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Abstract—Online services in modern datacenters use Remote
Procedure Calls (RPCs) to communicate between different
software layers. Despite RPCs using just a few small functions,
inefficient RPC handling can cause delays to propagate across
the system and degrade end-to-end performance. Prior work
has reduced RPC processing time to less than 1 μs, which
now shifts the bottleneck to the scheduling of RPCs. Existing
RPC schedulers suffer from either high overheads, inability to
effectively utilize high core-count CPUs or do not adaptively
fit different traffic patterns. To address these shortcomings,
we present ALTOCUMULUS,1 a scalable, software-hardware co-
design to schedule RPCs at nanosecond scales. ALTOCUMULUS
provides a proactive scheduling scheme and low-overhead
messaging mechanism on top of a decentralized user runtime.
ALTOCUMULUS also offers direct access from the user space to a
set of simple hardware primitives to quickly migrate long-latency
RPCs. We evaluate ALTOCUMULUS with synthetic workloads
and an end-to-end in-memory key-value store application
under real-world traffic patterns. ALTOCUMULUS improves
throughput by 1.3-24.6× under a 99th percentile latency
<300 μs and reduces tail latency by up to 15.8× on 16-core
systems over current state-of-the-art software and hardware
schedulers. For 256-core systems, integrating ALTOCUMULUS
with either a hardware-optimized NIC or commodity PCIe NIC
can improve throughput by 2.8× or 2.7×, respectively, under
99th percentile latency <8.5 μs.

Keywords-Remote procedure calls, Scheduling, Datacenters,
Networked systems, Load balancing, Migration, Queuing theory

I. INTRODUCTION

Distributed online services have adopted a multi-tiered

software architecture running on thousands of datacenter

machines. Communication between tiers uses a common API,

Remote Procedure Calls (RPCs), which allows each system

to call functions or access data on another system as though

they were local. RPCs enable a high degree of flexibility and

programmer productivity as they can call functions running

on different operating systems and software stacks. RPCs

have now become so ubiquitous that significant CPU time is

spent handling RPCs in modern datacenters. Recent studies

from Google and Meta show that RPC software accounts for

6-12% of their total CPU cycles [29], [60].

1Automatic Concurrent Migration Load-balancing Strategy (Auto-
CuMuLuS), homophonic with “altocumulus” as a type of clouds in
meteorology, fragmented to separate patches or nodes.
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Figure 1: On-CPU latency for different RPC stacks.

Along with their increased use, RPC messages are also

getting smaller. For example, in DeathStarBench [19], 75%

of RPC requests are smaller than 512B while more than 90%

of RPC responses are smaller than 64B [36]. Therefore, the

efficiency of handling small RPCs becomes the performance

determinant. However, on-CPU2 RPC latency suffers due to

high per-packet overheads for small messages [27], [45]. For

instance, distributed applications spend up to 90% of the

on-CPU time executing the RPC stack, as opposed to the

application’s business logic [19], [52].

A plethora of research has proposed ways to improve

RPC stack processing efficiency by tackling one or more

components of the stack, both in software [1], [8], [15],

[26], [27], [48], [50], [53] and hardware [3], [5], [11], [20],

[23], [31], [36], [51], [52], [61], [65]. Fig. 1 illustrates

this impact, showing the time spent on a server handling a

300B RPC message. We distinguish time spent in RPC stack

processing (extracting the RPC request from the network

packet) vs. RPC scheduling (mapping the RPC request

handler to some core). Prior work successfully reduces RPC

stack processing latency from 10s of μs to sub-1 μs. Fig. 1

shows the standard TCP/IP protocol spending significant

time processing network packets, while recent work, such as

eRPC [27] and nanoRPC [23], implement more optimized

network protocols to reduce this time significantly. In this

paper, we address the new RPC system bottleneck which has

shifted from processing to scheduling.

At the same time, datacenter networks are getting faster,

2We focus on the latency of processing an RPC from the time it arrives
at the CPU to the time the response leaves the CPU.
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going from 100 Gigabit Ethernet (GbE) a few years ago [16]

to 400 GbE now [4], with 1 TbE on the horizon [2]. With

higher network speeds, CPUs must service more RPCs while

maintaining processing latency. One approach is to use CPUs

with more cores. However, systems usually have to sacrifice

CPU utilization at even moderate loads to guarantee low

latency. For example, 36-64% of cycles of a 8-12 core CPU

are wasted when handling small RPC messages at μs-scale

latency [17], [54]. Underutilizing CPUs avoids unpredictable

queuing delays and costly scheduling operations that can

lead to increased RPC processing time. However, modern

servers with 64+ cores demand a more robust approach to

support high network bandwidth and guarantee sub-1μs RPC

latency with high CPU utilization.

Prior work proposes various RPC scheduling designs and

implementations in both software [8], [17], [26], [48], [53]

and hardware [11], [23], [61]. However, these approaches

do not meet one or more of the following requirements for

RPC scheduling:

1) Performance: Small RPCs require nanosecond-scale

scheduling. Software scheduling overhead increases a state-

of-the-art RPC stack’s latency by up to 25× (Sec. II-C).

2) Scalability: Efficient utilization of high core-count CPUs

is crucial for both performance and cost-efficiency

(Fig. 13).

3) Adaptability: Hardware-based schedulers cannot adapt

to various loads and arrival patterns. For example, one

hardware scheduler suffers up to 15.8× end-to-end latency

increase for a highly-varied service time pattern (Fig. 10).

Based on these criteria, a fundamentally new and scalable

approach is required to meet the demands of sub-1μs RPCs.

To address this need, we propose ALTOCUMULUS, a

proactive migration-based system which uses a queuing

theory based model to predict which RPCs are likely to

experience high latency. We then migrate such critical
RPCs from heavily loaded to lightly loaded cores before
they negatively impact end-to-end latency. This is in stark

contrast to prior work where critical RPCs are identified

after they have violated end-to-end latency requirements and

are simply dropped [14], [21]. ALTOCUMULUS achieves high

performance without unnecessarily dropping packets.

To scale to high core-count servers, ALTOCUMULUS’

runtime splits physical cores into groups. Each group consists

of a single centralized manager core that dispatches RPCs to

its several worker cores for processing. Our approach differs

from prior work that uses a globally centralized manager

to allocate RPCs to all worker cores; a centralized manager

can become the performance bottleneck for 40+ GbE traffic

[26], [48]. Our proactive migrations occur between manager

cores, which saves scheduling traffic compared to prior work

that balances load between all worker cores [53].

To achieve both performance and scalability, we offload

migrations in ALTOCUMULUS to a hardware mechanism,

which allows for quick and efficient proactive migrations and

avoids the high scheduling overhead of prior work. Because

the mechanism is implemented based on lightweight hardware

primitives with direct register-level access from the user level,

ALTOCUMULUS provides cloud providers with adaptability.

Different from prior art that seeks adaptive scheduling for

task-parallel workloads [24], [57], ALTOCUMULUS allows

adaptability for RPCs that exist in complex and unpredictable

cloud environments while guaranteeing strict μs-level latency

deadlines. Together, ALTOCUMULUS eliminates overheads

incurred by current techniques and enables high-throughput,

scalable and adaptive handling of sub-1μs RPCs.

II. BACKGROUND AND MOTIVATION

We provide background on measuring performance in

datacenters, how RPCs are handled and why RPC scheduling

is critical for high-throughput on sub-1μs latency RPCs. Next,

we present an analysis of prior work on RPC scheduling

and motivate the necessity of providing a software-hardware

co-design to address limitations of prior work.

A. Measuring Datacenter Performance

Quantifying datacenter performance is more complex than

using a single metric such as overall throughput or queries

serviced per unit time. Cloud service providers (CSPs) must

balance competing objectives such as: 1) maximizing the

number of users they can service, 2) minimizing the latency

for users and 3) minimizing running costs. CSPs must

guarantee certain performance criteria to customers, such as

minimizing server down-time or setting a maximum latency

for user queries. These requirements are codified by CSPs

as part of their Service Level Objectives (SLO). Setting

a maximum allowable latency is particularly important as

it directly influences both end-user experience and CSP

profits [14].

Quantifying SLO. For a given hardware configuration, a

CSP could set SLO to be the highest latency a user would

tolerate for a specific application. However, this can lead to

significant resource under-utilization as only a small fraction

of users (∼1%) might experience this worst case latency.

