
Evaluating Linear Regression for Temperature Modeling at
the Core Level

Dan Upton and Kim Hazelwood
University of Virginia

ABSTRACT
Temperature issues have become a first-order concern for
modern computing systems. There are several approaches
for dynamic thermal management, including reacting based
on some threshold temperature, predicting based on history,
or estimating localized temperatures based on performance
counters. One possibility for more proactive management is
to predict temperatures based on the upcoming instruction
stream or performance counters. A logical approach is to use
linear regression to generate a model based on the instruc-
tion stream, performance counters, or a combination of the
two to predict temperatures at the next time step. However,
we show in this paper that linear regression is unsuitable for
predicting temperatures at the core level. This is primarily
due to the fact that temperature at a time step is depen-
dent upon both the processor activity and the temperature
at the previous time step. As a result, application phases
have long periods with similar instruction streams and per-
formance counter values per time step but with different
temperatures, which leads to prediction errors elsewhere in
the phase. Incorporating temperature history as an input
to the regression essentially leads to a last value predictor,
which predicts the temperature will always be the same as
the last time step. Thus, neither approach is truly suitable
for predictive thermal management.

1. INTRODUCTION
Improvements in transistor technology and increasing clock

rates have continually led to an increase in power density
and core temperatures. High temperatures lead to several
concerns. Higher heat dissipation tends to lead to increased
cooling costs, and limits on practical cooling solutions im-
pose an upper bound on reasonable heat dissipation for pro-
cessors. Higher temperatures also lead to concerns about re-
liability and correctness. For instance, some processors set a
bit indicating that correct execution is no longer guaranteed
above a particular temperature [7], or may shut down the
processor completely as a protection mechanism. Further-
more, even if the processor never exceeds its critical tem-
perature, it has been suggested that a 10-15◦C increase in
operating temperature can decrease the processor’s lifespan
by as much as half [18], and 20◦C cycling can increase the
failure rate by 8x [19].

In addition to cooling solutions and automatic hardware
throttling or protection mechanisms, there are many software-
based thermal management solutions. Some of these rely on
dynamic voltage and frequency scaling (DVFS) to control
heat dissipation [1, 9, 16]. There are several possibilities for

scheduling-based thermal management, such as changing the
order of jobs based on some criteria [14], inserting idle loops
to allow the processor to cool [10], or changing cores on a
multicore processor [2, 4, 5]. DVFS-based solutions can also
be combined with scheduling-based solutions [9].

Many of these software-based thermal management so-
lutions are either static or are only able to use a limited
amount of dynamic information. Static scheduling is much
more practical in embedded systems or other instances where
the workload is known and the thermal profile for all ap-
plications can be determined in advance. Most dynamic
approaches are reactive, performing thermal management
decisions when a threshold is reached, which limits the po-
tential responses. Alternately, dynamic approaches may use
limited temperature histories, while otherwise remaining ag-
nostic to application-level characteristics.

Performance counters have been used to represent local
activity for thermal management, either to avoid repeat-
edly using a functional unit to reduce the likelihood of hot
spots [14] or to act as “soft sensors” instead of placing mul-
tiple physical temperature sensors across the die [3, 11].
However, thermal management decisions are generally made
based on the temperature at the core level. Since core-
level temperatures are related to the localized temperatures
across the core, a logical next step is to use a similar ap-
proach of approximating core-level temperatures with mul-
tiple performance counters. Furthermore, only using per-
formance counter values removes some higher-level informa-
tion about the application, so another possibility is to in-
stead model temperatures based on the application instruc-
tion stream. In either case, we may be able to predict the
approximate upcoming activity, which would enable predic-
tive management when coupled with a thermal model.

In this paper, we attempt to generate a linear regression
model based on performance counters and a linear regression
model based on two different representations of the instruc-
tion stream to predict core-level temperatures. We found
initially that both of these approaches were prone to high
maximum errors (up to 80%) and on average underpredicted
or overpredicted temperatures by a few degrees. Since per-
formance counters and the instruction stream represent dif-
ferent data – for instance, the instruction stream can not
directly account for cache misses – we tried combining both
sets of data. This slightly refines the predictions but still
leads to a maximum error of nearly 60% and similar mis-
predictions by a few degrees. Since the error arises from
the way temperature increases over time, with similar ac-
tivity ultimately leading to multiple temperature readings,

1

we tried adding historical temperature as an input to the
model. However, this ultimately led to a noisy version of a
last value predictor, which is unsuitable for predictive man-
agement because it will never predict changes before they
happen.

