

E

F
G
H

I
J
K

L
M
N

O
N
P

OffsetIndexLower TagUpper Tag

Level 1 Level 2

B-P are all candidates for 
eviction.  F-P evictions 
require data to be shifted 
from Level 1 to Level 2 
to make room for A

f0(A)

f1(A)

f2(A)

f3(A)

f1(B)
f2(B)

f3(B)

f0(C)
f2(C)

f3(C)

f0(D)
f1(D)

f3(D)

f0(E)
f1(E)

f2(E)

f1, f2, f3 computed same 
but with different matrices

a.) Memory Address

Figure 1: a.) Decomposition of address bits for skew and hash algorithms, b.) Description of skewing with “perfect shuffle” function, c.)
Description of H3 hashing, d.) Diagram of multi-level replacement, which can be used with either indexing method.

3



the remaining blocks are shifted as needed. The search for a
victim and swap operations are performed while an off-chip
miss is pending, and hence are off a miss’s critical path.

Finally, much like skewed-associativity, ZCache cannot
practically implement LRU replacement. Instead, it intro-
duces a novel bucketed-LRU replacement scheme, where a
small n-bit last-access timestamp is maintained per cache
line. Every k accesses, the current time is incremented.
When a victim block is needed, the blocks are partially-
ordered according to their timestamps and a victim is se-
lected from the eldest group. We use n = 8 and k = 5% of
cache size as suggested in [17].

3. Methodology

3.1 Infrastructure

We evaluate ZCache and skewed-associative designs using
trace-based simulations with Flexus 3.0 [24]. We simulate
a 16-core system with 8MB shared L2 cache and 64kB pri-
vate L1 caches. In our trace-driven model, each core exe-
cutes at a fixed IPC of 1; we do not model any stalls within
the simulation. For energy calculations, we determine the
total stall time due to L1 and L2 cache misses from aver-
age miss rates (i.e., assuming in-order cores). Hence, our
evaluation focuses on L2 miss rates (reported in misses-
per-1000-instructions) and average power rather than exact
performance estimates. Our traces include both L2 instruc-
tion and data accesses. Table 1 summarizes our simulation
parameters. We include baseline results for 4-way, 16-way
and fully-associative L2s and consider ZCache and skewed-
associative designs that are implemented with 4-way lookup,
to ensure our results are comparable to prior work.

3.2 Workloads

We study a selection of multithreaded applications includ-
ing commercial server applications, scientific applications
(em3d and moldyn) and PARSEC [2]. Table 2 lists our work-
load suite. Prior work on ZCache [17] also considered multi-
programmed workloads. Numerous recent studies have con-
sidered schemes for staticly and dynamically partitioning
cache capacity in multi-programmed workloads [10,16,22];
we limit our study to single-application multi-threaded pro-
grams to simplify the analysis. However, recent work has
suggested that multi-level replacement allows for more in-
telligent partitioning schemes [18]. We execute each bench-
mark for either 400-million or 800-million instructions per
CPU, or, in the case of the scientific applications, seven to
nine iterations. We warmed caches for 200-million instruc-
tions per CPU or three iterations prior to measurements.

3.3 Replacement Policy

Unless otherwise specified, we use bucketed-LRU replace-
ment with n = 8 and k = 5% of cache size (419430 bytes)

for both skewed-associative and ZCache designs. In Sec-
tion 4.1, we establish that this bucketed-LRU scheme is su-
perior to the NRU scheme described by Seznec. For the set-
associative baselines, we use exact LRU replacement. We in-
clude results for a fully-associative LRU design to estimate
the opportunity to reduce conflict misses in each workload.

3.4 Energy and Power Models

We estimate static and dynamic power for each L2 cache
design using the leakage power and per-access energies
reported in [17]. These per-access figures were obtained
from McPAT [9] and CACTI 6.5 [11]. We reproduce these
power/energy estimates in Table 3.

To generate our full system energy estimates, we first es-
timate the additional runtime due to L2 and main memory
accesses. We assume a 10-cycle delay for L2 accesses and a
200-cycle delay for main memory accesses. Under these as-
sumptions, we can calculate the total L2 energy (considering
both static and dynamic power) using the values in Table 3.
To assess full system power, we assume a fixed 2W per core,
and calculate main memory energy assuming a single DIMM
with a 2.78 W background power and 51 nJ per-access en-
ergy (derived from the main memory power model in [5]).
We present the full system energy as the sum of the calcu-
lated core, L2, and main memory energies, neglecting other
system components. We have selected these core and mem-
ory estimates to approximate the system assumed in [17];
that is, a large number of Atom-class cores with a compara-
bly small on-chip cache and low memory footprint.