Instead CSPs provide a probabilistic guarantee of the latency

that 99% of users would experience, referred to as the 99th

percentile latency. Therefore, we focus on 99th percentile

latency as the key SLO metric which affects CSP performance

and profits [14]. CSPs then try to service as many users as

possible without violating this latency constraint. We use

the metric of ‘throughput@SLO’ to measure the number

of user requests that can be serviced without violating this

SLO requirement [61]. To understand the challenge of RPC

scheduling (which is the focus of our work), we next describe

how an RPC is typically handled in a CPU server.
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Figure 2: RPC system stack and different scheduler imple-

mentations in related work.

B. RPC Handling on a CPU Server

Fig. 2 depicts the different layers of the RPC system

stack.3 An RPC request arrives as a network packet from

the datacenter (DC) network, e.g., Ethernet or InfiniBand,

shown as the lowest layer. The network interface card

(NIC) parses the packet’s header and the on-NIC scheduler

dispatches the packet to a CPU to run its transport layer.

Receive Side Scaling [5] (RSS) is a commonly used on-

NIC scheduler, where requests are distributed evenly across

per-core queues [8], [13], [25], [30], [39], [48], [49], [50],

[53], [54]. RSS scales well with increasing core count as its

dispatch decisions are agnostic to core load: each core polls

its private queue without synchronization. The transport layer

uses protocols (e.g., TCP) to handle network interfacing.

Before passing the request to the RPC layer, some

kernel schedulers use load balancing policies to schedule

requests to cores [44]. The most common policy is work

stealing [17], [48], [53], [54], where idle cores pull requests

from other busy cores. Next, the RPC layer does RPC header

parsing, requested function identification, message payload

deserialization, etc. [52]. The requested function is then called

in the application. In some systems, user-level schedulers

are implemented to decide which core runs the requested

RPC function. For instance, high-performance key-value store

(KVS) applications maintain cache locality by binding the

application and request handling to the same core [38], [39].

RPC responses are created by the application and traverse

the RPC stack, going through the same operations in reverse

order. All scheduler designs between layer-pairs can co-exist

3Some implementations bypass some layers. For example, user-space
networking may bypass the kernel scheduler.

Figure 3: High request throughput (load) with low-latency

requests requires low scheduling overhead (shown in ns).

in some systems. We now describe why RPC scheduling is

a major bottleneck for modern server CPUs.

C. Why Does RPC Scheduling Matter Now?

To demonstrate the importance of RPC scheduling time,

we perform a discrete event simulation of a 64-core system.

To show end-to-end scheduling overhead of sub-1 μs RPCs,

we combine the overheads due to all the layers in Fig. 2.

Our results in Fig. 3 show that reducing scheduling latency

from 360ns to 5ns can improve throughput by ∼3× for

a 99th percentaile tail latency of 5 μs. We use 45ns and

360ns in this experiment to represent the levels of time of

a memory access and a work-stealing operation commonly

used in scheduling [54], respectively. We tweak the overhead

from 45ns to 360ns using numbers as a multiple of 45ns. We

observe that even a few extra nanoseconds due to scheduling

can significantly hurt tail latency of nanosecond-scale RPCs.

Next, we provide some background on RPC schedulers

detailed in prior work.

D. RPC Scheduling in Practice

In Table I, we categorize several state-of-the-art scheduler

implementations according to three aspects: the scheduling

scheme, scheduling implementation, and communication

mechanism. Scheduling schemes determine which request

is dispatched to which core and whether this decision is

made in a centralized or decentralized manner. Communi-

cation mechanisms represent the communication channel a

scheduling operation relies on after decisions are made.

Kernel-based c-FCFS. Centralized first-come-first-served

(FCFS) scheduling (c-FCFS) uses one dedicated CPU core

Table I: Comparison of ALTOCUMULUS with prior art.

Prior work Scalability bottleneck Communication mechanism Scheduling scheme Scheduling manager
ZygOS [53] high s/w stealing rate

shared caches

d-FCFS with work stealing s/w, kernel-based

IX [8] imbalance d-FCFS
s/w, kernel-based

Shinjuku [26] imbalance, dispatcher throughput c-FCFS

eRSS [55] imbalance, interconnects PCIe
d-FCFS h/w, NIC RSS

nanoPU [23] register file size, NoC register files

RPCValet [11] limited cohe. domain size, mem. b/w
shared caches c-FCFS h/w, NIC-based

Nebula [61] limited coherence domain size

Altocumulus mis-prediction penalty, NoC migration channel & shared caches global d-FCFS, local c-FCFS h/w, SLO-aware user-level
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Figure 4: Common request scheduling models. Blocks in

purple indicate schedulers.

as the scheduler (Fig. 4(a)). However, this single core can

become a significant performance bottleneck. For instance,

the centralized manager core in Shinjuku [26] can only handle

5M requests/s, or 2.5 Gbps and 41 Gbps of Ethernet traffic for

64B and 1024B requests, respectively. Due to lock contention

and synchronization overhead on the centralized queue,

current kernel-based schedulers are limited to a minimum

scheduling interval of 5μs [26], [48].

NIC RSS-based d-FCFS. Another approach is to use RSS

on the NIC to schedule requests. Despite being scalable, RSS

scheduling does not factor in each core’s load, leading to

significant imbalance and therefore unpredictable tail latency

increases [7], [53]. Scheduling using distributed queues such

as RSS is called distributed FCFS scheduling, or d-FCFS.

d-FCFS + work stealing. ZygOS [53] enables load balance

in RSS-based d-FCFS designs: idle cores with empty queues

steal requests from other heavily loaded cores (Fig. 4(b)).

However, ZygOS incurs significant overheads for two key

reasons. First, ZygOS triggers work stealing with simple

policies such as randomly selecting a queue to steal, leading

to 60% of requests being moved across cores, which wastes

communication bandwidth [53]. Worse, such intrinsic com-

munication requirements are triggered without considering

the SLO. Second, to find and fetch pending requests from

other cores, work stealing requires 2 to 3 cache misses. This

incurs 200-400 ns of inter-thread communication [54] or

even ∼1 μs interrupts [26], making it unsuitable for sub-

1 μs RPCs.

NIC-driven c-FCFS. This model features a centralized

queue managed by the NIC (Fig. 4(c)), which alleviates

the bottleneck of Fig. 4(a). However, the packets must

still use the slow PCIe bus to move from the NIC to the

CPU. RPCValet [11] and Nebula [61] bypass this overhead

with NICs that share the same memory space as the cores.

However, remote cache accesses still limit the throughput

in high core count systems [6]. NIC-to-core transfers are

also restricted to the same coherence domain, whose size is

limited due to hardware complexity [18]. While hardware

RPC schedulers improve performance over kernel-based

scheduling, they are not as adaptable to different arrival

patterns and loads, which we elaborate on next.

Scheduling adaptability V.S. programming efforts. On-

NIC schedulers typically require specialized hardware to

implement a fixed scheduling policy. For instance, Nebula

and nanoPU implement the Join-bounded-shortest-queue

(JBSQ(n)) policy in hardware [23], [33], [61]. Similarly,

other hardware-based schedulers [11] or work stealing [35]

cannot adapt to varying input loads and request patterns.

Kernel schedulers (e.g., IX, ZygOS, and Shinjuku) are

adaptive but require significant development and maintenance

effort [43]. Therefore, application developers often build

a user-level bespoke framework or dataplane system for

each application class. However, these dataplanes typically

use Linux-incompatible APIs [8], [26], [39], or rely on

syscalls [22] whose performance is far from nanoseconds.

III. ALTOCUMULUS OVERVIEW

ALTOCUMULUS prevents SLO violations by proactively
migrating potentially SLO-violating RPC requests instead of

detecting that an SLO violation has already occurred. For this,

we must first predict which requests are likely SLO violations

and migrate them to lightly-loaded cores. We develop a

model based on queuing theory, which uses statistical queue
length distributions to predict potential SLO violations

(Sec. IV). To perform migration, we employ a fast hardware-
assisted scheduling mechanism, which uses register-level

messaging to quickly move requests across cores (Sec. V).