The rest of this paper is organized as follows. Section 2
describes our experimental environment. Section 3 then dis-
cusses our various linear regression models and the problems
associated with them. Section 4 describes related work. Fi-
nally, Section 5 concludes.

2. EXPERIMENTAL ENVIRONMENT
All of the experiments in this paper were carried out on an

Intel Core 2 Duo with a 4MB L2 cache and 4GB of RAM.
The machine was running CentOS 5.4 with a 2.6.33 ker-
nel. The 2.6.33 kernel includes perf events [12] to access
the hardware performance counters; we used libpfm4 as an
interface to perf events. Additionally, we configured the
kernel with the coretemp driver, which allows reading the
Core 2’s thermal sensor [7].

In later sections of the paper, we will combine data from
performance counters and the application instruction stream.
We collected the instruction stream by instrumenting the ap-
plication with Pin [13]. We recorded the instruction stream
every 10 million instructions, which synchronizes well with
performance counters by sampling performance counter val-
ues every 10 million instructions.

We took several steps to collect consistent temperature
readings. First, we used the cpufreq kernel module to
pin the processor frequency, which avoids any temperature
changes during an execution due to automatic frequency
variation. Fixing to a particular frequency does not specif-
ically affect the applicability of our experiments; applica-
tions show similar temperature trends at different frequen-
cies, just over different execution times and absolute temper-
ature values. Second, we used the kernel’s isolcpus flag to
remove a given core from consideration by the scheduler, and
the sched_setaffinity system call to pin the application of
interest to that core. This guarantees that only the appli-
cation we are profiling is using the core, which avoids any
temperature or other hardware-level effects that would arise
due to sharing a physical context. It also avoids changes in
temperature due to migrating the application between cores.
Finally, we let the processor idle for several minutes between
executions, which removes the impact of one application’s
temperature on the beginning of the next application.

The Core 2 has one thermal sensor per core, described
in the documentation as being over the hottest part of the
core [7]. Access to the temperature sensor is essentially
equivalent to reading a performance counter. It reports tem-
peratures in integral degrees Celsius; this is one drawback
to the sensor, as it tends to yield long periods at the same
temperature and may also report full-degree oscillations due
to rounding even if the actual temperature is changing by a
much smaller amount. However, this should not significantly
affect our insights, as it does not change that temperature
is related to both activity and the previous temperature.

We perform our tests using a subset of the SPEC 2006
benchmark suite [6]: perlbench, gcc, and astar from the
integer benchmarks, and bwaves, dealII, and wrf from the
floating-point benchmarks. After observing the thermal pro-
files of all 29 benchmarks and 55 inputs in the reference
set, we chose these benchmarks to provide a variety of ap-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

as
ta

r
b

ig
la

k
es

as
ta

r
ri

v
er

s

b
w

av
es

g
cc

 1
6

6

g
cc

 2
0

0

g
cc

 c
−

ty
p

ec
k

g
cc

 c
p

−
d

ec
l

g
cc

 e
x

p
r

g
cc

 e
x

p
r2

g
cc

 g
2

3

g
cc

 s
0

4

g
cc

 s
ci

la
b

d
ea

lI
I

p
er

lb
en

ch
 c

h
ec

k
sp

am

p
er

lb
en

ch
 s

p
li

tm
ai

l

p
er

lb
en

ch
 d

if
fm

ai
l

w
rf

Average Error

Maximum Error

Figure 1: Average and maximum error for temper-
ature prediction based on a linear regression from
performance counters. Although the average error
is generally 2-3%, the maximum error can be much
larger.

plication types, execution lengths, and thermal profiles. In
particular, they have varying phase lengths and several vari-
ations in temperature. However, there are applications that
essentially increase in temperature over time until they reach
a steady state; in our benchmark set, some of the inputs to
perlbench represent that class of application.

