Developingin OMG’s M odel-Driven Architecture
Jon Siegd and the OMG Staff Strategy Group

Object Management Group White Paper
November, 2001
Revison 2.6

In an accompanying white paper*, the Object Management Group (OMG) definesits
Model-Driven Architecture (MDA). In this paper, we' re going to describe the gpplication
development process supported by the MDA — the mode that you build, the artifacts that
you produce, how information flows from one set of artifacts to the next, and how the
MDA process ultimately yidds an application running on virtudly any target middieware
platform. But first, we need to review the MDA to st the stage.

Introducing OMG’S Model-Driven Architecture

From its beginnings in 1989, the Object Management Group (OMG) has focused on
cregting atruly interoperable and integrated computing environment. OMG’s Common
Object Request Broker Architecture (CORBA) has brought object technology into the IT
mainstream. CORBA is now the standard for enterprise interoperability, dlowing objects
to interoperate smoothly across many former boundaries such as hardware platform,
operating system, and programming language. However, CORBA is not the only
“middleware’ platform an enterprise can choose: others — each providing nearly the same
st of servicesin its own way, with its own set of advantages and disadvantages — have
aso emerged and become entrenched in enterprise computing. Clearly, establishment of a
standard, vendor- and system+-independent middleware technology did not provide the
environment that enterprises need to regp the full benefit of their heterogeneous
computing hardware and software.

Now isthe timeto moveto the next level: To provide the kind of integration that today’ s
corporate computing environment requires, the OMG isadding aleve of standardization
upward from application implementation to the level of application design. Taking full
advantage of the framework created by our successful Unified Modding Language
(UML), OMG members are building a modding environment based on the common

! Model Driven Architecture, by Richard Soley and the OMG Staff Strategy Group, OMG document
omg/2000-11-05.

Developing in the MDA Object Management Group Page 1

festures of the various middieware platforms®. Exploiting their fundamenta
commondlity, without being distracted by their superficid differences, dlowsthe OMG
to defineaModel Driven Architecture (MDA) in which gpplications on your chosen
middleware platform can be made to interoperate smoothly with those of your other
departments, your customers, your suppliers, and everyone ese you to business with,
regardless of the middleware architectures that they choose and use. This architecture

Integrates what you' ve built, with what you're building, with what you will build
in the future;

Remainsflexible in the face of congtantly changing infrastructure; and
Lengthens the usable lifetime of your software, lowering maintenance costs and
rasing ROI.

Finance

Manufacturing E-Commerce

Transportation HealthCare

More...

Figure 1: OMG's Modd-Driven Architecture

2 Thismodel is realized asaUML Profile, and the technically savvy will recognize that it is actually a

meta-model of the middleware environment. Additional profiles will be defined for other specialized
computing environments such as Real-Time computing and embedded systems.

Developing in the MDA Object Management Group

Page 2

Figure 1 diagramsthe MDA. At its core is a technology-independent definition of the
distributed enterprise computing infrastructure. Built in OMG's Unified Modding
Language (UML), it includes the concepts that we recognized as common to the various
architectures on the market, representing component-based systems such as Enterprise
JavaBeans, and loosaly-coupled messaging-based systems induding Web Services.

UML dlows an application model to be constructed, viewed, developed, and manipulated
inastandard way a andyss and design time. Just as blueprints represent the design for
an office building, UML modd s represent the design for an gpplication, dlowing

business functiondity and behavior to be represented clearly by business experts at the
firs stage of development in an environment undistorted by computing technology. This
dlows the design to be evaluated and critiqued when changes are easiest and least
expensve to make, beforeit is coded. MDA development starts with the construction of a
Platform: Independent Modd (PIM) in this technology-independent UML environment.
Unlike conventiond development methods which use this mode as a basis for hand-
coding by ateam of developers, however, the MDA uses the UML modd to
automaticaly generate dl or most of the running application via the series of steps that

we will detall in this paper, maximizing the return from the modding invesment.

