The Object Model 3

3.1 Overview

The object model provides an organized presentation of object concepts and
terminology. It defines a partial model for computation that embodielsethe
characteristics of objects as realized by the submittelthtdogies. The OM@bject
model isabstractin that it is not directly realized by amarticular technology. The
model described here iscancreteobject model. A concrete object model may differ
from the abstract object model in several ways:

* It may elaboratethe abstract object model by making it more specific, for
example, by defining théorm of request parameters or tamguage used to
specify types

* It maypopulatethe model by introducing specific instances of entities defined by
the model, for example, specific objects, specific operations, or specific types

* It mayrestrict the model by eliminating entities or placing additioredtrictons
on their use

An object system is a collection of objects that isolates the requestors of services
(clients) from the providers of services by a well-defined encapsulating interface. In
particular, clients are isolated from the implementations of services as data
representations and executable code.

The object model first describes concepts that are meaningful to clients, including such
concepts as object creation and identity, requests and operations, types and signatures.
It then describes conceptslated to object implementations, includisgch concepts

as methods, execution enginasd activaton.

The object model is most speciimd prescriptive in defining concepts meaningful to
clients. The discussion of object implementation is more suggestive, with the intent of
allowing maximal freedom fodifferent objecttechnologies to provide different ways

of implementing objects.

A Discussion of the Object Management Architecture 3-1

There are some other characteristics of object systems that are outside the scope of the
object model. Some of these concepts are aspects of application architecture, some are
associated with specific domainswich object technology is applied. Such concepts

are more properly dealt with in an architectural reference model. Examples of excluded
concepts are compound objects, links, copying of objects, change management, and
transactions. Also outside theoge of the object model is the model of gohtaind
execution.

This object model is an example of a classical object model, where a client sends a
message to an object. Conceptually, the objeetprets the message to decide what
service to perform. In the classical model, a message identifies an object and zero or
more actual parameters. As in most classical object models, a diskirdfirst

parameter is required, which identifies the operation to be performed; the interpretation
of the message by the object involves selecting a method based on the specified
operation. Operationally, of course, method selectimnd be performed either by the
object or the ORB.

3.2 Object Semantics

An object system provides services to clientsli&nt of a service is any eityt
capable of requesting the service.

This section defines the concepts associated with object semantics, that is, the concepts
relevant to clients.

3.2.1 Objects

An object system includes entities known as objectsoBjectis an identifiable,
encapsulateéntity that provides one or more services tteat be requested by a
client.

3.2.2 Requests

Clients request services by issuing requesteeqiiestis an event, i.e. something that
occurs at a particular time. The information associated with a request consists of an
operation, a target object, zero or more (actual) paramatedsan optional request
context.

A request formis a description or pattern that can be evaluated or performed multiple
times to cause the issuing of requests. As described in the OMG IDL Syndax
Semantics chapter, request forms are defined by particular language bindings. An
alternative request form consists of calls to the dynamic invocation interface to create
an invacation structuee, add arguments to the invocation structure, and to issue the
invocation. Avalueis anything that may belagitimate (actual) parameter in a

request. A value may identify an object, for the purpose of performing the request. A
value that identifies an objectéslled anobject nameMore particularly, a value is an
instance of an OMG IDL data type.

A Discussion of the Object Management Architecture

An objectreferences an object name that reliabdienotes garticular object.

Specifically, an object reference will identify the same object each time the reference is
used in a request (subject to certain prageimits of s@ce and time). An object may

be denoted bynultiple, distinct object references.

A request may have parameters that are used to pass data to the target object; it may
also have a request context which provides additioviatmation about the request.

A request causes a service to be performed on behalf of the client. One outcome of
performing a service is returning to the client the results, if any, defined for the request.

If an abnormal condition occurs during the performance of a request, an exception is
returned. The eception may carry additional return parameters particular to that
exception.

The request parameters are identified by position. A parameter may be an input
parameter, an output parameter, or an input-output parameter. A request may also
return a singleesult value as well as any output parameters.

The followingsemantics hold for all requests:

®* Any aliasing of parameter values is neither guaranteed removed nor guaranteed to
be preserved

®* The order in which aliased output parameters are written is not guaranteed
® Any output parameters atmdefined if an egeption is returned

® The values that can be returned in an input-outptameter may be constrained by
the value thatvas input

Desciptions of the values and exceptions that are permitted, sed 3.

3.2.3 Object Creation and Destruction

Objects can be created and destghy-rom eclient’s point of view, there is no special
mechanism for creating or destroying an object. Objects are created and destroyed as
an outcome of issuing requests. The outcomebf@ad creation is revealed to the client

in the form of an object reference that denotesni object.

3.2.4 Types

A typeis an identifiable entity with an associated predicate (a single-argument
mathematical function with a boolean result) defined over values. A galisfiesa
type if the predicate is true for that value. A value Haisfies aype is called a
member of the type

Types are used in signaturesréstrict a possible parameter or to characterize a
possible result.

The extension of a types the set of values that satisfy the typamy particular time.

OMA Object Semantics January 1997 3-3

3-4

An object types a type whose members are objecter@ily, values that identify
objects). In othewords, an bject type is satisfied only by (values that identify)
objects.