3. LINEAR REGRESSION TEMPERATURE
MODELING

This section will discuss each of the configurations we
tested for linear regression modeling, along with a descrip-
tion of why each one is unsuitable for use in a predictive
thermal management setting. We will begin with modeling
based on performance counters in isolation. We will then
consider modeling based on the instruction stream in isola-
tion, using two different representations of the application
instruction stream. Since performance counters and the in-
struction stream capture data at different levels, we then
consider modeling based on a combination of the two data
sets. Finally, we consider modeling based on a combination
of performance counters, the instruction stream, and histor-
ical temperature data.

3.1 Performance Counter-Based Modeling
We collected a variety of performance counters from both

the hardware and operating system levels to cover the
various functional units. From the hardware, we started
with standard metrics such as instructions, micro-ops, and
floating-point ops per cycle, cache and TLB miss rates, and
the branch misprediction rate. We augmented these with
some lower-level performance indicators such as blocked
loads, blocked stores, and cycles spent waiting on the mem-
ory bus. From the operating system level, we included minor
and major page faults. Minor page faults indicate that the
page is in memory but not in the page table and as such has
a low performance penalty, while a major page fault requires
loading the page into memory from disk. It is worth noting
that while minor page faults were common, a few bench-
marks suffered at most three major page faults and most
experienced no major faults.

2

 56

 58

 60

 62

 64

 66

 68

 70

 7400 7600 7800 8000 8200 8400 8600

T
e

m
p

e
ra

tu
re

 (
C

)

Time

Actual Temperature
Performance Counter Model

Figure 2: Actual and predicted temperature over
time for a section of the first input to astar. The
model predicts around a particular temperature for
a phase, with oscillations due to noise from variation
in the performance counter values.

Figure 1 shows the average and maximum errors when
predicting temperatures based on a linear regression model
from performance counters. The average error is low, gener-
ally 2-3%. This amounts to predicting 1-2◦C above or below
the actual temperature. While the ideal case would be to
perfectly predict the temperature, overpredicting by a small
margin is unlikely to lead to severe performance penalties
with predictive thermal management.

However, the maximum error is much larger, up to as
much as 70% on bwaves. Such a large error is much more
likely to lead to incorrectly throttling or descheduling an
application. In practice, these large errors often happen pri-
marily at the beginning of execution, when the processor is
transitioning from an idle temperature to an active one. As
a result, the model may significantly under- or over-predict
temperatures. If such a method were being used in practice
for predictive thermal management, a grace period could
be given at the beginning of execution to avoid excessive
throttling due to incorrect overprediction. While underpre-
diction would not lead to throttling, a simple sanity check of
predicting temperatures below the idle temperature of the
processor would allow the management layer to ignore severe
underpredictions.

Figure 2 compares the predicted and actual temperatures
on the first input to astar over a period of roughly 10 billion
instructions near a phase change. The phase change is clear
near x = 8270, when the average predicted temperature and
pattern of predicted temperatures changes. In this case, the
model is predicting around the average temperature for a
phase, with some variation due to the variation in counter
values at each sample during the phase. This results in as
much as a 4◦C overprediction near time x = 7600, or a 3◦C
underprediction right before the phase change.

3.2 Instruction Stream-Based Modeling
We next consider modeling temperatures with the instruc-

tion stream in isolation. As noted in Section 2, we collected
our instruction streams with Pin [13]. Pin is able to report
the instruction mnemonic for each dynamically-executed in-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

as
ta

r
b

ig
la

k
es

as
ta

r
ri

v
er

s

b
w

av
es

g
cc

 1
6

6

g
cc

 2
0

0

g
cc

 c
−

ty
p

ec
k

g
cc

 c
p

−
d

ec
l

g
cc

 e
x

p
r

g
cc

 e
x

p
r2

g
cc

 g
2

3

g
cc

 s
0

4

g
cc

 s
ci

la
b

d
ea

lI
I

p
er

lb
en

ch
 c

h
ec

k
sp

am

p
er

lb
en

ch
 s

p
li

tm
ai

l

p
er

lb
en

ch
 d

if
fm

ai
l

w
rf

Average Error

Maximum Error

Figure 3: Average and maximum error for tempera-
ture prediction based on a linear regression from in-
struction categories. As with performance counter-
based regression, the average error is 2-3%, but the
maximum error can be much larger.