ALTOCUMULUS synergistically combines the effectiveness of

SLO-aware migration policy and hardware-based mechanism

altogether through a software runtime (Sec. VI). We now

describe the different components of ALTOCUMULUS.

A. System Components

Fig. 5 shows a high-level overview of the entire ALTOCU-

MULUS system. The software has an offline component which

calculates a prediction model, which is then fed to the online

components in the proactive scheduling scheme. The offline

component takes as input the number of cores (k), request

service time distribution (μ), message arrival patterns (λ), and

the SLO target (detailed in Sec. IV) to generate the model.

SLO
Violation
Modeling

Threshold
Calculation

Messaging
Mechanism

Offline

Software

Hardware
SLO, A, k, 

μ, λ

Prediction  
Model

Concurrency
Bulk, P,

Pattern

Migration Decisions

Migration Messages

Online
Load Status Check

Proactive Scheduling Scheme

Destination  
Candidates

Request
Selection

Local Load Status Monitor (q)

Parameter
Registers 

1

3

2

7 4

Software/Hardware Interface 

6

Status Update

5

Load Satus

SLO
Violation
Profiling

Figure 5: ALTOCUMULUS system overview.
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The software runtime uses the model and based on the current

system load (A), calculates the migration threshold 1©. The

runtime also adjusts several migration-related parameters 2©,

which are then stored in parameter registers (PRs) 3©. The

runtime periodically checks its local load status (q) by reading

registers 4©. If migration is required, the runtime selects the

source and destination queues and generates a request to

migrate through the hardware messaging mechanism 5© 6©.

The mechanism conducts each messaging operation according

to the parameters stored in the PRs 7©. At the end of each

period (P ), the load status of each manager core is shared

to all the other managers and to the runtime to inform future

migration decisions. We now elaborate on each component

of ALTOCUMULUS.

Software runtime. The software runtime monitors the current

status of request queues and periodically predicts potential

SLO violations (Sec. IV-A). We implement our runtime as

a decentralized system, consisting of distributed manager

cores (global d-FCFS), each running the software runtime.

Each manager core then communicates with a subset of the

worker cores (local c-FCFS), to schedule RPC requests to

them. Migrations in ALTOCUMULUS only happen between

manager cores. The runtime is described in Sec. VI.

Hardware messaging. Once the runtime predicts that an

SLO violation is likely to occur, it communicates to the

hardware to migrate requests between manager cores. This

is done via messages, detailed in Sec. V.

Microarchitecture. Fig. 6 shows the additional hardware in

each manager core tile. To provide low-overhead messaging,

ALTOCUMULUS messages are sent and received directly

through specialized migration registers (MRs) instead of

using memory-mapped buffers. Hardware modules required

for messaging include: 1) MRs that store descriptors to RPC

messages in message arrival order, while the entire RPC

message is in the LLC, 2) a migrator that performs register-

to-register data movement, 3) PRs to hold runtime parameters,

4) a pair of send/receive FIFOs and 5) a controller to manage

the operation of the added hardware.

System parameters. ALTOCUMULUS is configured through

several key parameters, which we list below:

1) Concurrency determines the number of concurrent flows

Core
$

RouterNetRX

LLC  
Slice 

PRs

Migrator

Send FIFO

NetTX

T15

T0

Manager tile

Worker tile

Core tile 0T0

Recv. FIFO

Controller

MRs

Figure 6: Microarchitecture for each manager core. Purple

modules indicate hardware modifications.

per migration, where each flow goes to a separate

destination manager core. We set this to be n
4 , n

2 or

n, where n is the number of manager cores.

2) Period determines the time interval between two migra-

tion decisions. The runtime periodically checks migration-

related parameters to decide if migrations are necessary.

We sweep P from 10 ns to 1000 ns.

3) Bulk is the maximum number of requests we batch per

migration operation to reduce overhead. We consider

batches of 8-40 requests.

We now detail our predictive model for SLO violations.

IV. PROACTIVE MIGRATIONS

In this section, we answer the following questions:

• How can we effectively predict SLO violations?

• What are the trade-offs between minimizing migration cost

and maximizing SLO violation prediction accuracy?

A. Statistical Characterization & Modeling

The crux of ALTOCUMULUS’ proactive scheduling is

to predict and prevent potential SLO violating RPCs by

migrating them to less loaded cores that can process them

within the SLO target. We first characterize the queue length

at which SLO violations begin to occur, which we call the

threshold.

Threshold characterization. As queuing is the root cause

of long tail latency, a straightforward approach is to use the

queue length to predict potential violations.4 For a k-core c-

FCFS system under a certain load, there is a threshold queue

length T , after which SLO violations would begin to occur.

A naive approach is to directly use T = SLO Target
Average latency .

SLO is typically set to have the 99th percentile latency to be

within L× of the average latency [14], [53], [61]. If all the

worker cores are busy and the manager core’s queue length

exceeds k×L+1, any new requests will likely violate SLO.

So one option might be to set the threshold to be k×L+ 1.

This naive model is not optimal as it does not take the

statistical distributions of queuing delay, per-core service

time and request arrival patterns into account. To demonstrate

this, we perform an analysis using a cycle-accurate discrete

event simulation of a 64-core system. We set L=10 and use

a Poisson distribution for the request arrival pattern, similar

to prior work [14]. Figs. 7(a)-(c) plots the ratio of SLO

violations (# SLO V iolations
# Total Requests ) at a given queue length for

three widely-used service time distributions: Fixed, Uniform

and Bi-modal [26], [53], [61] for a single system load (0.99).

Figs. 7(a)-(c) demonstrate that:

1) Queue length is a good metric to capture the trend of

SLO violations and the ratio of SLO violations increases

sharply once the queue length exceeds a specific value.

4Existing software systems such as Intel DPDK (Data Plane Development
Kit) [1] offer rich APIs to monitor queue length at runtime.
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(a) Fixed (b) Uniform (c) Bi-modal (d) E[T̂ ] vs. E[N̂q]

Figure 7: SLO violation prediction analysis on a 64-core system. (a,b,c) shows prediction accuracy for different request

service time distributions for load = 0.99. (d) Example of E[T̂ ] based on linear transformation of E[N̂q] for Fixed distribution

(a=1.01, c=0.998 and b=d=0).

2) The first few SLO violations occur when the queue is at

moderate occupancy (shown as points above the x-axis).

This is due to variations in request arrival intervals and

service time.

3) For all three distributions, nearly 100% of requests violate

SLO once T is set to k ×L+ 1 (i.e., 64×10 + 1 = 641).

However, using this as the threshold would not catch SLO

violations which occur for smaller queue lengths.

How then can we dynamically select the threshold T based

on the current system load to accurately predict which RPCs

will violate SLO?

ALTOCUMULUS prediction model. We observe through our

simulations that, at moderate loads, early SLO violations

happen when the local queue’s length is greater than the

length of the other queues. Each manager thread holds

an independent Nq random variable representing the total

number of RPC requests waiting in the local queue. For

each manager thread, we model the expected value of queue

length (E[N̂q]) using queuing theory, which naturally embeds

statistical information and system states that affect tail latency.

Specifically, we leverage the Erlang-C formula Ck(A), which

expresses the probability that an arriving request must queue,

to model E[N̂q]:

E[N̂q] = Ck(A)
A

k −A
(1)

Ck(A) depends on the system load (A), which is a function

of the request arrival Poisson distribution with rate λ and

per-core service time μ. We use this analytical model to

derive an expected value for T , called E[T̂ ]. T is the queue

length when the first SLO-violating request arrives for

a given system load. First, we measure these T values in

simulation, similar to Fig. 7 but sweeping across all system

loads. We then observe that E[T̂ ] can be modeled as a linear

transformation of E[N̂q]:

E[T̂ ] = a× E[c× N̂q + d] + b (2)

a, b, c and d are constants that are empirically determined

based on factors such as the service time distribution.

Fig. 7(d) shows an example of a linear transformation of

E[N̂q] to derive an accurate SLO violation threshold E[T̂ ].
The modeled E[T̂ ] is verified with our simulation results.

The E[T̂ ] model is fed to our runtime, which uses the current

system load to calculate T every period. If the local manager’s

queue length exceeds T , all queued RPCs greater than T are

predicted to violate SLO and will be selected for migration.

We explain the entire software runtime in Sec. VI.