Building on this the MDA leverages the UML mode to support applications throughout
their entire lifecyde, extending beyond the design and coding stages through deployment
and into maintenance and, ultimatdly, evolution In what would be the twilight phase of a
non-MDA gpplication' slife, the modd enablesrenewd through autométic, or nearly
automatic, porting to anew platform when a critica goplication’s current platform
becomes obsolete. Because new platforms will be incorporated into the MDA asthey are
introduced, MDA applications are truly “future proof.” This, and the full lifecyde

support that results, are unique characterigtics of the MDA, conveying an unbegatable
compstitive advantage to the enterprise that adopts it.

Three key OMG modding technologies, al based on UML, support the MDA:

The Meta-Object Facility (MOF) which not only provides a standard repository
for our model, but dso defines a structure that helps multiple groups work with
the modd and view it in a standard way;

The Common Warehouse Metamodd (CWM), the established industry standard
for data repository integration, standardizes how to represent database models
(schema), schema transformation models, OLAP, and data mining models.

XML Metadata Interchange (XMI), a mapping which expresses UML modesin
XML and dlows themto be moved around our enterprise as we progress from
andyssto modd to gpplication.

In the annular ring closest to the core of Figure 1, we ve shown some of the middleware

environments that are current targets for the MDA: the popular Web Services
environment; CORBA (in particular the CORBA Component Modd or CCM); Java

Developing in the MDA Object Management Group Page 3

(induding Enterprise Javabeans); C#/.NET; XML/SOAP*. If your favorite target isn't on
thisligt, or anew target platform emerges, don’t worry — OMG members will add it soon
enough.

OMG’ s experience with the Object Management Architecture (OMA) comesto bear in
the next part of the MDA The Pervasive Services. The Object Services, which have
provided directory, security, distributed event handling, transactiondity, persstence, and
other services to CORBA applications for years, are being abstracted into PIMs to serve
the multi-platform MDA. These PIMswill serve as the basis for Sngle-instance service
implementations thet will run on asite’ s platform of choice while being available equaly

to gpplications running on any platform through MDA-generated bridges. In our diagram,
the pervasive services occupy the outermost thin annular ring, between the target
platforms and the compass-point arrows.

The outermost and largest ring, dominating the diagram with its compass points, depicts
the various vertica markets or domains whose facilities will make up the bulk of the
MDA. Defined as PIMs, these facilities will be implemented in multiple target platforms
viathe pathways that we' |l describe in the second hdf of this paper. Standardizing key
functions such as Product Data Management and CAD/CAM interoperability for
manufacturing, patient identification and medica record access for hedthcare, and the
financid foundations for B2B and B2C e-Commerce, these facilities extend MDA
interoperability from the infrastructure level into the gpplications themselves. Y our
industry’s MDA standards will occupy this ring as well; later in this paper we'll detail the
benefits that accrue to an industry that adopts and uses MDA standards.

Developing in the MDA — Single Target Platform

Although a primary advantage of MDA -based development is the ability to produce
goplications for virtudly every middieware platform from the same base mode, we're
going to sart with a smple example — generating a server on asingle platform. Once
we' ve completed this and traced the routes dl of the various code artifacts through the
process, we' || show how the MDA re-uses the same mechanism for multiple targets.
WEe ve picked the popular Web Services architecture as our first target. However, if you
prefer adifferent target, subdtitute its name whenever we say “Web Services’ —the
explanation will be, for the most part, the same dthough the list of artifacts produced will
change to suit each particular target.

Step 1: The Platform-Independent Model (PIM)

All MDA development projects start with the creation of a Platform Independent Model
(PIM), expressed in UML and shown at the top of Figure 2. An MDA modd will have

* Although each of these are regarded as “middleware” by at |east some observers, they provide widely
varying degrees of functionality and service. Clearly, those that provide minimal service levels (such as
XML, whichisactually adataformat) will have to be combined with additional technology in order to be
treated as an MDA target platform.

Developing in the MDA Object Management Group Page 4

multiple levels of PIMs. Although dl are independent of any particular platform, each
except the base model includes platform+independent aspects of technologicd behavior.