struction in the application. In addition, Pin’s instruction
decoder provides several logical categories that combine mul-
tiple instruction types. For instance, the decoder defines
one category for conditional branches, one for unconditional
branches, one for data transfer instructions, one for SSE,
and so on. In total, the version of Pin used for this work de-
fines 39 categories and recognizes 908 instruction mnemon-
ics. This provides two different options for representing the
instruction stream for the regression model.

Figure 3 first shows the average and maximum errors for
predicting temperatures with a linear regression based on
instruction categories. The results are similar to those for
prediction based on performance counters, with an average
error of 2-3%. The maximum error is slightly higher, just
above 80% compared to 70% for performance counter-based
regression. Again, in most cases, the largest errors occur at
the beginning of execution as the processor is transitioning
from its idle temperature to its active temperature range.

The largest error of 82% occurs on the second input to
astar. In this case, the error occurs during a phase change
near the end of execution. The actual temperature only
drops one degree, but model spends two billion instructions
swinging between over- and underpredicting the tempera-
ture.

Figure 4 shows the average and maximum error for predic-
tions based on the instruction mnemonic. We omit bwaves

and wrf due to memory errors when regressing the in-
struction mnemonic data. Compared to either performance
counter or instruction category-based regression, both the
average and maximum errors are reduced. The worst-case
error is below 50%, and again occurs during the startup pe-
riod of the benchmark. There are two possible reasons for
the reduction in the error. First, there are many more vari-
ables involved, allowing the model to be more refined. Sec-
ond, it is possible that different instructions or instruction
sequences have different impacts on the temperature, but
those variations are lost when aggregated into categories.

Figure 5 compares actual and predicted temperatures over
time for the same period of the first input to astar. Recall
that a phase change occurs near time x = 8270, which leads
to an increase in temperature shortly afterward. The in-

3

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

as
ta

r
b

ig
la

k
es

as
ta

r
ri

v
er

s

g
cc

 1
6

6

g
cc

 2
0

0

g
cc

 c
−

ty
p

ec
k

g
cc

 c
p

−
d

ec
l

g
cc

 e
x

p
r

g
cc

 e
x

p
r2

g
cc

 g
2

3

g
cc

 s
0

4

g
cc

 s
ci

la
b

d
ea

lI
I

p
er

lb
en

ch
 c

h
ec

k
sp

am

p
er

lb
en

ch
 s

p
li

tm
ai

l

p
er

lb
en

ch
 d

if
fm

ai
l

Average Error

Maximum Error

Figure 4: Average and maximum error for tempera-
tures predicted by a linear regression on instruction
mnemonics. Compared to the instruction category
mix, the average and maximum errors are both re-
duced.

 56

 58

 60

 62

 64

 66

 68

 70

 7400 7600 7800 8000 8200 8400 8600

T
e

m
p

e
ra

tu
re

 (
C

)

Time

Actual Temperature
Instruction Category Model

Instruction Mnemonic Model

Figure 5: Predicted and actual temperatures over
time for the two instruction stream-based methods.
The instruction models predict the phase change
and increase in temperature too early, which re-
sults in overpredicting temperatures by several de-
grees. Both models vary in predicted temperature,
but the range of variation is lower for the instruction
mnemonic model.

struction stream-based predictors react early to the phase
change, leading to overpredicting the temperature for sev-
eral degrees. In a predictive thermal management context,
this may be acceptable, as predicting early provides plenty
of lead time for making decisions, but overpredicting by a
large amount or too early can lead to unnecessarily penaliz-
ing the execution. The comparison of predictions over time
also shows the difference in prediction noise between the
two models. Both models vary in temperature for a given
average code sequence, but the predicted temperature with
instruction mnemonics varies within a smaller range.

