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Abstract

Presentation conversion is a key operation in any development environment for dis-
tributed applications, such as Corba, Java-RMI, DCE or ASN.1-based environments.
It is also well-known performance bottleneck in high-speed network communication.
Presentation conversion code is usually generated by an automatic code generation
tool referred to as stub compiler. The quality of the code generated by a stub com-
piler is often very low. The code is either very slow, or has a large code size, or both.
This paper describes the design and experimental evaluation of an optimization stage
for a stub compiler. The optimization stage automates the trade-off between code
size and execution speed of the code generated by the compiler. This is achieved by
using a hybrid of two implementation alternatives for presentation conversion routines
(interpreted and procedure-driven code). The optimization problem is modeled as a
Knapsack problem. A Markov model in combination with a heuristic branch predic-
tor is used for estimating execution frequencies. The optimization stage is added to
the ASN.1 compiler Mavros. Experimental evaluation of this implementation shows
that by investing only 25% of the code size of fully optimized code, a performance
improvement of 55% to 68% can be achieved.

1 Introduction

Presentation conversion is often been identified as "the performance problem of the 90’s"
in text books on high-speed networking (e.g.( Partridge, 1993), (Peterson & Davie, 1996)).
The performance of automatically generated presentation conversion code often prevents
applications to take advantage of the performance of high-speed networks. For example,
we found that due to presentation conversion code, the throughput of a 155 Mbit/s ATM
network can be reduced to 3.1 Mbit/s on the application level, corresponding to a loss in
performance by a factor of fifty.

The performance of presentation conversion code can be considerably improved by
increasing the size of the code, using techniques such as compilation and inlining. While
stub compilers today implement these optimization techniques, their use often leads to
code sizes that are unacceptable for many applications in practice.



Further analysis reveals that the code size could be largely reduced if these optimiza-
tions where only applied to the parts of the presentation conversion code that are used
most often. In other words, rather than applying the same optimization technique (com-
pilation or inlining) to all or the presentation conversion code, it should only be applied to
the code parts where it is most beneficial.

This paper shows how a stub compiler can automatically decide which parts of the
code are worth optimizing. It is based on three main contributions:

e It is shown that the size/speed trade-off problem in the generation of presentation
conversion code can be mapped onto a Knapsack problem.

e Heuristic branch prediction rules are developed that allow determining the execution
frequency of different parts of the presentation conversion code.

e Experiments show that adding an optimization stage to stub compilers is worthwhile.

The rest of this paper is structured as follows: Section 2 explains basic concepts of the im-
plementation of presentation conversion routines. Section 3 discusses related work. Section
4 describes the design of the optimizer, including the Knapsack model and the heuristic
branch prediction rules. Section 5 gives experimental results for the optimization stage.
Section 6 gives our conclusions.

2 Basic Concepts

The task of a stub compiler is to translate an interface definition into presentation conver-
sion routines. These routines are required to translate data values from a machine-internal
format into a format suitable for network transmission at the sender (marshalling, and to
do the reverse conversion at the receiver (unmarshalling).

An interface definition contains declarations of the data types that an application
exchanges over a network. Type definitions consist of primitive types (e.g. integer, real,
string ) and composed types (e.g. struct, array, union). Consequently, the presentation
conversion code generated by a stub compiler contains two types of code, namely code
dealing with converting primitive types, and code dealing with converting composite types.

The code dealing with primitive types handles format conversions such as translating
between ASCII and EBCDIC character sets, byteswapping for integers or floating point
format conversion. These conversions are done by specialized algorithms.Optimizations
are specific to the particular algorithm, and not treated in this paper.

The paper focuses on optimizing the code for converting composite types, referred to as
control code. This code has two purposes, linearisation and realignment. Linearisation is
required for data structures stored in non-contiguous memory sections, such as dynamically
allocated tree structures. Realignment is required for components of a record or a struct
type. Different CPUs may use different conventions for positioning these fields in main
memory.