The base PIM expresses only business functionality and behavior. Built by business and
modding experts working together, this mode expresses business rules and functiondity
undistorted, as much as possible, by technology. The clarity of thismodding

environment alows business experts to ascertain, much better than they could if working
with atechnological modd or gpplication, that the business functiondity embodied in the
base PIM is complete and correct. Another benefit: Because of its technological
independence, the base PIM retainsits full value over the years, requiring change only
when business conditions mandate.

PIMs at the next level include some aspects of technology even though platform:-specific
details are absent. For example, every component environment alows developers to
Specify activation patterns. (Severd even use the common terms session and entity,
dthough MDA’ s standard profiles make interpretation clear even in the face of
terminology conflicts.) Additional concepts — persstence, transactiondlity, security leve,
and even some configuration information — can be treated andogoudy. By adding these
concepts to our second-level PIM, we enable it to map more precisaly to a Platform-
Specific Modd (PSM) in our next step.

Some of the standard modding infrastructure that incorporates al of this behavior into
the PIM dready exists Object Constraint Language, apart of UML, lets designers
specify invocation pre- and post-conditions very precisdy in ther modd, so these will
surdly be included in this category. (Development that makes rigorous use of pre- and
post-conditionsis sometimes referred to as Contract-Based Design.) Other constraints
that will carry through include whether a single-vaued parameter is alowed to be null,
and redtrictions on combinations of attribute vaues. Setting and getting of parameter
vaues, acommon task in business applications, is easy to automate so look for this to be
well handled by code generation facilities even in early generation MDA tools. UML 2.0,
now well underway a the OMG, is being tailored specificdly for MDA and will provide
additiona support. Still, even usng UML 2.0, coding of the calculation enginesfor new
agorithms (for financid derivative contracts or scientific gpplications, for example) may
remain impractica athough access to the completed modules through MDA - defined
interfaces will be easy to incorporate into model-driven development tools.

MDA application-modeing tools will contain representations of the Pervasive Services
and Domain Facilities, alowing them to be used by or incorporated into your gpplication
a themodd level viaamenu sdection. Any facility defined in UML may be imported
into the tool as well, and used by the gpplication in the same straightforward way. In
addition to encouraging re-use, this feature helps ensure that invocations of pre-defined
fecilities are coded and executed correctly. In addition, if the service or facility runson
another middleware platform, the MDA development tool will generate cross-platform
invocations automaticaly. Thislessens— and may diminate, in some cases — hand-
coding necessary for cross-middleware integration.

Developing in the MDA Object Management Group Page 5

Modeling Tool

builds
Pervasive Domain
l Platf - Call
Services & |ndep:,::|nem g Facilities
Madel Applicatiun Mﬂfkl
UML Model

Mapping Tool Applies
OMG-standard Weh Services
Mapping to Model

Platform-
Specific St I
Application EL MOF
UML Madel
Produces
Saurce Config UDDI DTDs,
Code Files WSDL | | Enries SOAP,
XSLT
Compile,

Configure, Assemble

with Server
App Web

Services
Server

v

Deplay, Run

Fig 2: Using the MDA to generate a CCM server.

Client environments will also be part of the MDA. Not restricted to any platform or
architecture, the MDA can modd (and therefore eventudly automate coding of) virtudly
any dient including web browsers, WM, CORBA, wirdless devices (such as cell phones
and pagers), telephones viaeither DTMF or voice response, and others. We Il show how

thisworks in the next section.
The PIM that you produce in the first step of an MDA devel opment specifies

functiondity and behavior for both client and server, and links to the Pervasive Services,
Domain Facilities, and other MDA-modeled fadilities that the application invokes. UML

Developing in the MDA Object Management Group Page 6

class and object diagrams incorporate the structure; sequence and activity diagrams
embody the behavior; class and object names, dong with semantic notations, incorporate
business factors, while other aspects of the model incorporate platform-independent
aspects of component structure and behavior.