3.3 Combining Performance Counters and In-
structions

We next look at creating a model using a combination of

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

as
ta

r
b

ig
la

k
es

as
ta

r
ri

v
er

s

b
w

av
es

g
cc

 1
6

6

g
cc

 2
0

0

g
cc

 c
−

ty
p

ec
k

g
cc

 c
p

−
d

ec
l

g
cc

 e
x

p
r

g
cc

 e
x

p
r2

g
cc

 g
2

3

g
cc

 s
0

4

g
cc

 s
ci

la
b

d
ea

lI
I

p
er

lb
en

ch
 c

h
ec

k
sp

am

p
er

lb
en

ch
 s

p
li

tm
ai

l

p
er

lb
en

ch
 d

if
fm

ai
l

w
rf

Average Error

Maximum Error

Figure 6: Average and maximum error for temper-
atures predicted by a linear regression based on a
combination of performance counters and instruc-
tion categories. Both the average and maximum er-
rors are reduced compared to a linear regression on
either data set in isolation.

performance counters and instructions. Performance coun-
ters and the instruction stream provide different sets of infor-
mation about application behavior. The instruction stream
encodes higher-level information about the different ways in
which hardware is being used, such as whether branches over
a given time step are conditional or unconditional and direct
or indirect. Performance counters encode lower-level infor-
mation about hardware usage and effects that could either
indicate increasing temperatures, such as higher activity and
IPC, or decreasing temperature, such as a higher number of
cache misses or pipeline flushes due to branch misprediction.
Since the two data sets encode different information, a com-
bination of the two may be able to refine the predictions.

Figure 6 shows the average and maximum errors for tem-
perature prediction based on a combination of performance
counters and instruction categories. The average error is re-
duced to less than 2% in almost all cases. Furthermore, the
maximum error is decreased compared to modeling based on
either data set in isolation. While performance counters and
instruction categories in isolation led to maximum errors of
approximately 70% and 80% respectively, the maximum er-
ror on the combined data set is 57%.

Figure 7 shows a similar comparison of the average and
maximum errors for temperature prediction based on a com-
bination of performance counters and instruction mnemon-
ics. Again, the maximum error is reduced compared to using
either data set in isolation, and the error for the combination
with instruction mnemonics is less than that of the combi-
nation with instruction categories.

In both cases, we tested two combinations of the data.
The first, shown in the previous two graphs, used both the
performance counter values and the instruction stream for
the time step being predicted. The second combination uses
the instruction stream for the upcoming time step along with
the performance counter values for the previous time step.
This avoids requiring a phase predictor and would at worst
miss phase transitions by one time step. In practice, the
average and maximum errors were essentially the same for
both configurations.

Figure 8 compares temperature over time for the instruc-

4

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

as
ta

r
b

ig
la

k
es

as
ta

r
ri

v
er

s

g
cc

 1
6

6

g
cc

 2
0

0

g
cc

 c
−

ty
p

ec
k

g
cc

 c
p

−
d

ec
l

g
cc

 e
x

p
r

g
cc

 e
x

p
r2

g
cc

 g
2

3

g
cc

 s
0

4

g
cc

 s
ci

la
b

d
ea

lI
I

p
er

lb
en

ch
 c

h
ec

k
sp

am

p
er

lb
en

ch
 s

p
li

tm
ai

l

p
er

lb
en

ch
 d

if
fm

ai
l

Average Error

Maximum Error

Figure 7: Average and maximum error for temper-
atures predicted by a linear regression on a com-
bination of performance counters and instruction
mnemonics. The average and maximum errors are
reduced compared to a linear regression on either
data set in isolation, and the error with instruction
mnemonics is lower than that with instruction cat-
egories.