Trade-off between prediction accuracy and migration
effectiveness. Our goal is to avoid all SLO violations while

minimizing false positive predictions. We define prediction
accuracy as the ratio of correctly predicted SLO violations

to the total number of SLO violations. In the above analysis,

we derive T as the queue length when the first actual SLO-

violating request arrives for a given system load. This queue

length represents the lower bound on T (i.e., Tlower bound).

Thus Tlower bound would be 121, 80, and 268 for Fig. 7(a),

(b) and (c) when the system load is 0.99. While setting

T=Tlower bound would save all SLO-violating requests, this

would cause a significant amount of unnecessary migration

traffic as not all of these migrated requests would violate

SLO. On the other hand, to maximize migration effectiveness,

we can set T to be k × L + 1, which we denote as

Tupper bound. By doing so, every migration triggered prevents

SLO violations. Unfortunately, in this case, we miss a non-

trivial number of violations and suffer from low prediction

accuracy. Given this trade-off, we opt to design a flexible

modeling framework to accurately model different selections

for T .

V. HARDWARE MESSAGING MECHANISM

In this section, we answer the following questions:

• How does hardware support ALTOCUMULUS messages?

• What is the hardware cost of our mechanism?

A. Direct Register Messaging Mechanism
ALTOCUMULUS uses four message types to interface

between the software runtime and the hardware. Fig. 8

428



2 1 1 1 0 2

(1)

20 9 8 
(2)

(4)

(1) PREDICT_CONFIG (2) UPDATE (3) MIGRATE (4) ACK

(2)

(4)

(3)
(3)

Figure 8: ALTOCUMULUS protocol with hardware message

paths (dotted arrows). SLO violations happen in the manager.

Table II: Runtime messages. T: SLO violation threshold, q:

queue depth, QD: a vector of migration destination queues.

Name Description Input Format

PREDICT CONFIG
Configure registers to

adjust migration parameters
<reg addr reg value>

MIGRATE
Proactively dequeue RPCs

from Tail to destination queue(s)
S, QD , *MR[Tail]

UPDATE
Broadcast local queue

length to all other managers
<q>

ACK/NACK
Acknowledge the completion/discard

of a MIGRATE message
-

provides an example of our protocol with messages between

manager cores (squares). For local scheduling, worker cores

(circles) can queue at most 2 requests, inheriting the same

algorithm as existing hardware schedulers [23], [61]. For each

core, the number shown represents the number of queued

RPC requests. The red manager core has 20 pending requests

and is migrating RPC requests to the other two lightly-loaded

cores. The different message types are listed at the top of

Fig. 8 and summarized in Table II. We now describe each

message type.

PREDICT CONFIG. The manager cores periodically (every

period P ) execute the software runtime (Sec. VI) to update

the runtime parameters. The manager cores then use this

message type to internally update their parameter registers

(PRs), which are read generating other messages. PRs store

period P , maximum batch size Bulk, queue length vector

q, migration threshold T , and the Concurrency. Unlike the

other messages, PREDICT CONFIG messages are not sent

across manager cores but are only used within cores.

MIGRATE. This message is used to migrate RPCs predicted

to violate SLO to a different manager core. To reduce

overhead, we migrate several RPC requests at once. MI-

GRATE messages involve the following: 1) determining

the size of each MIGRATE message (S), which contains

a number of requests (req_num), 2) message generation,

3) dequeuing requests locally and 4) enqueuing requests

to remote managers. MIGRATE messages have both send

and receive paths. To determine req_num when sending a

MIGRATE message, the local controller uses Concurrency
and Bulk stored in PRs to calculate Bulk

Concurrency . Then

the controller hands over message generation to the local

migrator. Each message has a header that stores req_num,

local manager core ID src_mid, remote manager core ID

dst_mid determined by the manager thread. The tail pointer

points to *MR[Tail], and is maintained by the migrator.

The migrator then reads req_num RPC pointers from its

local MRs, enqueues them into the send FIFO, and injects

them into the NoC. The send FIFO occupancy is monitored

by the controller to prevent overflowing the FIFO.

To receive a MIGRATE message, the controller first

parses the header containing req_num and src_mid, and

validates if dst_mid equals the local manager core ID. Then

the MIGRATE message payload is stored in the receive FIFO

if the FIFO is not full. Next, the controller gives permission

to the migrator to dequeue and move req_num entries from

the receive FIFO’s head to the local MR for scheduling.

ACK/NACK. When sending MIGRATE messages, once the

source migrator receives an ACK from the dst_mid, it

invalidates those req_num entries in its local MRs. When

MIGRATE messages are received, the destination manager’s

controller issues an ACK to src_mid manager after receiv-

ing the entire MIGRATE message. If the destination manager

does not have free receive FIFO slots or MR entries, it drops

the received MIGRATE message and returns a NACK to

the source to reject this migration. For simplicity, the source

core does not replay this rejected migration message.

UPDATE. UPDATE messages are triggered periodically to

broadcast the local queue length (q) to all other manager

cores. The hardware messaging latency at NoC speed (3 ns

per hop) for such synchronization is superior to software

based updates through shared caches.

B. Discussion

Design optimizations. To make the hardware messaging fast

and efficient, we implement the following optimizations:

1) Our mechanism only operates between manager core tiles.

The direct register messaging bypasses the cache coher-

ence protocol which would add unpredictable contention

and prohibitive delays for nanosecond-scale RPCs.

2) To avoid moving RPCs until they need to be processed,

each manager only stores the descriptor (pointer and

connection information) of each message (14B), while

the actual message is stored in the network buffer (in the

LLC or memory).

3) The mechanism batches multiple descriptors for every

migration to reduce data movement. It also supports

concurrent migrations between multiple source-destination

pairs to improve migration throughput.

4) We allow a request to be migrated at most once. This

restriction saves unnecessary traffic and avoids livelocks

and migration-induced interconnect contention.

Bounded MR and FIFO. Each MR does not need to store

an entire RPC message that requires up to 2KB [23]. Instead,

messages stay in the LLC [61] and each MR only stores
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Algorithm 1: Software runtime executing on each

manager core.

Input: Concurrency, number of queues N , queue

length monitors q[0, 1, ...N − 1], network

receive queues NetRX[0, 1, ...N − 1]
1 every period ns:
2 q ←− Update(q)

3 Use the prediction model to calculate T
4 for j ← 0 to N − 1 do
5 pattern, QD ←−

predict(T, q, Concurrency)
6 for i ← 0 to QD.size() do
7 MIGRATE message size S ←−

Bulk
Concurrency

8 if q[j]− S < q[QD[i]] + S then
9 continue

10 else
11 NetRX[j].tail dequeue()
12 Trigger one MIGRATE message

13 NetRX[QD[i]].tail enqueue()

an 8B pointer to the RPC message and a 48-bit IP address

per IP port. Each MR therefore consumes just 14B. Since

we use a decentralized manager, MRs in each manager core

tile can be bounded regardless of the total number of cores

in the system. According to Eqn. 1, the mean of E[N̂q] for

each group equals 11 when system load is near 1, therefore

each group contains one 154B MR (11×14B). For FIFOs,

small send/receive FIFOs suffice, since migration is not

continuously used. In our runtime, send FIFOs that hold 16

entries are sufficient to cover message bursts, which means

16×14B = 224B per FIFO.

Message Ordering. UPDATE, MIGRATE, ACK/NACK

messages go through the NoC. We need to preserve ordering

both in each manager core and during the message transfer

through the NoC between sender and receiver. In each

manager core, we employ FIFOs for send/receive buffers. In

the NoC, we can either use deterministic routing or implement

a flow control protocol with reordering at the endpoints. We

opt for deterministic routing since the NoC is often lightly

loaded [58]. We use one extra virtual network [12] to route

ALTOCUMULUS packets in the NoC.

VI. SOFTWARE RUNTIME

We now introduce the software runtime for our proactive

migration-based RPC scheduling system. The runtime is

decentralized and runs on each manager core. Each manager

core owns a network receive (NetRX) queue across all its

local worker cores and dispatches requests to worker cores.