4. Results

We begin our evaluation by first demonstrating that ZCache’s
bucketed-LRU replacement is superior to Seznec’s NRU
scheme for skewed-associative caches. Then, we contrast
this enhanced skewed-associative design with ZCache to
evaluate its hashing function and multi-level replacement
scheme with respect to performance and energy.

4.1 NRU versus Bucketed-LRU

Figure 2 contrasts the miss rate of three version of skew
associativity and a conventional 16-way set-associative de-
sign, normalized to the miss rate of a 4-way set-associative
cache. Each bar shows percent improvement in misses-per-
1000-instructions (MPKI) over the 4-way cache. The left-
most bar in each group shows the 16-way set-associative
design. Skew(NRU) represents a skewed-associative design
with Seznec’s “enhanced NRU” replacement policy [21],
which uses the full A2 address segment. Skew(Bucketed
LRU) adds the replacement policy proposed for ZCache. Fi-
nally we show Skew(Bucketed LRU + 3-level) which shows
the skew algorithm with all of additional contributions of
ZCache. Compared to the bucketed-LRU, 3-level design, on

4



Component Configuration
Cores 16 In-order Cores @ 2.0 GHz
Architecture UltraSPARC III ISA
L1 I & D Caches 64KB each with 64-byte blocks
L2 Cache 8MB, Non-inclusive, Shared, 4-way (unless otherwise specified), 10-cycle access latency
DRAM 1 DIMM, 200-cycle access latency

Table 1: System Configuration for Simulations

Benchmark Configuration
apache 16K connections, fastCGI, 12.8 billion instr.
oracle 100 warehouses (10 GB), 16 clients, 1.4 GB SGA, 6.4 billion instr.
db2 100 warehouses (10 GB), 64 clients, 2 GB buffer pool, 6.4 billion instr.
zeus 16K connections, fastCGI, 12.8 billion instr.
blachscholes native workload, 6.4 billion instr.
dedup native workload, 6.4 billion instr.
facesim native workload, 6.4 billion instr.
fluidanimate native workload, 6.4 billion instr.
vips native workload, 6.4 billion instr.
x264 native workload, 6.4 billion instr.
em3d 768K nodes, degree 2, span 5, 7 iterations
moldyn 19652 mo., boxsize 17, 2.56M iteractions, 9 iterations

Table 2: Benchmark Configurations

Cache Type
Ser ial lookups Parallel lookups

Bank Bank Bank Bank Bank Bank L2 L2
latency E/hit E/miss latency E/hit E/miss area leakage

SetAssoc 4-way 4.14 ns 0.61 nJ 1.26 nJ 2.91 ns 0.71 nJ 1.42 nJ 42.3 mm2 535 mW
SetAssoc 8-way 4.41 ns 0.75 nJ 1.57 nJ 3.18 ns 0.99 nJ 1.88 nJ 45.1 mm2 536 mW

SetAssoc 16-way 4.74 ns 0.88 nJ 1.87 nJ 3.51 ns 1.42 nJ 2.46 nJ 46.4 mm2 561 mW
SetAssoc 32-way 5.05 ns 1.23 nJ 2.66 nJ 3.82 ns 2.34 nJ 3.82 nJ 51.9 mm2 588 mW

ZCache 4/16 4.14 ns 0.62 nJ 2.28 nJ 2.91 ns 0.72 nJ 2.44 nJ 42.3 mm2 535 mW
ZCache 4/52 4.14 ns 0.62 nJ 3.47 nJ 2.91 ns 0.72 nJ 3.63 nJ 42.3 mm2 535 mW

Table 3: Area, power, and latency for 8MB, 8-banked L2 caches with different organizations. Values reproduced from [17].

0

5

10

15

20

25

30

35

apache oracle db2 zeus blackscholes dedup facesim fluidanimate vips x264 em3d moldyn

%
 M

P
K

I R
e

d
u

ct
io

n
 v

s 
4

-W
ay

 

Benchmark 

16-Way Skew (NRU) Skew (Bucketed LRU) Skew (Bucketed LRU + 3-level)

Figure 2: Comparisons of misses-per-1000-instructions (MPKI) improvements over 4-way set associative caches for 16-way set associative,
skewing with A2 and NRU (NRU), bucketed LRU (Bucketed LRU), and bucketed LRU with 3-levels of replacement (Bucketed LRU + 3-level)

5



average, 42% of the benefit is from the skewing algorithm
with NRU, 20% comes from the addition of the bucketed-
LRU algorithm, and the rest is from the 3-levels of replace-
ment.