 56

 58

 60

 62

 64

 66

 68

 70

 7400 7600 7800 8000 8200 8400 8600

T
e

m
p

e
ra

tu
re

 (
C

)

Time

Actual Temperature
Instruction Category Model
Combined Category Model

Figure 8: Actual and predicted temperatures over
time for models using a combination of performance
counters and instruction categories. The perfor-
mance counter data prevents the phase change from
being predicted too early, but increases the noise in
the prediction after the phase change.

tion category model with and without including performance
counter data on the same section of the first input to as-

tar. The inclusion of the performance counter data slightly
reduces the overprediction in one phase and prevents the in-
struction data from predicting the phase change too early.
However, it increases noise in the predictions in the next
phase. At other points in the execution, where the instruc-
tion mix suffers large errors but the performance counters
do not, the combined model still has a large error but it
is slightly reduced by the inclusion of performance counter
data.

3.4 Modeling With Historical Temperatures
In all previous cases, one source of the error has been the

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20000 40000 60000 80000 100000 120000 140000 160000
 50

 55

 60

 65

 70

 75

 80

IP
C

T
e

m
p
e

ra
tu

re
 (

C
)

Time

IPC
Temperature

Figure 9: Temperature and IPC over time for the
first half of bwaves. Although the code has a repeat-
ing phase with similar IPC and other characteristics,
the code has a range of 7◦C. This makes it difficult
for a linear regression model to predict a correct
temperature.

way temperature changes across an application phase or the
way temperature changes across multiple repetitions of a
given phase. Similar code is being executed, both from the
standpoint of the instruction stream and the performance
counter characteristics, but there are multiple temperature
values. Consider for instance Figure 9, which shows temper-
ature and IPC for the execution for the first half of bwaves.
The same IPC, as well as code patterns and other hard-
ware characteristics, repeats 12 times over the period shown.
These repeating phases correspond to a range of 7◦, which
makes it difficult to map a particular input set to one “cor-
rect” temperature. This happens because the core tempera-
ture increases over time as more heat is generated than can
be removed by the cooling solution. Also note that the rate
of increase in temperature decreases as the temperature in-
creases; the temperature increases by 5◦ over the first 40000
time steps, but only 2◦ over the rest of the period shown.

Since the current core temperature has an impact on how
the code impacts further increases or decreases, a natural
next step is to include the current core temperature as an
input to the regression. Figures 10 and 11 show the av-
erage and maximum errors when predicting temperatures
with a combination of performance counters, the instruction
stream, and historical temperatures. Note that the y-axis
now uses a log scale. This reduces the maximum error to
approximately 1% and the average error to significantly less
than that. Interestingly, the average error for using instruc-
tion mnemonics is slightly higher than for using instruction
categories; while in previous cases, the mnemonic data pro-
vided more flexibility, in this case it seems to add more noise
to the model.

Although the low errors here seem promising, we must also
compare the predicted temperatures over time to see how
such a model could perform in practice. Figure 12 compares
the actual temperature over time to the combined predic-
tor and a simple last-value predictor. Unfortunately, as the
figure shows, the combined model is essentially acting as a
noisy last-value predictor. This can be seen from the coeffi-

5

 1e−05

 0.0,001

 0.001

 0.01

 0.1

pe
rlb

en
ch

 d
iff

m
ai

l

pe
rlb

en
ch

 sp
lit

m
ai

l

pe
rlb

en
ch

 c
he

ck
sp

am

de
al

II

gc
c

sc
ila

b

gc
c

s0
4

gc
c

g2
3

gc
c

ex
pr

2

gc
c

ex
pr

gc
c

cp
−d

ec
l

gc
c

c−
ty

pe
ck

gc
c

20
0

gc
c

16
6

ca
ct

us
A

D
M

bw
av

es

as
ta

r r
iv

er
s

as
ta

r b
ig

la
ke

s

Average Error
Maximum Error

Figure 10: Average and maximum error for predict-
ing temperatures with a combination of performance
counters, instruction stream categories, and temper-
ature history. Note the y-axis uses a log scale. By
including all of the data points, we reduce the aver-
age error to less than one one-hundredth of a per-
cent.