The software runtime periodically: 1) Executes SLO violation

prediction, 2) determines the migration destination NetRX

Figure 9: Snapshot of temporal load imbalance across 4

network receive queues (256-core d-FCFS system with each

queue managing a 64-core c-FCFS system).

queue, 3) classifies the distribution pattern, 4) synchronizes

system states across manager cores, and 5) triggers MI-

GRATE messages. Algorithm 1 details the runtime operation.

Parameter register configuration. The software runtime

configures migration parameters to the PR registers in every

manager cores through the software-hardware interface.

Periodical proactive prediction. The queue length monitor

vector q is periodically updated across all manager cores

through UPDATE messages (line2 of Algorithm 1). Each

manager core runs SLO violation prediction (line5) every

P ns. The inputs of predict() are read from the PRs. For

the n-th manager core, predict() checks two conditions:

1) whether q[n] exceeds T and 2) if the queue length

distribution based on q matches any of the patterns below. If

either returns true, predict() returns a QD that records a

set of migration destination queue ID(s) and the pattern.

Pattern classification. We classify the patterns we observe

for q into three categories.

1) Hill: We identify q as a Hill pattern when the length of

the longest queue is larger than the length of the second

longest queue by Bulk. This pattern triggers several

MIGRATE messages to move pending work from the

longest queue to other (shorter) queues.

2) Valley: This pattern occurs when the length of the shortest

queue is smaller than the length of the second shortest

queue by Bulk. When detecting a Valley pattern, each

manager core triggers one MIGRATE message from itself

to the shortest queue.

3) Pairing: This pattern triggers M messages, the M th

message is sent from the N th longest queue to the shortest

queue, the (M-1)th message from the (N-1)th longest queue

to the second shortest queue, etc. Pairing occurs when there

is a gradual imbalance in queue lengths.

Fig. 9’s three bar groups correspond to Hill, Pairing, and

Valley. We model different policies such as randomly selected

(random), round-robin (RR), and connection-based (i.e.,

requests from a certain network connection are steered to

a specific network receive queue, which is the policy that

RSS uses). This result shows the queue lengths for 4 NetRX
queues at the cycle when the first 10 SLO violations occur.
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We see that in each case there is a noticeable difference in

queue lengths. Each manager’s pattern classification gives

the same pattern result because q is synchronized across

all manager cores every period.

Migration destination(s) determination. For each pattern,

the number of migration destination queues is determined by

Concurrency. The queue ID of destination(s) is selected

according to the above pattern classification algorithm.

Migration message generation. line7 of Algorithm 1

generates MIGRATE messages a size of S. The number

of messages to be generated per migration is equal to

Concurrency.

Migration messaging. We forbid the migration if the

condition in line8 of Algorithm 1 is met. This prevents

a migration that would result in the migrated message

experiencing longer queuing than if migration had not

occurred. Otherwise, we leverage our hardware mechanism

to dequeue the tail of NetRX, send MIGRATE messages

out, and have the destination queue enqueue the migrated

contents at its tail.

Walk-through example. Consider a system where Bulk=40

and Concurrency=4. If q is [30, 30, 70, 30] for 4 NetRX
queues, the runtime identifies this as a Hill pattern. The

manager core of the 3rd queue triggers one MIGRATE

message to move 10 RPC request descriptors to each of the

other queues and QD will be set to {0, 1, 3}). Once complete,

the manager core of the 3rd queue will receive 3 ACK

messages in total. At the end of this period, q is updated in all

manager cores and q′ is now: [40+X1,40+X2,40+X3,40+X4],

where X1-X4 are the number of new requests that have

arrived at each NetRX queue and have not yet been

dispatched to any core.

Software-Hardware Interface. As discussed in Sec. V,

ALTOCUMULUS messages use register-level read/write, queue

operations such as enqueue, dequeue and queue status

checking for FIFOs and MRs. One option for communication

between the user runtime and hardware is using standard

x86 model specific registers (MSR) to move register-level

data. This does not require adding any new hardware or any

ISA extensions. However, this interface uses syscalls such as

rdmsr and wrmsr, rather than directly issuing micro-ops to

the hardware from the user space. We find that these syscalls

take ∼100 CPU cycles on Sandybridge-EP servers.
We add instructions (shown in Table III) to allow

the runtime to directly communicate with the hardware.

When a manager core receives a message, it can issue

the corresponding instruction directly to perform a reg-

ister level read/write. Specifically, altom_update and

altom_predict_config can perform register-level data

movement to implement UPDATE and PREDICT CONFIG

messages. altom_status grabs the arguments required

by the MIGRATE message from PRs (parameter registers).

Implementing atomic queue operations between FIFOs and

Table III: Custom ALTOCUMULUS instructions

Instruction Description
altom_send r1, r2, r3 Send local MR offset (r1)

content to MR entry ID (r2)
with a batch size (r3)

altom_status r3, r4, r5 Returns local header, tail, and
threshold pointers

altom_update r6, q<n,1> Update local rx queue depth
(r6) to all managers (vector reg
of length n, stride 1)

altom_predict_config r7 Update migration related reg-
isters

the MR can also be costly if we rely on blocking atomic

operations provided by the CPU [59]. Therefore, we leverage

our migrator hardware module (Fig. 6) to allow for reads and

writes asynchronously with the CPU. This offers significant

speed-ups compared to using MSRs, as shown in Sec. IX-D.

Programmer guidelines. To use ALTOCUMULUS’ prediction

model, the programmer of the software runtime must know

several parameters, which we now briefly list. First, they

must know k to calculate Eq. 2. They must know how many

manager cores the system has (N ) for Algorithm 1. Lastly,

they must also set an SLO value, which is typically provided

by the client or determined by the cloud providers.

With these parameters known, the programmer must now

pick the optimum values for other parameters such as Period,

Bulk and Concurrency. For μs-scale RPCs, an optimal

Period is typically less than 1 μs. If RPCs’ on-CPU time

involves a long latency operation (e.g., a PCIe transfer (200-

800 ns [46]), QPI latency (150-250 ns [6]) or inter-thread

communication (400-800 ns [54]), the Period is typically

dominated by this long latency. Second, a larger Period
usually couples with a larger Bulk. Third, Concurrency is

usually maximized to be N .

VII. METHODOLOGY

In this section, we outline the methodology we use to

evaluate ALTOCUMULUS. We start by providing an overview

of the different configurations we evaluate followed by a

description of our simulation environment.

A. Configurations

We evaluate ALTOCUMULUS with both software and

hardware scheduling techniques, which we list below.

Emulated Commodity RSS NIC. A commodity server

with a modern NICs with Receive Side Scaling (RSS)

mechanism [5]. As in prior work [61], our implementation

spreads requests to cores uniformly.

ZygOS and Shinjuku. State-of-the-art software-optimized

solutions on a commodity server. Both rely on traditional

network stacks, such as TCP/UDP. Unlike ZygOS, Shinjuku

separates networking threads and dispatcher on a dedicated
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CPU core. Both use SLO-unaware software-based scheduling

operations such as work stealing and 5 μs preemption.

Nebula and nanoPU. State-of-the-art network-compute co-

design with hardware schedulers. For extremely low net-

work latency, both implement hardware-terminated network

stacks [20], [23], [61] that offload NIC RX/TX queuing

operations in hardware. To reduce NIC-to-core message

transfer overhead, both tightly integrate NIC and CPU with a

hardware-based communication mechanism–Nebula leverag-

ing cache coherence protocol and nanoPU, direct messaging

to a core’s special register file. Both use centralized hardware

scheduler based on JBSQ algorithm to manage all cores–

every time a core’s local queue has less than 2 queued

requests, the central scheduler pushes the head of its queue

to that core.

ACint. ALTOCUMULUS on hardware-terminated integrated

NICs. Each group contains 1 manager core and 15 worker

cores, where the manager core only runs the software runtime

and the other 15 cores carry out RPC processing. Similar to

Nebula and nanoPU, within each group, this design employs

their centralized hardware JBSQ scheduler and offloads NIC

RX/TX operations in hardware. Our design then rebalances

requests across multiple groups.

ACrss. ALTOCUMULUS runtime on top of a commodity

CPU with RSS NIC attached through PCIe, which adds

pressure from 1) load imbalance from using RSS and 2) long

latency from PCIe. In each group, each manager core runs the

software runtime and handles traditional networking threads

and request dispatch, similar to Shinjuku. The design requires

a minimum of 70 cycles to move a message to a worker

through the cache coherence protocol [26].