For workloads that are sensitive to replacement policy,
the bucketed-LRU scheme substantially outperforms NRU.
Moreover, in nearly all cases, the performance of the best
skewed-associative design matches or comes close to the
performance of a 16-way set-associative cache.

4.2 H3 versus Skewing

Figure 3 contrasts MPKI across several set-associative,
ZCache, and skewed-associative designs. All results are
again reported as improvements over a 4-way set-associative
cache with LRU replacement. Both skewed-associative and
H3-based designs are shown for 1-level (4 replacement can-
didates), 2-level (16), and 3-level (52) replacement schemes.

The figure demonstrates that there is a negligible difference
between the H3 hash and our skew function. As skew re-
quires less hardware overhead and is conceptually simple,
we see little reason to use the H3 hash.

4.3 Performance versus Energy

Figure 3 also shows the gain in cache miss rate from
ZCache’s multi-level replacement scheme. Several of the
workloads are insensitive to replacement policy, gaining no
benefit from multi-level replacement. For many workloads,
single-level replacement (with 4-way lookup) is sufficient
to match the performance of 16-way associative caches. The
commercial applications and fluidanimate do gain some ben-
efit from two-level lookup, closing the gap between 16-way
associative and fully-associative designs. Three-level lookup
provides at best marginal gains for the commercial work-
loads, which (as we show below) do not justify its energy
and complexity overheads. The diminishing returns in per-
formance are a limitation of the replacement policy being
unable to make effective use of the added associativity. If
the additional associativity could be better utilized with an
improved replacement policy, three-level lookup might pro-
vide more substantial gains.

The benefits of multi-level lookup come at a significant cost
in average L2 power, as shown in Figure 4. In this figure,
we show the percent increase in total L2 power relative to
a 4-way set associative cache (higher is worse). However,
most of this added cache power is mitigated by energy sav-
ings from improved performance when considering the full-
system energy. Figure 5 shows that in a system with 16
2W cores and a 1-DIMM main memory, two-level replace-
ment provides the best trade-off for most of the commer-
cial workloads. Three-level replacement provides a marginal
gain for oracle and fluidanimate, but the benefit is unlikely
to warrant the additional implementation complexity. Three-

level replacement results in a net energy loss for the remain-
ing workloads when compared with fewer levels of replace-
ment. Our results also demonstrate that multi-level lookup
is not justified for scientific applications—these applications
thrash the cache, invoking the multi-level replacement al-
gorithm frequently (at a high power overhead), but gain no
benefit from the additional replacement candidates.

It is important to note that the L2 cache-to-core power ratio
assumed in this analysis is atypical for a server-class sys-
tem. Under the set of assumptions discussed here, the L2
cache is small (only 8 MB for a 32nm process assumption)
and contributes only a couple of percent of the total system
power (the last-level cache has been reported as roughly 20%
of chip-level power for Niagara 2 [12] and Nehalem [1]).
Hence, our L2 cache power overheads are often dwarfed
by core power and main memory energy savings from re-
duced miss rates in our analysis. We have selected these as-
sumptions to provide consistency with the results presented
in [17]. However, we have also provided MPKI reductions
for a 32 MB L2 shown in Fig. 6. This graphs shows the 8 MB
results in the left set of bars and 32 MB results in the right
set of bars. Not only does the 32 MB cache provide a signifi-
cant improvement over the smaller design, but the advantage
of multiple levels of replacement shrinks, most notably be-
tween one-level and two-level. On balance, we conclude that
two-level replacement is likely justified for server-class sys-
tems, but three-level replacement will result in energy losses.

5. Related Work

Hash Function Analysis. Previous work has examined
the effectiveness of various hash functions in skewed-associative
designs [23]. In particular, this work has examined XOR-
based hashes and their matrix representations to gain insight
into conflicts via null space and column space analysis.
Whereas the prior study focuses on theoretical analysis of
the functions, we compare the skew function and H3 hashes
empirically.

Cuckoo Directories. Another recent proposal similar in
spirit to ZCache is Cuckoo Directories [6]. A Cuckoo Di-
rectory uses skewed-associative lookup, and upon a miss,
considers allocations that involve multiple displacements.
ZCache limits the number of levels searched during an evic-
tion operation. In contrast, the Cuckoo Directory performs a
depth-first search and does not limit search by levels. Instead
it continues to iterate until a valid insertion location is found,
and data is then shifted as needed.