The control code of presentation conversion routines can be implemented using three
alternative implementation techniques: interpreted code, procedure-driven code (also re-
ferred to as compiled code) and inlined code.

With interpreted code, the stub compiler translates a composite type into a set of
commands, one for each component. To convert a particular data value, these commands



are interpreted by a generic routine. The advantage of using interpretation is compact.
The disadvantage is slow execution speed. In our measurements, throughput of interpreted
routines was as low as 3.1 Mbit/s.

With procedure-driven code, the stub compiler translates each type declaration into a
procedure. This procedure contains procedure calls for converting the components of the
composite type, interspersed by control code that depends on the type constructor. Since
procedure driven code eliminates interpretation overhead, it is faster. We measured speed-
up factors between 1.6 to 5.7 when replacing interpreted code by procedure-driven code.
However, procedure-driven code can significantly increase the code size. Our measurements
show a size increase by a factor of 4 to 7 when changing from interpreted code to procedure-
driven code.

With inlined code, the stub compiler replaces the procedure calls in procedure-driven
code with the body of the procedure that is called. Inlining leads to another improvement
in execution speed, but also to a very large increase in code size. Extending the techniques
developed in this paper to also handle inlining is relatively straightforward. Inlining is
thus not further treated in this paper, and the reader is referred to (Hoschka, 1995) for the
details of a solution.

3 Related Work

The approach presented in this paper resolves the conflict between the desire to improve
the performance of presentation conversion routines and the desire to keep the code size
of these routines under control. This conflict is well document in research literature.

Performance problems due to presentation conversion routines have been reported many
times from different areas of computer science research (Huitema & Doghrie, 1989), (Clark
& Tennenhouse, 1990), (Thekkath & Levy, 1993)). Code size problems have been reported
when using stub compilers for developing practical systems, e.g. an X.500 directory service
(Sample & Neufeld, 1993) or an operating system ((Jones, 1985), (Kessler, 1994)).

As a result, stub compilers often offer compiler switches to choose between two different
code generation strategies ((Zahn et. al, 1990), (Corbin, 1990), (Huitema, 1991), (Sample,
1993), (Kessler, 1994)). The switch only decides which of the alternatives is chosen (inter-
preted, procedure-driven or inlined). Then, the same alternative is used to generate code
for all types in the interface specification. The result is either efficient but bulky code,
or compact, but inefficient code. In contrast, the stub compiler presented in this paper
provides a switch to specify the maximally allowable code size. The compiler then tries to
generate the most efficient code possible under the given size constraint.

USC (O’Malley et al., 1994) implements an optimization method based on inlining
that significantly improves presentation conversion speed for TCP/IP packets. However,
the method cannot be applied to more complex, application-oriented interface definitions
without incurring a significant code size overhead, since it is based on inlining. An opti-
mization stage that follows the principles presented in this paper can alleviate this problem,
and thus make the USC optimization method usable for other protocols than TCP/IP.

Designing an optimization stage for size/speed trade-off problems is difficult, even at
today’s advanced state of the art in compiler construction (Bacon, Graham & Sharp, 1994).
Most standard compiler optimizations either decrease the size of the code (elimination of
induction variables or of dead code) or have no significant effect on the size (register al-
location, instruction scheduling). (Pittman, 1987) presents the general idea of using a



hybrid between interpreted and procedure-driven code to solve size/speed trade-off prob-
lems. However, in contrast to the work presented in this paper, the trade-off is not done
automatically, but requires intervention by the programmer. (Scheifler, 1977) shows that
the size/speed trade-off for inlining procedure-calls is equivalent to a Knapsack problem.
We extend this result to the trade-off between interpreted and procedure-driven code.