B. Simulation Environment

We simulate all designs with a Pin-based [41] in-house

simulator extended from Zsim [56]. We model 16 cores, as

the prior work we compare against is optimized for this

scale. We model the NIC, NoC and QPI in our simulator and

faithfully quantify their queuing effects. We model the NIC

with memory-mapped queue pairs (QPs) that receive RPC

messages and send RPC responses. We integrate techniques

that reduce NIC-to-core transfer overhead proposed by

Nebula and nanoPU when evaluating those two baselines.

Ethernet MAC, serial I/O and transport interpretation time

on the NIC are set to be ∼30ns in total [23]. Each NoC

packet has a per-hop latency of 3ns. We model QPI with

point-to-point latency of 150ns [6]. PCIe latency is 200-800ns

depending on data size [46].

Load generator. We evaluate both synthetic and real-world

traces. First, we generate Poisson-based synthetic traces.

Second, we use a request arrival pattern based on a regression

model trained in the public cloud [9]. The regression model

also integrates features that encode temporal information

about the period for which we are generating batches. Batches

Figure 10: Comparisons against prior work with synthetic

workloads (16-core, Bi-modal distribution)

are particularly common and widely explored for RPCs [27].

This model can accurately capture 82% and 92% of actual

request arrivals in Microsoft Azure and Huawei Cloud,

respectively [9].

Evaluation metrics. We evaluate the performance of all

designs in terms of throughput@SLO. Unless otherwise stated,

the SLO is a 99th percentile latency target of 10× the average

RPC service time [14], [53], [61]. We evaluate the effect of

saving SLO violations for SLO target ratios other than 10 in

Fig. 13(c). Our measurements are server-side: each RPC’s

latency measurement begins when it is received by the NIC,

and ends when its buffers are freed upon completion.

VIII. EVALUATION

We now present an evaluation of our design, starting with a

comparison against state-of-the-art schedulers using synthetic

workloads (Sec. VIII-A). We also explore varying group

sizes, migration parameters and evaluate scaling to higher

core counts in Sec. VIII-B-VIII-E. Finally, we evaluate an

end-to-end application with realistic traces in Sec. IX.

A. Comparing ALTOCUMULUS and State-of-the-art RPC
Scheduling Systems

We compare ALTOCUMULUS with state-of-the-art schedul-

ing systems in Table I. They span both software (IX [8],

ZygOS [53], Shinjuku [26]) and hardware (RPCValet [11],

Nebula [61] and nanoPU [23]) techniques. The request

service time follows a Bimodal distribution where 99.5% of

the requests are 0.5 μs and 0.5% 500 μs [26]. This high

dispersion service time pattern represents the scenarios where

long/short RPCs co-exist, e.g., GET/SET vs SCAN in key-

value stores and databases. For this experiment, we set SLO

target to be 300 μs. We use ACrss to demonstrate how our

design can correct the initial load imbalance caused by RSS.

Fig. 10 demonstrates tail latency vs. throughput. Though

ZygOS outperforms RSS-based IX by using software-based

work stealing, both suffer from head-of-line blocking when

long requests exist (even though rare). Shinjuku addresses

these issues through fast preemption and centralized load

balancing and achieves up to 5× better throughput@SLO.
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(a) Bulk size

(b) Period

Figure 11: Impact of migration granularity and period on

throughput (bars) and 99th percentile latency (line).

Nebula and nanoPU have a 3.9-4.4× throughput improvement

over Shinjuku, as they employ hardware-based scheduler and

hide NIC-core communication latency with a fine-grained

JBSQ algorithm. Since Nebula’s JBSQ only makes decisions

based on per-core request number, it lacks awareness of long

requests. Therefore, even at low load, its tail latency is up to

4.7× worse than Shinjuku. nanoPU avoids this drawback of

JBSQ scheduler by piggybacking a preemption mechanism

on each core. ACrss has 24.6× improvement over ZygOS

due to effective migration and low-overhead direct register

messaging. We outperform Nebula by a factor of 1.05× and

15.8× for throughput and 99th percentile latency. Although

we dedicate one core as the manager – sacrificing 6.25%

potential throughput – we still deliver 92.5% throughput

and similar 99th percentile latency compared to the best-

performing case of nanoPU that gets rid of RSS. While

nanoPU requires hardware changes both in the core microar-

chitecture and the NIC, ALTOCUMULUS only modifies the

manager core tiles.

B. Group Size Exploration

ALTOCUMULUS ‘groups’ cores such that each group has

one manager core and one or more worker cores. As the

manager cores do not service RPC requests, smaller groups

suffer from higher overhead due to the manager core. On

the other hand, large groups makes more effective use of all

cores, but suffer from the drawback of earlier work where

the single manager core becomes the bottleneck. Fig. 12(a)

explores different group configurations for a 64-core system.

For ACint, group sizes of 16 and 32 cores achieve the

highest throughput@SLO. A group size of 64 gets degraded

throughput because of variance in remote cache access

latency. In ACrss, for group sizes larger than 16, a manager

core itself can become the throughput bottleneck. The reason

is that a manager’s throughput has a theoretical upper bound

of 28 MRPS, considering 70 cycles@2GHz per message. To

support both designs, we choose to use 16 cores per group.

C. Migration Parameter Exploration

We now perform two sensitivity studies to understand

how the choice of design parameters affects ALTOCUMULUS

performance. We model NIC bandwidth to be 1.6 TbE and

use a 256-core system, with 16 manager cores, each assigning

work to 16 worker cores. In Fig. 11(a), we show the number

of SLO violations and 99th percentile tail latency vs. Bulk,

for a migration period of 200 ns. When Bulk=16, we can

eliminate all SLO violations (left axis). We also see that 99th

percentile tail latency (right axis) strongly correlates with

SLO violations.

In Fig. 11(b), we show that varying the migration period

from 10 ns to 400 ns does not significantly affect either the

rate of SLO violations or the 99th percentile latency. We can

understand why this is the case as follows. For a 1.6 TbE

NIC, the time between packets is on average ∼2.5 ns. Thus

for 16 queues, it would take 16×Bulk number of packets

to fill the queues such that the longest queue would reach the

threshold for migration. This works out to 2.5ns×16×Bulk =

∼640 ns, which is comparable to the mean service time of an

RPC, which is ∼630 ns in our experiment. If migrating every

1000 ns, Fig. 11(b) indicates ∼1/3 of migration opportunity

is lost and it fails to recover 150K out of 400K RPCs that

violate SLO. The anomaly in the 40 ns case is explained in

Sec. VIII-D.

D. Migration Effectiveness Breakdown

We replay 400K RPCs from the baseline, and compare the

two cases to evaluate the effectiveness of ALTOCUMULUS’

migration implementation. We split predicted SLO violations

into four groups, which we show in Fig. 12(c), where:

1) Eff. means migrations that saves SLO violations.

2) InEff. w/o harm means the migrated RPC request

did not violate SLO either before or after migration.

3) InEff. w/o benefit means this SLO-violating

RPCs would still violate SLO after migration.

4) False, harmful mis-predictions, where an SLO-

satisfying RPC becomes an SLO-violating one after

migration.

Eff. can significantly improve 99th percentile latency

because the worst case SLO violations are recovered.

InEff. w/o harm can also reduce queuing delay of

requests because we migrate them to a shorter queue. False
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(a) Group size exploration (# groups x
size)

(b) Migration effectiveness (c) False migrations for different periods

Figure 12: ALTOCUMULUS sensitivity analysis.

and InEff. w/o benefit cause unnecessary scheduling

traffic, and False even increases extra SLO violations and

thus adversely affects throughput@SLO.

In Fig. 12(a), we observe that 130K, 161K, 108K, 69K

RPCs have experienced migration for the 4 migration periods

tested. First, migrating too lazily (1000 ns) fails to save

47% RPCs that are queued too deep (InEff. w/o benefit).

Migrating too eagerly (40 ns) results in 41% of migration

operations that fail to impart any positive benefit, as such

frequent scheduling produces migrations faster than they can

be consumed leading to new contention effects in the system.