 1e−05

 0.0,001

 0.001

 0.01

 0.1

pe
rlb

en
ch

 d
iff

m
ai

l

pe
rlb

en
ch

 sp
lit

m
ai

l

pe
rlb

en
ch

 c
he

ck
sp

am

de
al

II

gc
c

sc
ila

b

gc
c

s0
4

gc
c

g2
3

gc
c

ex
pr

2

gc
c

ex
pr

gc
c

cp
−d

ec
l

gc
c

c−
ty

pe
ck

gc
c

20
0

gc
c

16
6

ca
ct

us
A

D
M

as
ta

r r
iv

er
s

as
ta

r b
ig

la
ke

s

Average Error
Maximum Error

Figure 11: Average and maximum error for predict-
ing temperatures with a combination of performance
counters, instruction stream mnemonics, and tem-
perature history. Note the y-axis uses a log scale.
By including all of the data points, we reduce the
average error to less than one one-hundredth of a
percent. Errors with mnemonics are slightly higher
than with instruction categories.

cients in the models, which assign a coefficient of roughly .99
to the previous temperature value. Since the last-value pre-
dictor will never capture temperature changes before they
happen, it is unsuitable for predictive management.

3.5 Summary
This section has presented several potential methods for

predicting the temperature of a whole core using linear re-
gression based on application characteristics. Performance
counters, which have been used to simulate localized tem-
peratures, do not work well in combination for predicting
temperatures at the core level. Instruction stream-based
models also fail to suitably predict temperatures. A combi-
nation of performance counters and the instruction stream

 60

 60.5

 61

 61.5

 62

 62.5

 63

 63.5

 64

 7720 7722 7724 7726 7728 7730

T
e
m

p
e

ra
tu

re
 (

C
)

Time

Actual Temperature
Instruction, Performance Counter, and Temperature Model

Predict Last

Figure 12: Comparison of the actual temperature
and temperatures predicted by the combined model
and by a last-value predictor. In the linear regres-
sion model, the previous temperature in the input
is weighted so heavily that the combined model acts
as a last-value predictor, which makes it unsuitable
for predictive thermal management.

reduce the maximum error but still may overpredict or un-
derpredict by several degrees. This is because similar code
may lead to a wide variety of temperatures. However, in-
cluding historical temperature as an input weights the model
too heavily in the opposite direction, essentially leading to
a last-value predictor.

4. RELATED WORK
Several works have modeled power and temperature based

on performance counters. Singh et al. developed a power
prediction model based on linear regression from four per-
formance counters [17]. Isci and Martonosi predicted power
from performance counters by deriving activity models for
different processor components rather than using linear re-
gression [8]. Unlike our temperature predictions, power mea-
surements are not subject to historical effects, in that the
power measurement at a given time is not a combination of
the power drawn at that time plus power remaining from
a previous time step. Lee et al. predicted localized tem-
perature based on linear regression from performance coun-
ters [11]. Chung and Skadron modeled localized tempera-
tures with a linear regression on performance counters and
noted that using multiple counters per value sometimes re-
duced the accuracy [3]. These works differ from ours in that
they did not attempt to model temperatures at the full core
level. Merkel and Bellosa used task activity vectors, which
approximate functional unit usage from performance coun-
ters, to roughly predict temperature and schedule to avoid
hot spots [14]. Their work was again focused on localized
temperatures. In addition, it focused on avoiding hot spots
by not sequentially scheduling applications with similar ac-
tivity vectors, rather than scheduling based on calculating
specific temperature values.

Mesa-Mart́ınez et al. noted that there was no correlation
between temperature and IPC on its own [15]. Our work
extends this notion to include a collection of performance
counters, along with noting the historical temperature ef-

6

fects as one reason for the lack of correlation.

5. CONCLUSION
In this paper, we have shown that linear regression is

an unsuitable approach for modeling full-core temperatures
based on application-level characteristics. Linear regression
initially seemed like a promising approach, as other works
have successfully used single performance counter values to
model localized temperatures. We started with full-core
temperature predictions based on performance counters or
the instruction stream in isolation and showed that although
it had a low average error, it had a high maximum error
and tended to mispredict by a few degrees. We then com-
bined the two application representations, which noticeably
reduced the maximum error but only slightly reduced the
average error and misprediction range. After showing these
mispredictions arose from the effects of temperature increas-
ing over an application phase, we tried modeling based on
a combination of application characteristics and tempera-
ture histories. When including temperature as a history,
the linear regression model essentially became a last-value
predictor, predicting temperature would remain the same
as that at the previous time step, which is not useful for
predictive management. As a result, linear regression based
on application characteristics is not suitable for predictive
temperature management at the core level.