Step 2: The Platform-Specific Model (PSM)

Oncethefird iteration of your PIM is complete, it is stored in the MOF and input to the
mapping step which will produce a Platform-Soecific Modd (PSM) as shown in the
second row from the top in Figure 2. Specidizations and extensonsto UML giveit the
power to express both PIMs and PSMs. Termed a UML Profile, a standardized set of
extensions (consigting of stereotypes and tagged val ues) defines a UML environment
tallored to a particular use, such as modeling for a specific platform. The UML profile for
CORBA was standardized by OMG in 2000; profiles for other platforms are in process.

To produce your PSM, you will have to sdlect atarget platform or platforms (you don't
have to run your entire modd in the same component environment, aswe'll show in the
next section) for the modules of your gpplication. We' ve aready said that the Web
Services platform is our target in this example. Y our MDA deve opment tool may dready
know which platform the various Pervasive Services and Domain Fecilities on your
enterprise network run on; if it does not, you will have to input this information now to
alow the MDA to generate cross- platform invocations where needed.

During the mapping step, the run-time characteristics and configuration information that
we designed into the gpplication modd in agenerd way are converted to the specific
forms required by our target middieware platform. Guided by an OMG-standard
mapping, automated tools perform as much of this conversion as possible, flagging
ambiguous portions for programming gaff to resolve by hand. Early versions of the
MDA may require consderable hand adjusment here; the amount will decrease as
profiles and mappings mature over time.

Starting with concepts as genera as class and interface, and working down to specifics of
instance activation and transactiond behavior, the mapping must be detailed enough to
eventually enable hands-off generation of running code from the application UML modd.
OMG’'sMDA definition document, number ormsc/2001-07-01, ligs four ways to move
fromaPIM to aPSM. Inincreasing leve of sophidtication and autometion, they are:

1. A person performs the transformation completely by hand, working each
gpplication ad hoc without reference to others.

2. A person performs the transformation using established patterns to convert from
the PIM to a particular PSM.

3. The egtablished patterns define an dgorithm which isimplemented in an MDA
tool that produces a skeleton PSM, which is then completed by hand.

4. Thetool, goplying the dgorithm, is able to produce the entire PSM.

Developing in the MDA Object Management Group Page 7

A tool regtricted to a constrained environment (one thet is used only for banking
goplications, for example, such as the one produced by Wells Fargo Bank described at
www.omg.org/mda/mda files'M DA%20briefing%20Castain.pdf) will produce complete,
or nearly complete, PSMs a levd 4. Other factors inhibit automatiorn: presence of legecy
goplications; thin or ssmanticaly incomplete PIMs, immeature transformation agorithms.
As MDA dgorithms and the tools that implement them mature and gpplication designers
will become familiar with them, modd transformation will move quickly towards level 3
and progress towards level 4.

Step 3: Generating the Application

As Figure 2 showsiin its third row, an MDA tool for Web Services will generate dl of the
filesthat our platform requires. Because Web Services may run on dmost any application
server, we will have to specify a particular one here (and it will have to be one that our
MDA tool supports). If our App Server supports multiple programming languages (such
as Java, C++, or CH), we will have to select the language we want too. Our MDA
development tool will then generate source code for our gpplication running on our
selected application server, in our chosen programming language. It will, in addition,
generate files that tell our application server how to configure and deploy the application
to run the way we want it to, based on information that we included in our UML modd.
Thetool will also generate WSDL files, and UDDI regisiry entry files. To support the
XML messages communicated by Web Services, our MDA tool will so prepare DTDs,
SOAP message formats, and a set of XSLTs (XML Style Sheet Transformations) that
trandate between them. Artifacts for other middleware targets will be different — the
CORBA Component Modd, for example, requires PSDL and CIDL. Each MDA
mapping will produce the artifacts and file types that its target platform requires. The
MDA specificationwill require that tools trace and verson dl process atifacts.

We can think of this transformation, like the lagt, in terms of the four levels of
sophigtication we listed. However, since many development tools dready generate
interface code from models — not just in OMG IDL for CORBA gpplications, but for
other platforms aswell — evolution here has aready passed through the primitive levels 1
and 2. You can expect even early MDA development tools to start somewhere around 3,
with some approaching leve 4.