Fig. 12(b) shows that we can eliminate nearly all mispre-

dictions and save all RPCs to satisfy the SLO. At best, among

161K migrated RPCs, 70K of them are effective migration,

saving SLO-violations. The effective ratio is 42%. The rest

(58%) of the migration messages significantly reduce queuing

time because they rebalance system loads across managers

and do not cause any undesirable SLO violations. Sec. VIII-E

discusses the overhead of those ineffective migrations and

the way to further reduce such overhead.

Effectiveness of preventing SLO violations. Fig. 12(c)

shows only the false migrations from Fig. 12(b). Since we

evaluate 99th percentile latency, the slowest 1% of RPCS (4K)

contribute disproportionately to tail latency. With a period

of 200ns, we falsely migrate only 53 RPCs. We successfully

eliminate >99.8% of SLO violations and improves tail

latency.

E. Migration Overhead

Migration traffic. The results in Fig. 12(c) use the prediction

model that selects T based on the first SLO violation,

which delivers the highest accuracy by sacrificing migration

effectiveness as discussed in Sec. IV. ALTOCUMULUS’

approach can provide flexibility to balance this trade-off and

save migration traffic. Although the model used in Fig. 12(c)

results in 58% ineffective migration, the number of requests

involved migration is smaller than the 70% of messages

moved by ZygOS [53]. ZygOS also moves the entire message

up to thousands of bytes, whereas we only move 14B message

pointers which significantly reduces scheduling related traffic.

Latency cost. The migration happens well before a migrated

request gets processed. Thus, migration latency is off the

critical path and does not hurt tail latency. Instead, Fig. 11

illustrates that migration can actually reduce the queuing time

of migrated requests. The SLO prediction overhead added on

each RPC consists of the operations needed in Algorithm 1.

These operations (and their cycle counts) are: 1) 3ns per

hop in the NoC to send update messages between managers,

2) 2 multiplications (7 cycles) and 2 additions (1 cycle) to

calculate T , 3) at most 3 comparisons (2 cycles), one against

T and the other three against Bulk for each pattern. For

a 2 GHz CPU, this gives a worst-case prediction latency is

18ns. For 256-core system, migration latency is less than

50ns. ALTOCUMULUS enables migrations as frequent as

every ∼50ns without saturating system throughput or adding

significant latency on the critical path.

IX. END-TO-END APPLICATION

In the previous section, we evaluated ALTOCUMULUS us-

ing a synthetic workload. We now show that ALTOCUMULUS

effectively reduces RPC scheduling latency for an end-to-end

application, namely MICA, under real-world traces.

A. MICA over an Altocumulus RPC system

We evaluate MICA, an in-memory key-value store [39],

which is the end-to-end application evaluated in prior work,

such as HERD [28], Nebula [61] and nanoPU [23]. MICA is

implemented as a library with an API that allows distributed

applications to GET and SET key-value pairs. We port MICA

to our RPC handlers, in which requests generated by our load

generator are drained from pre-allocated message buffers.

We copy the descriptors of network messages between in-

memory buffers and register files of ALTOCUMULUS mi-

croarchitecture. After completion, the RPC handler enqueues

RPC responses to pre-allocated response message buffers.

Each RPC handler follows a run-to-completion model. Each

manager thread can enqueue/dequeue its NetRX and read
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the number of waiting RPC requests within a few cycles.

Message buffers are read/written at shared cache speed.

We evaluate ALTOCUMULUS using two optimized network

protocols, where eRPC stack lowers RPC latency down to

850 ns [27] and nanoRPC, within 40 ns [23].

B. MICA Configurations

The MICA key-value store implementation is optimized

for multicore architecture with partitioned DRAM stores. We

use EREW (exclusive read, exclusive write) mode of MICA,

in which each core owns one key partition. EREW has the

highest performance in most cases [39] because there are no

concurrency control overheads, making MICA scale linearly

with CPU cores. In our implementation, we map each key

partition to each manager thread instead of mapping them to

each core. From each manager to its local worker cores, we

assume each worker core has the entire replica of the dataset

and therefore it is possible to balance load to any local worker

core if available. We use the default MICA hash bucket count

(2M) and circular log size (4GB). We deploy an 819MB

dataset owned by each manager, comprising 1.6M 16B/512B

key/value pairs. Query mixes are 50/50 GET/SET. For a SET,

the core loads the value to be written from the LLC [61] (i.e.,

a remote cache read) or the main memory [1] (i.e., a DRAM

access) and then write it to the DRAM-resident MICA log.

GETs first must fetch the value from the MICA log, and

write it to the response message buffer, usually taking longer

delay than SETs.

C. Scalability

Fig. 13(a) shows that all our evaluated configurations scale

effectively with increasing number of cores under a Poisson

arrival distribution and a fixed 850 ns service time per request

with the eRPC stack [27]. Fig. 13(a) also evaluates real-world

traffic under which commodity RSS NIC and Nebula achieve

limited throughput@ SLO as they cannot adapted to varied

request times and arrival patterns.

In contrast, we demonstrate our adaptability using two

configurations. ACint subopt uses optimal migration parame-

ters for synthetic traces (Sec. VIII-C), i.e., Period=200 ns,

Bulk=16 and Concurrency=8. Although not optimal for

real traffic, it still increases throughput@SLO over Nebula by

a factor of 2.3 and 1.5, with 128 and 256 cores, respectively.

By tuning migration parameters, ACint opt realizes near-

linear scalability across core counts, achieving 2.8-7.4×
throughput when the ratio of SLO violations is within 5%

range. ACint opt under realistic traffic loses 13.6-15.4%

throughput@SLO compared to that under synthetic traces.

First, due to more complex traffic patterns, ALTOCUMULUS’

prediction accuracy decreases from 99.8% to 96%. Second,

since MICA is in EREW mode, our design undergoes

application-level concurrency overhead as some migrated

RPCs have to perform an additional remote cache access to

the key’s owner core.

D. Adaptability

We mix three types of RPCs: 0.5% ∼50 μs SCAN, and

99.5% ∼50 ns GET/SET based on nanoRPC stack [23]. The

baseline (Nebula) and our 4-manager ALTOCUMULUS are all

set to be 64 cores because large core count needs cross QPI

bus, whose latency is detrimental for 50 ns GET/SET. We

only initialize the ALTOCUMULUS runtime when throughput

reaches 250 MRPS, which is the point at which Nebula

starts to violate SLO. ALTOCUMULUS settings including

ACrss-ISA and ACrss-MSR to compare our custom ISA

instructions versus x86 MSR instructions to implement our

mechanism.

Comparison against Nebula. Fig. 14 reports 99th percentile

latency (left, logscale) and SLO violation (right) results

after 10,000 RPCs complete. At low load, Nebula can

maintain low 99th percentile latency within 300 ns due to the

effectiveness of Nebula’s NIC-managed hardware scheduler

design and request prefetch. However, once throughput

reaches 250 MRPS, Nebula’s 99th percentile latency begins

to fluctuate unpredictably and increases to 15μs, 320× worse

than an average GET/SET request handling time. Fig. 14

on the right shows that up to 47% requests violate the SLO

at ∼300 MRPS due to head-of-line blocking in Nebula. In

contrast, the ALTOCUMULUS scheduler, particularly ACrss-

ISA, does not experience these fluctuations and achieves a

much lower 99th percentile latency We also see a more grad-

ual increase in the rate of SLO violations up to 700 MRPS,

achieving a 2.5× throughput improvement over Nebula when

99th percentile latency reaches SLO.

Comparison against kernel scheduling. Fig. 14 shows that

before the ALTOCUMULUS runtime has started, our two

configurations experience high tail latency. The generic RSS-

based kernel-scheduler we model can cause severe queueing

effects, resulting in a high 99th percentile latency of ∼40μs

at even low load. Software-only schedulers are inefficient

at handling sub-1 μs RPCs on a manycore system, under

complex arrival patterns.

Custom ISA instructions vs. MSR. Fig. 14 shows at high

load, ACrss-MSR reaches 91% of the max throughput that

ACrss-ISA delivers (for 99th percentile latency < 1 μs).

ACrss-ISA also provides more stable tail latency than

ACrss-MSR, as instructions are much faster than the ∼100s

cycles taken by rdmsr/wrmsr syscalls. ALTOCUMULUS

sees a 2.5× higher throughput over state-of-the-art hardware-

based system.