The optimizer presented in this paper relies on execution frequency information. The
conventional approach for gathering this information is to collect execution trace data (
gprof (Graham et al., 1983), (Pettis & Hansen, 1990), (McFarling, 1991)). However, this
approach makes code optimization very time-consuming for the application programmer.
The amount of effort usually becomes prohibitive for distributed programs, since two or
more program modules must be run in parallel to collect trace data. An alternative is to
derive execution frequency information by having the compiler analyze the structure of
the source code, e.g. by heuristic branch prediction (Ball & Larus, 1993). This approach
does not require human intervention, and is thus well-suited for optimizing distributed
programs. The work presented in this paper develops heuristic branch prediction rules for
interface specifications.

Earlier results of this work ((Hoschka & Huitema, 1993), (Hoschka & Huitema, 1994))
have been applied to solve a related size/speed trade-off problem in the area of auto-
matic code generation of protocol automata in (HIPPCO (Castelluccia & Hoschka, 1995),
(Castellucia et al., 1997))). The work presented in this paper extends these results by
describing how the size/speed trade-off can be resolved by a mapping onto a Knapsack
problem. In contrast to (Castellucia et al., 1997), we do not rely on manual annotation for
deriving execution frequencies, but use an automatic approach based on heuristic branch
prediction.

4 Optimizer Design

4.1 Knapsack Model

For the following discussion, we define a generic type definition language. The language
contains a set of scalar types such as integer or real types, and the following set of type
constructors: (1) A structure defines a linear sequence of fields of usually different types.
(2) A union defines alternatives between fields of usually different type. (3) An array
defines a sequence of fields of the same type.

The generation of optimized presentation conversion routines starts from an interme-
diate representation of the interface definition. We define the syntax graph of an interface
specification as a tuple {V, E} where Vis the set of nodes in the syntax graph for which an
optimization decision is required and F is a set of arcs representing the sequence in which
the nodes occur in the interface specification.

A syntax graph contains two different classes of nodes: type definition nodes and field
nodes. Fach definition of a constructed type in the interface specification is mapped to a
type definition node in the syntax graph. A type definition node is labeled by the type
constructor of the type definition.

A field in a constructed type is mapped to a field node in the syntax graph. There are
three different kinds of field nodes, which can be distinguished by a label. A field node
can be a constructed type (embedded type constructor label), a reference to a pre-defined
scalar type (scalar reference label) or a reference to another type definition (type reference



label).

For formalizing the optimization problem, we define the following variables: S is the
total size of presentation conversion code before optimization, S,y is the total size of pre-
sentation conversion code after optimization, 7T is the total execution time of presentation
conversion code before optimization for a given workload and Typ: is the total execution
time of presentation conversion code after optimization for a given workload.

The objective of optimization is then to generate presentation conversion routines in a
way that minimizes T,,; under the constraint that S, does not exceed a given maximal
code size. We define:

e s; : Size of code template for type definition node ¢ before optimization.

® s;_opt - Size of code template for type definition node 7 after optimization. This
corresponds to the code duplication caused by the optimization.

e t; : Time for converting values of the type definition mapped onto node i before
optimization.

ti—opt : Time for converting values of the type definition mapped onto node ¢ after
optimization. This corresponds to the overhead saving achieved by the optimization.

e f; : Execution frequency of presentation conversion code for type definition mapped
onto node ¢ for a given workload.

e z; : x; = 1 if node i is optimized, 0 otherwise.

With this, we have:

S = isi (1)

Sopt = > _(TiSi—opt + (1 — xi)s;) (2)

=1

T = Y fit (3)
i=1

Topt = Y filmiti—opt + (1 — zi)t;) (4)
=1

The size/speed trade-off occurring when generating optimized presentation conversion code
can be expressed as a 0-1 Knapsack problem (Martello & Toth, 1990). For this, each type
definition node i in the syntax graph is assigned a profit p; and a weight w; as follows:

pi = [filti —ti—opt) (5)
Wi = Si—opt — Si (6)

Substituting these equations into the general definition of a Knapsack problem results in
the following optimization problem:

maximize:

> Filty — tiopt)T; (7)
j=1



subject to:
n
> (siopt = si)uj <c (8)
=1

It can be assumed that both the profit and the weight are positive numbers. A negative
profit value corresponds to an optimization that increases the execution time, which is
impossible by definition. A negative weight corresponds to an optimization that does not
increase the code size. This case occurs for example when very small functions are written
inline, since the number of instructions required for function linkage is higher than the
number of instructions in the function body.The author of a stub compiler should avoid
this by using macros definitions rather than function definitions.