V-way Cache. The V-way cache [14] also seeks to increase
effective associativity by using a variable number of ways in
each set. It exploits the observation that in a set-associative
cache, the working set that maps to one cache set may be
larger than that of another. By redistributing the data, V-way
caches improve utilization.

6



0

5

10

15

20

25

30

35

apache oracle db2 zeus blackscholes dedup facesim fluidanimate vips x264 em3d moldyn

%
 M

P
K

I R
e

d
u

ct
io

n
 v

s 
4

-W
ay

 

Benchmark 

16-Way Fully Assoc.

H3 (1-level) Skew (1-level)

H3 (2-level) Skew (2-level)

H3 (3-level) Skew (3-level)

Figure 3: Comparisons of misses-per-1000-instructions (MPKI) improvements over 4-way set associative caches for 16-way set associative
and fully associative using LRU and ZCache and Skewing with 1, 2, and 3 levels of replacement

0

5

10

15

20

25

apache oracle db2 zeus blackscholes dedup facesim fluidanimate vips x264 em3d moldyn

%
 L

2
 P

o
w

e
r 

In
cr

e
as

e
 v

s 
4

-W
ay

 

Benchmark 

16-Way H3 (1-level) H3 (2-level) H3 (3-level)

Figure 4: Power increase over 4-way set associative design generated from power values in Table 3

0

1

2

3

4

5

6

7

apache oracle db2 zeus blackscholes dedup facesim fluidanimate vips x264 em3d moldyn

%
 F

u
ll 

Sy
st

e
m

 E
n

e
rg

y 
R

e
d

u
e

ct
io

n
 v

s 
4

-W
ay

 

Benchmark 

16-Way H3 (1-level) H3 (2-level) H3 (3-level)

Figure 5: Full system energy reduction over 4-way set associative design assuming 2W per core

7



0

10

20

30

40

50

60

70

80

apache oracle db2 zeus

%
 M

P
K

I R
e

d
u

ct
io

n
 v

s 
4

-W
ay

 (
8

M
B

) 

Benchmark 

16-Way (8MB) H3 (1-level,8MB) H3 (2-level,8MB) H3 (3-level,8MB)

16 Assoc. (32MB) H3 (1-level,32MB) H3 (2-level,32MB) H3 (3-level,32MB)

Figure 6: Comparisons of misses-per-1000-instructions (MPKI) improvements over 4-way set associative caches for 16-way set associative
using LRU and ZCache and Skewing with 1,2, and 3 levels of replacement. For each benchmark, the left set of graphs has 8 MB L2 caches
and the right set of graphs has 32 MB L2 caches

RRIP. RRIP [8] describes a replacement scheme that is
closely-related to Seznec’s pseudo-LRU. RRIP is motivated
by the observations that effective replacement algorithms,
such as LRU, are expensive and difficult to implement. Ad-
ditionally, LRU keeps no information about how often data
is accessed, and is oblivious to the fact that data recently put
into the cache may not be needed again. RRIP uses a simple
mechanism that starts data at a low priority, and upon future
accesses, raises its priority. Victim blocks are selected from
the lowest priority group; if no blocks have minimum prior-
ity, then the priority of all blocks is reduced and the search is
repeated. By using two bits to keep track of priorities, RRIP
can achieve excellent performance in set-associative caches.

6. Conclusions

In this paper, we have deconstructed ZCache, a new design
for caches that uses both hashed indexes and multi-level re-
placement to achieve greater associativity and performance
without increasing the number of ways. We have shown that
previously proposed skewed-associative caches use a sim-
pler indexing algorithm that is able to achieve comparable
performance to ZCache’s H3 hashes with lower hardware
overheads. We have also shown that, whereas a two-level re-
placement scheme might benefit commercial workloads, its
energy overheads are not justified for scientific applications.
Furthermore, we have shown that three-level replacement
pays an even larger power cost and while it may be beneficial
overall in systems with small caches, server-class designs
are more likely to favor two-levels of replacement. Finally,
we have shown that applying a simple modification to the

skewing function and adopting ZCache’s bucketed LRU re-
placement policy significantly improves skewed-associative
cache performance, matching that of ZCache.

Acknowledgements

The authors would like to thank Daniel Sanchez and Christos
Kozyrakis for extensive comments on earlier drafts of this
work. This work was supported in part by grants from ARM
and NSF grant CCF-0815457.