E. Case studies using ALTOCUMULUS

In this section, we present three case studies to show the

versatility of ALTOCUMULUS.

Case study 1. First, we show how ALTOCUMULUS com-

ponents can be used with an integrated-NIC based system,

such as Nebula, to improve throughput@SLO. The baseline
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Figure 13: (a) Throughput@SLO and SLO prediction accuracy for MICA using real-world traffic patterns (256 cores). (b)

Throughput@SLO for case studies 1 and 2 with the following configurations: RSS, ACint rt, ACint rt+msg, ACrss syn

and ACrss rw. (c) Prediction accuracy while varying the ratio of SLO to average service time (A).

(a) Latency

(b) Ratio of violations

Figure 14: Nebula vs. two implementations on MICA with

real-world traffic (nanoRPC, 64 cores).

for our comparison is a commodity server with RSS NIC

attached via PCIe. We evaluate a scale-out 256-core Nebula
system, where each 16-core Nebula is a single group. We

optimistically assume that all 256 cores use a single coherence

domain (as required by Nebula). ACint rt integrates our

decentralized runtime on each of the 16 manager cores. We

also evaluate ACint rt+msg which adds both our runtime and

hardware messaging on top of the scale-out Nebula system.

Fig. 13(b) shows the throughput comparison between the

baseline RSS system and the two modified Nebula systems.

Nebulart improves throughput@SLO over the baseline RSS

system by 2.2×. ACint rt+msg further improves this by a

factor of 1.3×. We get a best case throughput of 251 MRPS,

achieving 83.3% of the ideal throughput (which is 301 MRPS

for 850 ns requests with 256 cores).

Case study 2. We now show how ALTOCUMULUS’ pa-

rameters can be tuned for the ACrss system, which uses

a commodity CPU with an RSS NIC attached via PCIe.

We explore two variations of ACrss, namely ACrss syn

and ACrss rw, shown in Fig. 13(b). ACrss syn is tuned for

synthetic traces but still achieves a 1.4× speedup over the

baseline RSS system. Using tuned parameters for the real-

world traffic, ACrss rw achieves a 2.7× throughput@SLO

improvement. Interestingly, performance only degrades by

7% from ACint rt+msg to ACrss rw, primarily because our

design is resilient to the long queuing delays that would be

caused by RSS load imbalance and long PCIe latency.

Case study 3. The final case study explores the effect of

changing the SLO target on prediction accuracy. Recall that,

until now we have used an SLO target of 10A, where A is the

average service time. For this experiment, we also evaluate

SLO=5A and SLO=20A with A = 850ns and load=0.9. We

evaluate using two configurations: ACint opt and ACrss opt,

both tuned separately for maximum performance. Further-

more, for ACrss opt we integrate the recent feature that

allows RSS to re-configure its request-to-core mapping to

adapt to load imbalance, but only at a frequency of every

20 μs [7].

Fig. 13(c) shows the comparison between a baseline

RSS system and the two AC systems described above.

At SLO=5A, ACint opt and ACrss opt achieves 2.3 and

1.8× prediction accuracy increase over the baseline RSS,

respectively. Our technique works better for the stricter

SLO=5A case as other systems are not able to effectively

load balance at such a strict latency constraint.

At SLO=10A, ACrss opt saves 1.3× more SLO violations

than the baseline RSS system. For SLO=20A, as the target is

not demanding anymore, all approaches are able to realizes

>95% prediction accuracy for this relaxed SLO target. This

shows that ALTOCUMULUS is ideally suited to systems with

demanding SLO targets (e.g., <= 10A target) requirements,

which is pivotal in modern cloud [14], [27], [53].

Through these three case studies, we provide some key
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takeaways regarding our design:

1) ALTOCUMULUS is highly versatile and is able to improve

throughput@SLO on a variety of systems.

2) Even for a simple baseline system such as a commodity

CPU with a PCIe-attached RSS NIC, parameter tuning

enables ALTOCUMULUS to reduce the impact of load

imbalance and PCIe overhead caused by RSS.

3) Optimizing ALTOCUMULUS parameters for real-world

traces requires tuning a few parameters (as shown in

Sec. VI) to achieve high throughput.

X. RELATED WORK

We discussed RPC scheduling designs and implementa-

tions in Sec. II. We now highlight additional related work.

RPC stack optimization. DPDK [1] and PacketMill [15]

reduce OS network transport overhead and memory copying

via user-level specialization. eRPC [27] combines many soft-

ware techniques to optimize small messages and congestion-

free common cases. Recent research focuses on dedicating

extra hardware to realize faster RPC stack processing.

RPCValet [11] achieves NIC-core communication through

shared caches, bypassing slow PCIe buses. Nebula [61]

further shortens delays between messages and applications at

L1 cache speed. Dagger [36] and Cerebros [52] offload

software components required for commonly used RPC

protocols to hardware. Optimus Prime [51] and Zerializer [65]

propose data marshalling accelerators for (de)serialization

ill-suited for CPUs. nanoPU [23] offers an ultra-low latency

path between the NIC and the core by directly writing a

message from the NIC to the core’s register file.

We are the first to identify the bottleneck of RPC

scheduling for μs-scale RPCs. We expect our design to
synergize with existing RPC stack optimization: the more

optimized the RPC stack, the more scheduling overhead

affects the RPC throughput and latency, and the more pivotal
our design will be.

CPU efficiency of RPC servers. Prior work implicitly

acknowledges that guaranteeing μs-scale SLO comes at

the cost of sacrificing CPU utilization. Existing Linux

systems can only deliver μs-scale latency when keeping CPU

utilization low and leaving enough idle cores available to

handle incoming requests instantly [30], [37], [67]. Alterna-

tively, by circumventing the kernel scheduler, kernel-bypass

approaches such as ZygOS achieve μs-level latency at higher

throughput [1], [8], [49], [50], [53]. Shenango addresses CPU

wastage coming from spin-polling and core overprovisioning

for peak load [48]. However, significant CPU cycles of even a

small core-count CPU remain wasted when handling μs-scale

requests [17], [54]. A plethora of work enables co-location

of latency-critical and batch applications to improve system

efficiency [17], [32], [34], [40], [42], [44], [64], [66], [67].

Our work focuses on another source of CPU waste – lack of

effective and fast scheduling for μs-scale SLO. Mitigating

such waste is beneficial to improve loads of latency critical

requests under guaranteed μs-scale latency constraints such

as RPC systems [17], [44], or leave more CPU cycles for

handling batch applications as prior work proposed.

SLO and queuing theory in RPC systems. While prior

work used queuing theory for load balancing in a distributed

multi-server systems [33], [47], we employ it to balance

loads across tens to hundreds of cores within a CPU server.

Nebula [61] leveraged queuing theory to bound RPC buffer

size to mitigate memory bandwidth bottleneck, while we

leverage it to predict SLO violations with the help of discrete

event simulation.

Architectural support for scheduling. Hardware accelerated

scheduling has been proposed for traditional [10], [35], [57],

[62], [63] and speculative [24] task-parallel programming

models. Our messaging for scheduling is most similar to

ADM [57]. However, since most scheduling designs in

task-parallel systems target throughput but not latency, we

augment the ADM mechanism with unique features for RPC

systems. ALTOCUMULUS inherits direct register messaging

for low latency RPC message transfer from nanoPU [23].

Unlike nanoPU that moves the entire message payload around,

we only send the descriptor of a RPC message and thus

mitigate overhead and boost migration efficiency.

XI. CONCLUSIONS & FUTURE WORK

We present ALTOCUMULUS, which uses a predictive model

to migrate RPC requests that are likely to violate SLO to less

busy cores. ALTOCUMULUS uses hardware to move requests

at the register level and allows software a direct path to

hardware via ISA extensions. The ALTOCUMULUS runtime

runs as a software shim layer, whose migration messages

are supported by a set of simple hardware primitives. Our

two-tier scheduling scheme effectively scales to hundreds of

cores for CPUs used in future datacenters.

The ALTOCUMULUS software-based hardware-assisted

design opens up new opportunities in RPC systems and

beyond. The flexibility provided by the ALTOCUMULUS

software runtime can support a wide range of new scheduling

policies, without requiring hardware or kernel scheduler

modifications. In addition, our distributed software runtime

offers the opportunity for isolating different applications,

which we leave as a study for future work.
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