For solving the 0-1 Knapsack problem, we use an approximate algorithm. The advan-
tage over exact algorithms is that it is easy to implement. Moreover, investing much effort
into making the Knapsack solution found by the algorithm accurate seems inappropriate,
given that the values for weights and profits are also only approximations (see below).

First, items are sorted by their profit /weight ratio or profit per unit weight, i.e. so that

pijw; > pafwy > -+ > pp/wy, (9)

Then, items are consecutively inserted into the Knapsack in the order of this list, until the
first item s is encountered that does not fit.

We use a heuristic for improving this solution which is to continue going through the
list items following the critical item and including each item that fits into the residual
Knapsack capacity. This algorithm is known as Greedy algorithm for finding a solution to
the Knapsack problem (Martello & Toth, 1990).

For solving the Knapsack problem, the stub compiler must have information on s;,
Si—opt; ti, ti—opt and f;. All of these values can generally only be estimated. One reason
for this is that the stub compiler generates code in an application programming language.
Therefore, the s;, S;—opt, ti, ti—opt depend on the machine code generated by the application
language compiler. Moreover, f; depends on the actual workload. Only estimates of this
workload are available at the time the presentation conversion code is generated. The
following two sections discuss how these parameters are estimated in our implementation.

4.2 Predicting Execution Frequencies

The basic hypothesis behind heuristic branch prediction is that the structure of the source
code can be used by the compiler to derive estimates on how frequently different sections
of the code will be executed. In the following, we apply this idea to an interface definition.

Let v; be the average number of occurrences of field ¢ in all values of type ¢ in a given
workload. For estimating v;, the following cases can be distinguished:

e field ¢ is part of a union type: v; = 1/n, where n is the number of fields in the union.
e field ¢ is part of a structure type:

— field 7 is not marked as optional: v; = 1.

— field ¢ is marked as optional: v; = A, 0 < XA < 1. As explained below, special
care must be taken when calculating A in the case of recursive types.



e field 7 is part of an array type:

— the length of the array is unknown: v; = p.

— the length of the array is known: v; = n, where n is the length of the array.

In the case of optional fields, special care must be taken. In many interface definition
languages, optional fields can be used to construct recursive types. For our method to
work, it must be ensured that the flow along a recursive path is smaller than 1. A flow
greater or equal to 1 would correspond to an infinite recursion, which is impossible. Thus,
an additional pass must be added to the frequency predictor that loops in the type reference
graph caused by recursive optional fields.

We define the type reference graph of an interface specification as a tuple {V’, (E',w)}.
V' corresponds to the set of all type definition nodes in the interface specification’s syntax
graph. The set of weighted arcs ((E',w) is computed by locating all type reference nodes
in the syntax graph, and adding an arc from the type definition node containing the type
reference node to the type definition node that is referenced. The weight of this arc is
equal to the value of v; of the type reference node at which the arc originates.

The type reference graph is a weighted graph that can be interpreted as a Markov
model for the behavior of the presentation conversion code. V' correspond to the states
of the Markov model. The transition probabilities between the states can be derived from
the weighted arcs (E’,w). Following an approach proposed in (Ramamoorthy, 1965), the
graph can be mapped onto a system of linear equations that represents the equations for
determining the visit counts of the nodes. The frequency of each type definition node can
be computed by solving this LEQ.