Immediately following code generation, your programming staff will apply any required
hand- coding to the output. In the compile step that follows, a middleware-specific tool
(possibly as smple as a generated M akefile) will compile al of the various code
elements. For our Web Services example, only the programming-language code needs to
be compiled, but if we had chosen a component-based target platform we might have IDL
(Interface Definition Language) files which need to be compiled into language code and
then into compiled code, plus CIDL (Component-Implementation Definition Language)
files which reguire the same treatment. In any case, dl of the artifacts are compiled by the
system, automaticaly, in turn to either object files (for C++ and amilar languages),
intermediate byte code (for Java), dynamicaly-linked libraries, or other artifacts.
Executable modules are then created, aso automaticaly, in the usud way.

Developing in the MDA Object Management Group Page 8

MDA serversthat run in component or application-server environments will have to be
configured and assembled. Because MDA developers are able to specify dl the required
configuration information in the application UML modd, even this step will be (again,
eventudly) automated. So, an MDA tool will combine compiled files with their
configuration files into assemblies. Thesefiles are your server, ready to be deployed and
run.

Because we atificidly redricted this discusson to asingle target platform, we did not
produce any clientsin this example process. In the next section, we' ll relax this
restriction and show both additional server platforms and a number of client platforms.

Developing in the MDA — Multiple Target Platforms

Although development of a mode-to-code capability for asingle target platformwould
be sgnificant enough, benefits multiply when the MDA extends to multiple targets as we
show in Figure 3.

Because the core MDA modding environment was designed, from its inception, to
support multiple platforms (That is, as we pointed out in our technical footnote earlier, it
isameta-model of enterprise middieware), OMG can and will define mappings to many
middleware targets. By adding various client platforms’ characterigtics, the MDA can be
made to generate code for these targets as well, regardless of differencesin caling
pattern from server to any number of client types. These mappings are the key to the
MDA's utility.

In the firgt three columns of Figure 3, we show MDA development trails usng mappings
to anumber of middleware server platform targets. We' ve chosen Web Services, The
CCM and EJB environments (purposaly smilar, so we' ve grouped them together), and
the emerging C#/.Net for the figure, but these are only examples: you can expect
mappings to XML/SOAP, MTS'DCOM, and other recent environments as well asto
older architectures including mainframe-based TP applications.

Although it would be unusud for an enterprise to generate implementations of the same
gpplication on an assortment of servers, ISVsdo thisin order to support customerson a
range of operating systems or hardware. Even more sgnificant is the contribution thet the
target independence of the model makes to inter oper ability: Because the invoked
Pervasive Services, Domain Facilities, and other enterprise applications are included in
the MDA environment when the origina application modd is created, the MDA system
isnot only able to code invocations of each Service or Facility automaticaly — it isable
to go beyond smple invocation and generate each in the format of its run-time
middleware platform. So, among al of an enterprisg s MDA applications, seamless
interoperability is nearly automatic.

Developing in the MDA Object Management Group

Mapping

Tool Mapping to Mapping to Mapping to
00l IWehServices CCM/EJB C# Net Browser Pagesr
applies Server Server Server Client Client
Platform Platfarm Pl atform Platfarm Platform
Ta
Produce Ky enservices| | cocmEss C#/.Net BETi‘:ﬁtE' gm
M oxchel Mol Modsl M Model
Frown this, = I =
s Code |webServices CCMEJB C2/.Net B&mzf’ gf:g";:
enerator Artifacts Artifacts Artifacts .
produces Artifacts Artifacts
Finally, pe= > —
an"f';;l:'r': WebServices CCM/EJE C#/ Net Browser Pager
* Server P Clhent
Assembly Server Server Client
yields

Figure 3: Leveraging Other Middleware and Client Platforms

The find two columnsiillugtrate mgppings to sample client platforms. Again, we' ve

picked two only as examples; thereis nothing in the MDA that would prevent any
particular client platform from being included. Because clients can differ markedly even

a themodd level — condder a voice-activated telephore client as compared to a browser-
based web version — we expect that some different client platforms will have to be
modeled individudly. Neverthdess, many of these will share asingle server interface

with differences accounted for automaticaly by the MDA. Thisis as close as a standard
can come to “technology- proofing” an enterprise’ s gpplication suite.