References
[1] “Intel Xeon Processor 5600 Series. Datasheet, Vol. 1,” 2010.
[2] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec bench-

mark suite: characterization and architectural implications,”
pp. 72–81, 2008.

[3] F. Bodin and A. Seznec, “Skewed associativity enhances per-
formance predictability,” ISCA ’95: 22nd Annual International
Symposium on Computer Architecture, pp. 265–274, 1995.

[4] J. L. Carter and M. N. Wegman, “Universal classes of hash
functions (extended abstract),” STOC ’77: Ninth Annual ACM
Symposium on Theory of Computing, pp. 106–112, 1977.

[5] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bian-
chini, “Memscale: active low-power modes for main memory,”
ASPLOS ’11: 16th international conference on architectural
support for programming languages and operating systems,
vol. 46, pp. 225–238, 2011.

[6] M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi,
“Cuckoo directory: A scalable directory for many-core
systems,” HPCA ’11: International Symposium on High-
Performance Computer Architecture, 2011.

[7] M. D. Hill and A. J. Smith, “Evaluating associativity in cpu
caches,” IEEE Trans. Comput., vol. 38, pp. 1612–1630, 1989.

8



[8] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer,
“High performance cache replacement using re-reference
interval prediction (rrip),” ISCA ’10: 37th annual international
symposium on Computer architecture, pp. 60–71, 2010.

[9] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi, “Mcpat: an integrated power, area, and tim-
ing modeling framework for multicore and manycore archi-
tectures,” 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 469–480, 2009.

[10] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sa-
dayappan, “Gaining insights into multicore cache partitioning:
Bridging the gap between simulation and real systems,” pp.
367–378, 2008.

[11] N. Muralimanohar, R. Balasubramonian, and N. Jouppi,
“Optimizing nuca organizations and wiring alternatives for
large caches with cacti 6.0,” 40th Annual International
Symposium on Microarchitecture, pp. 3–14, 2007.

[12] U. Nawathe, M. Hassan, K. Yen, A. Kumar, A. Ramachan-
dran, and D. Greenhill, “Implementation of an 8-core, 64-
thread, power-efficient sparc server on a chip,” Solid-State
Circuits, IEEE Journal of, vol. 43, no. 1, pp. 6–20, 2008.

[13] R. Pagh and F. F. Rodler, “Cuckoo hashing,” ESA ’01: 9th
Annual European Symposium on Algorithms, 2001.

[14] M. K. Qureshi, D. Thompson, and Y. N. Patt, “The v-way
cache: Demand based associativity via global replacement,”
ISCA ’05: 32nd annual international symposium on Computer
Architecture, pp. 544–555, 2005.

[15] M. V. Ramakrishna, E. Fu, and E. Bahcekapili, “Efficient
hardware hashing functions for high performance computers,”
IEEE Trans. Comput., vol. 46, pp. 1378–1381, 1997.

[16] P. Ranganathan, S. Adve, and N. P. Jouppi, “Reconfigurable
caches and their application to media processing,” pp. 214–
224, 2000.

[17] D. Sanchez and C. Kozyrakis, “The zcache: Decoupling
ways and associativity,” 43rd Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 187–198, 2010.

[18] D. Sanchez and C. Kozyrakis, “Vantage: scalable and
efficient fine-grain cache partitioning,” ISCA ’11: 38th annual
international symposium on Computer architecture, 2011.

[19] D. Sanchez, L. Yen, M. D. Hill, and K. Sankaralingam, “Im-
plementing signatures for transactional memory,” 40th Annual
IEEE/ACM International Symposium on Microarchitecture,
pp. 123–133, 2007.

[20] A. Seznec, “A case for two-way skewed-associative caches,”
ISCA ’93: 20th Annual International Symposium on Computer
Architecture, pp. 169–178, 1993.

[21] A. Seznec, “A new case for skewed-associativity,” Internal
Publication No 1114, IRISA-INRIA, 1997.

[22] G. E. Suh, L. Rudolph, and S. Devadas, “Dynamic partitioning
of shared cache memory,” The Journal of Supercomputing,
vol. 28, pp. 7–26, 2004.

[23] H. Vandierendonck and K. De Bosschere, “Xor-based hash
functions,” IEEE Trans. Comput., vol. 54, pp. 800–812, July
2005.

[24] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki,
B. Falsafi, and J. C. Hoe, “Simflex: Statistical sampling of
computer system simulation,” IEEE Micro, vol. 26, pp. 18–31,
2006.

9