4.3 Predicting Code Size and Execution Speed

Determining the exact value of s;, si_ops, ti and t;_op: is cumbersome, since it involves
counting assembly code instructions. Instead of estimating these values directly, we there-
fore use a predictor for estimating the size increase sa = (s; — si—opt) and the decrease in
execution time ta = (t;_opt — ti)-

We assume that the code size increases as a linear function of the number of nodes
for which procedure-driven code is generated. furthermore, we assume that execution
time decreases as a linear function of the number of interpreter calls that are saved when
procedure-driven code is generated. Under these assumptions, we derive the following
predictors for the three type constructors of the generic type definition language:

e structure type

— saA = 1+ n, where n is the number of fields in the structure

— ta = 1+ n, where n is the number of fields in the structure
e union type

— sa = 14 n, where n is the number of fields in the structure

— ta = 2. In a union type, the interpreter is called once for handling the type
definition node, and once for handling the union field.

e array type



Type constructor | Code size increase | Execution time savings
structure 1+n 1+n
union 1+n 2
array 2 1+ p

Table 1: Predictors for effect of procedure-driven code on code size and execution time

— sa = 2. Generating procedure-driven code for an array means concerns two
nodes, the type definition node for the array, and the field node.

— ta = 14 u. As previously defined, u is the number of fields in the array.

Table 1 summarizes these results in compact form.

5 Performance Evaluation

5.1 Baseline Performance

In order to determine the practical impact of the different code generation alternatives
on execution time, we measured the execution time for a number of benchmarks written
in ASN.1. Measurements were done on a Sun Sparc 10, Model 40, using gcc version
2.6.0, static linking and optimization level 2 (O2). The presentation conversion code was
generated by the ASN.1 compiler Mavros (Huitema, 1991).

We used one benchmark for each of the four type constructors available in the interface
definition language ASN.1 (Steedman, 1990). The Sequence type corresponds to a structure
type in C. The Set type is a special case of a structure where structure fields can be
reordered before they are sent out on the net. The Choice type corresponds to a C union
type. The Sequence Of type is equivalent to an array in C. In all experiments, the type
definition contained ten integer values.

Table 2 gives the throughput measured in these experiments for interpreted and
procedure-driven presentation conversion code. For each experiment, we report three val-
ues: the throughput of interpreted code, the throughput of procedure-driven code and the
factor by which interpreted code is slower than procedure-driven code. The latter serves
to eliminate system-dependencies inherent in the absolute values.

From these numbers we see that the speed difference between interpreted and procedure-
driven presentation conversion code is significant. Compiled code is consistently faster than
interpreted code by a factor of 1.6 to 5.7. Some of the numbers measured for interpreted
code are not sufficient to saturate an Ethernet (10 Mbit/s), and none of the alternatives
can saturate network connections with higher throughputs such as FDDI (100 Mbit/s) or
the ATM configuration commonly used with workstations (155 Mbit/s). Another obser-
vation is that unmarshalling is consistently slower than marshalling. This is due to the
requirement for error-checking in unmarshalling code.

We conclude that from a performance point of view the use of procedure-driven pre-
sentation conversion code is preferable to the use of interpreted code. The choice of the
implementation technique for presentation conversion code can decide whether the in-
stallation of expensive high-speed network was worthwhile for speeding up a particular



Marshalling Unmarshalling
Interpreted | Compiled | Factor | Interpreted | Compiled | Factor
Sequence 15 Mbit/s | 60 Mbit/s 4 11 Mbit/s | 33 Mbit/s 3

Set 15 Mbit/s | 60 Mbit/s 4 7.5 Mbit/s | 26 Mbit/s | 3.5
Choice 10 Mbit/s | 24 Mbit/s | 2.4 3.1 Mbit/s | 18 Mbit/s | 5.7
Sequence Of | 18 Mbit/s | 52 Mbit/s | 2.8 7 Mbit/s | 11 Mbit/s | 1.6

Table 2: Throughput of interpreted and procedure-driven presentation conversion code

Interpreted Compiled
X.400 9 KByte 37 KByte
739.50 17 KByte 51 KByte
FTAM 18 KByte 103 KByte
X.500 18 KByte 137 KByte
Total | 62+8 = 70 KByte | 328 KByte

Table 3: Size of interpreted and procedure-driven presentation conversion code

implementation. Installing an ATM network is of little use if the presentation conversion
code of an application executes at Ethernet throughput.