Deployment

The artifacts produced by the build or assembly step comprise the MDA agpplication
(adthough we Il presume that it’s not find after the firgt iteration— see the next section):
The server, which may be an assembly of components, some number of clients, running
on different platforms (browsers, workstations, cell phones, pagers, etc.); and possibly a

Developing in the MDA Object Management Group Page 10

st of bridges and gateways dthough much of this functiondity will be incorporated into
servers and clients.

These will have to be deployed — that is, moved to their target run-time platforms and
ingtaled. Location information will dso have to entered into your directory system.
When this step is complete, the system isready to run. A lot has happened, fortunately
most of it autometically!

Round Trip Engineering

Because the best development happens iteratively, MDA support for round-trip
engineering is an important god. Eventudly, developers will be able to fine-tune codein
a running gpplication and have their changes propagate backwards through the MDA
tools to the base UML modd. However, especialy during the early years of the MDA,
support for thiswill not be complete so changeswill have to be made to the gpplication’s
UML modd and propagated forward through the various generation and compilation
steps to the deployed gpplication.

Benefits to Industry (Domain) Standards

Many benefits accrue to industry groups and standards organizations that work in the
MDA. Here are three;

M ulti-platform industry standardswill be more widdy used: Today, industry groups
typicdly write IT sandardsin aparticular platform. Although many indudries have a
predominant middleware, in no industry does asingle platform account for all of the
network interoperability. So, in order to peretrate, the same industry standards must be
meade available on multiple platformsin interoperable implementations, as supported by
the MDA. Thisdlows every company in the industry — regardless of their corporate
middleware — to use the standard for both interna and cross-enterprise transactions.

Each standard can be implemented on the platform that suits it best: For example,
CAD/CAM and PDM (Product Data Management, a manufacturing application) require
tight coupling and work well on CORBA where they have dready been standardized. On
the other hand, the closdly related but typically cross-enterprise area of Supply-Chan
Management will dmost certainly be implemented as a set of Web Services. Usng
MDA, it is not a problem to implement and deploy on such amultiple- platform
environment and still have every implementation on every platform interoperate with
every other. In fact, many industries besdes manufacturing will need to expose their
digtributed but tightly- coupled enterprise gpplications with externdly-exposed Web
Services and, for this, the MDA is the idedlly-suited architecture. Financia applications
are one example; telecommunications with its network management, service

provisoning, and billing is another.

Developing in the MDA Object Management Group Page 11

Standards will be of higher quality: The core mode of an MDA standard specifies only
its business functionaity and behavior, divorced from platform-specific aspects. Working
in this environment, architects and designers can focus on business detail exclusvely,
working and reworking this aspect of the application until they get it exactly right. And,
should an agpect of an implementation not work correctly in an early implementation, it
isessy to seeif thisis due to afalure to modd the business behavior correctly, or afault
of the platform-specific code.

Conclusion

Approximations to the MDA architecture are running today, abeit without the benefit of
gandardization. Resgtricted to a amdler set of middieware and gpplication areas than the
architecture presented here, these systems nevertheless provide greet benefit to the
companies that built them. A consulting company we know of usesits own toolsto
generate implementations for its dients directly from UML modes. Wels-Fargo Bank
invested in an gpplication-generation tool instead of a single application, and now has an
environment that produces applications as they are needed. Because their entire system is
represented in the modd, they can add new customer applications — induding both client
and server — in weeks or less, making them formidable competitors in on-line banking
and trading. And, at least one current commercia product actudly executes UML models
directly in a prototyping mode, without generating or compiling any code.

There sno such thing asthe “best” target platform: what's best for you may not be best
for me, because of the hardware, or network, or developer teams that our enterprises
dready havein place. In thisworld, the “best” development environment is one thet lets
you choose the target platform after you’' ve modded your gpplication, and even move
from one to another with relative ease. Even more important, you need to interoperate
with every platform out there, regardless of the one you’ ve chosen, to take advantage of
business opportunities. That'swhat the MDA gives you.

Developing in the MDA Object Management Group Page 12