6. REFERENCES
[1] B. Chen, W. P. T. Ma, Y. Tan, A. Fedorova, and

G. Mori. GreenRT: A Framework for the Design of
Power-Aware Soft Real-Time Applications. In
Workshop on the Interaction Between Operating
Systems and Computer Architecture, Beijing, China,
June 2008.

[2] J. Choi, C.-Y. Cher, H. Franke, H. Hamann, A. Weger,
and P. Bose. Thermal-aware Task Scheduling at the
System Software Level. In Symposium on Low Power
Electronics and Design, Portland, OR, August 2007.

[3] S. W. Chung and K. Skadron. Using On-Chip Event
Counters for High-Resolution, Real-Time Temperature
Measurements. In Conference on Thermal and
Thermomechanical Phenomena in Electronic Systems,
San Diego, CA, June 2006.

[4] A. K. Coskun, T. S. Rosing, and K. C. Gross.
Proactive Temperature Management in MPSoCs. In
Symposium on Low Power Electronics and Design,
Bangalore, India, 2008. ACM.

[5] A. K. Coskun, T. S. Rosing, and K. Whisnant.
Temperature Aware Task Scheduling in MPSoCs. In
Conference on Design, Automation and Test in
Europe, Nice, France, 2007.

[6] J. L. Henning. SPEC CPU2006 benchmark
descriptions. SIGARCH Computer Architure News,
34(4), 2006.

[7] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3: System
Programming Guide. Intel Corporation Order
#253668-037US, January 2011.

[8] C. Isci and M. Martonosi. Runtime Power Monitoring
in High-End Processors: Methodology and Empirical
Data. In Symposium on Microarchitecture, San Diego,
CA, December 2003.

[9] R. Jayaseelan and T. Mitra. Temperature Aware Task
Sequencing and Voltage Scaling. In Conference on
Computer-Aided Design, San Jose, CA, November
2008.

[10] E. Kursun, C.-Y. Cher, A. Buyuktosunoglu, and
P. Bose. Investigating the Effects of Task Scheduling
on Thermal Behavior. In Workshop on
Temperature-Aware Computer Systems, Boston, MA,
June 2006.

[11] J. S. Lee, K. Skadron, and S. W. Chung. Predictive
Temperature-Aware DVFS. IEEE Transactions on
Computers, 59(1), January 2010.

[12] Linux. perf - Performance analysis tools for Linux,
2009.

[13] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. Janapa Reddi, and
K. Hazelwood. Pin: Building Customized Program
Analysis Tools with Dynamic Instrumentation. In
Conference on Programming Language Design and
Implementation, Chicago, IL, USA, 2005.

[14] A. Merkel and F. Bellosa. Task Activity Vectors: A
New Metric for Temperature-Aware Scheduling.
SIGOPS Operating Systems Review, 42(4), 2008.

[15] F. J. Mesa-Mart́ınez, E. K. Ardestani, and J. Renau.
Characterizing Processor Thermal Behavior. In
Conference on Architectural Support for Programming
Languages and Operating Systems, Pittsburgh, PA,
March 2010.

[16] L. Miao, Y. Qi, D. Hou, and Y. Dai. Energy-Aware
Scheduling Tasks on Chip Multiprocessor. In
Conference on Natural Computation, Haikou, Hainan,
China, August 2007.

[17] K. Singh, M. Bhadauria, and S. A. McKee.
Prediction-based Power Estimation and Scheduling for
CMPs. In Conference on Supercomputing, Portland,
OR, 2009. ACM.

[18] R. Viswanath, V. Wakharkar, A. Watwe, and
V. Lebonheur. Thermal Performance Challenges from
Silicon to Systems. Intel Technology Journal, Q3 2000.

[19] L.-T. Yeh and R. C. Chu. Thermal Management of
Microelectronic Equipment. American Society of
Mechanical Engineers, 2002.

7