However, making presentation conversion code faster has the drawback of increasing
its code size. Table 3 shows the difference in code size between interpreted and procedure-
driven presentation conversion code when generating presentation conversion code for four
different applications whose interfaces are specified in ASN.1. The numbers include both
the marshalling and the unmarshalling routines. The numbers in the "interpreter" column
give the object size of the interpreter commands generated. The interpreter itself takes up
an additional 8 KByte. X.400 is the e-mail protocol defined in the ISO-OSI protocol stack,
739.50 is an information retrieval protocol, FTAM is the ISO-OSI protocol for file transfer,
access and management, and X.500 is the ISO-OSI protocol defined for access to a directory
service. The same configuration and compilers as in the throughput measurements were
used.

As can be seen from the numbers in Table 3, the size of procedure-driven presentation
conversion code is significantly larger than the size of interpreted code. This becomes even
clearer when comparing the aggregate code sizes. Aggregate code size is important, since
network applications are usually run in the background. If these network applications take
up too much memory space, it may impossible to run interactive applications such as a
word processor.

5.2 Frequency Prediction

In order to evaluate the accuracy of the frequency prediction heuristics, we manually
estimated the values of the arc-weights v; for the ASN.1 specification of an e-mail protocol
(X.400 P1) (Hoschka, 1995). We compare these manual frequency estimates with the
performance of three different prediction heuristics:



o Type reference heuristic: Using this heuristic, the frequency of type T is predicted by
the number of times T is referenced by other types. For this purpose, the optional
fields are assumed to be always present, and the length of array values is set to 1,
ie. A=1and p=1.

o Optional heuristic: This heuristic refines the type reference heuristic by taking into
account that types referenced by optional fields will occur less frequently than types
referenced by non-optional fields. Using this heuristic, the field coefficient for optional
type references is set to a value lower than one. In our experiment, we use the value
0.5, i.e. A =0.5. All array values are assumed to have a length of 1, i.e. u = 1.

o Array heuristic: This heuristic assumes that the array fields dominate the distribution
of fields. Therefore, the length of arrays is set to a value higher than one. In our
experiment, we use the value two, i.e. A =1 and u = 2.

Figure 1 compares the results of the manual frequency prediction with each of the
prediction heuristics for the X.400 benchmark. We first analyze the global quality of
the heuristic predictions when compared to the manual prediction. Looking at the most
frequently used types to the left of the graphs, we see that in all heuristics the top two
most frequently used types are predicted with excellent accuracy.

The largest error is introduced by the array heuristic. With this heuristic, a type that
is rarely used in practice is put into the top 20% of the most frequently used types.

This shows that at least for X.400 P1 the assumption that many types will be transmit-
ted as fields of an array does not hold. The definition of an array type does not necessarily
mean that an array will actually be transmitted. Array types are used rather to indicate
that the arity of a field can be bigger than one, even when it is equal to one in most
practical cases. Given that the array construct is the equivalent to a loop in an interface
definition, this is an important important observation. It contradicts the hypothesis used
for writing optimizers in general-purpose compilers that a program spends most of its time
in loops, and that therefore loop optimizations are more important than others.

The excellent prediction results for type frequencies in X.400 P1 are due to the fact
that electronic mail messages contain a "central" data type, namely the e-mail address.
Addresses are contained in many places of the message: in the sender field, in the recipient
field and in the array tracing the message’s route through the e-mail transmission system.
Consequently, the types making up the address fields are referenced by many other types
in the ASN.1 specification. Many distributed applications contain such central data types.
We repeated the experiment with two other ASN.1 specification, the X.500 directory service
and the Z39.50 information retrieval protocol, and found that the "central" data structure
(directory name and record) always ended up in the top 20% of the most frequent types.

5.3 Size/Speed Trade-Off

In a final round of experiments, we validated the quality of the code produced by the
stub compiler after an optimization stage was added. We used the ASN.1 specifications
for X.400 P1 and Z39.50 as benchmarks. For these benchmarks, we manually estimated
the values of the arc-weights v; (Hoschka, 1995). The parameters used for the heuristic
frequency prediction were set as follows: A = 0.5, 4 = 1. We then varied the compiler
parameter Sa controlling the code size increase due to procedure-driven code. S is defined
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Figure 2: Locality in X.400-P1 (left) and Z39.50 (right) benchmarks

as follows: SA = 100 * Sop/Smaz, Where Spqq is size of the code when full optimization is
used (z; =1 for all 7).

SaA was to 25%, 50%, 75% and 100%. Figure 2 shows the results of these experiments.
On the x-axis, we give the code size measured for each value of Sa. On the y-axis, we give
the number of calls to the interpreter that are eliminated by generating procedure-driven
code.

Setting Sa to 25% saves 68% of the interpreter calls for X.400 and 55% of the interpreter
calls for 7Z39.50. Setting Sa to 50% saves 94% of the calls in X.400 and 87% of the calls
in Z39.50. Thus, we find that due to the optimizer we generate presentation conversion
code that is nearly as fast as fully optimized code, but requires only a small fraction of the
maximal code size.

11



6 Conclusions

The results presented in this paper support the following three key insights:

o Marshalling code exhibits locality. For many applications, a large fraction of the
speedup achieved by fully optimizing the presentation conversion code can be achieved
by optimizing only a subset of the types in the interface specification. The reason for
this is that some of the types defined in an interface specification are used far more
frequently than others.

o Locality can be detected by static analysis. The number of times that a particular type
in an interface specification will be used on run-time can be determined by mapping
the type reference graph of the interface specification onto a Markov Model. Used in
conjunction with a set of simple heuristics, the solution of these equations gives the
frequency of each type in the interface with very good accuracy.

o The size-speed trade-off can be solved using a Knapsack optimization model. The
optimization problem to be solved is to select the subset of types of an interface
specification that should be optimized given a constraint on the maximal size of
the presentation conversion code. This can be modeled as a well-known optimiza-
tion problem (Knapsack problem), and thus solved with standard optimization algo-
rithms.

In summary, the work in this paper has shown that it is possible to automate the size/speed
trade-off for presentation conversion code, and has proposed and evaluated a particular
optimization method. An experimental evaluation of this method on a set of benchmarks
showed that by investing 25% of the code size required by fully optimized code, 55% to
68% of the interpreter calls could be eliminated. Increasing the code size investment to
50% of the maximal code size resulted in saving 87% to 94% of all interpreter calls.

The approach presented in this paper is not limited to the particular interface definition
language used in the experiments (ASN.1). Since we start from a general model, it is
straightforward to apply the same optimization approach in stub compilers for systems
like CORBA, DCE or Java-RMI.

A potential limitation is the heuristic branch prediction approach. It is works well if the
type reference graph of an application contains many references to a number of “central”
data types. This is very likely in complex end user-oriented distributed applications such as
databases or EDI, and these are the applications where the size of presentation conversion
routines becomes problematic. As a fallback, Mavros offers the possibility to manually add
frequency values to type references.

The results can be further improved by refining the method used for estimating the
profit and cost of an optimization. For instance, the measurements presented in this paper
show that the performance of marshalling and unmarshalling operations is not symmet-
ric. One amelioration could be thus to introduce one optimization variable z; per (type,
operation) pair, instead of using only an optimization variable per type.
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