Constraints on the data types in this model are shown in this section.

Basic types

» 16-bit and 32-bit signed and unsigned &smplement integers

32-bit and 64-bit IEEE floating point numbers
* Characters, as defined in ISO Latin-1 (8859.1)
» A boolean type taking the values TRUE and FALSE

« An 8-bit opaque detectable, guaranteesdbundergo any conversion during
transfer between stems

« Enumerated types consisting of ordered sequencigeiofifiers

A string type which consists of a variable-length array of characters; the length of
the string is available at run-time

» A type “any” which can represent any possible basic or constructed type

Constructed types:
» A record type (called struct), consisting of an ordered set of (name,value) pairs

» A discriminated union type, consisting of acliminatorfollowed by an instance
of a type appropriate to the discriminator value

» A sequence type which consists of a variable-length array of a single type; the
length of the sequence is available at run-time

» An array type which consists of a fixed-length array of a single type

* An interface type, which specifies the set of operations which an instance of that
type must support

Values in a request are restricted to values that satisfy these type constraints. The legal
values are shown in FIG. 1 on page 3-5. No particular representation for values is
defined.

A Discussion of the Object Management Architecture

FIG. 1 Legal Values

Value

Object Reference Constructed Value

Basic Value Struct Sequence Union Array

Short Long UShort ULong Float Double Char String Boolean Octet Enum Any

3.2.5 Interfaces

An interfaceis a description of a set of possible operations that a client may request of
an object. An objecsatisfiesan interface if it can be specified as the target object in
each potential request described by the interface.

An interface types a type that is satisfied by any objéliterally, any value that
identifies an object) that satisfies a particular interface.

Interfaces are specified in OMG IDL. Interface inheritance provides the asitiom
mechanism for permitting an object to suppuiriltiple inerfaces.The principal
interfaceis simply the most-specific interface that the object supports, and consists of
all operations in the transitive closure of the interface inheritance graph.

3.2.6 Operations
An operationis an identifiable entity thatenotes a service that can be requested.

An operation is identified by aoperation identifier An operation is not a value.

An operation has a signature that describes the legitimate valuesiest@@rameters
and returnedesults. In particular, aignatureconsists of:

» A specification of the parameters required in requests for that operation

« A specification of the result of the operation

A specification of the exceptions that may be raised by a request for the operation
and the types of the parameters accompanyiag

OMA Object Semantics January 1997 3-5

3-6

» A specification of additional contextual information that may affect the request

» An indication of the execution semantics the client should expect from a request
for the operation

Operations are (potentially) generic, meaning that a single operation can be uniformly
requested on objects with different implementations, possibly resulting in observably
different behavior. Genericity is achieved in this model via interface inheritance in IDL
and the total decoupling of implementatifwom interface specification.

The generaform for an operation signature is:

[oneway] <op_type sp ec> <identifier> (paraml, ..., paramL)
[raises(exceptl,....exceptN)] [co ntext(hamel, ..., nameM)]

where

» The optionaloneway keyword indicates that best-effort semantics are expected
of requests for this operation; the default semantics are exactly-once if the
operation successfully returns results or at-most-once if an exception is returned

e The<op_type_spec> is the type of the return result
» The<identifier> provides a name for the operation in the interface

» The operation parameters needed for the operation; they are flagged with the
modifiersin, out, orinout to indicate the direction in which theformation
flows (with respect to the object performing the request)

» The optionalraises expression indicates which user-defined exceptions can be
signaled taterninate a request for this operation; if such an expression is not
provided, nouser-defined exceptions will be signaled

» The optionakontext expression indicates which request context information will
be available to the object implementation; no other contextual information is
required to be transported with the request

Parameters

A parameter is characterized by its maaha its type. Thenodeindicates whether the
value should be passed from client to seru), (from server to clientout), or both
(inout). The parameter’s type constrains the possible value which may be passed in
the directions dictated by the mode.

Return Result

The returnresult is a distiguishedout parameter.

A Discussion of the Object Management Architecture

Exceptions

An exception is an indication that an operatiequest was not performed successfully.
An exception may be accompanied by additional, exception-specific information.

The additional, exception-specific information is a specialifeuin of record. As a
record, it may consist afny of the types described ir&ion 3.2.4.

Contexts

A request context provides additional, operation-specific information that may affect
the performance of a request.

Execution Semantics

Two styles of execution semantics are defined by the object model:

» At-most-once: if an operation request returns successfulyastperformed
exactly once; if it returns an exception indicationyéts performed anhost-once.

» Best-effort: a best-effort operation isequest-only operation, i.e. it cannot return
any resultsand the requester never synchronizes with timapetion, if any, of
the request.

The executiorsemantics to be expected is associated with an operation. This prevents
a clientand object implementatioinom assuming different execution semantics.

Note that a client is able to invoke an at-most-once operation in a synchronous or
deferred-synchronous manner.

3.2.7 Attributes

An interface may have attributes. An attribute is logically equivalent to declaring a pair
of accessor functions: one tetrievethe value of the attributend one to set the value
of the attribute.

An attribute may be read-only, in which case only ribtgieval accessor function is
defined.

3.3 Object Implementation

This section defines the concepts associated with object implementation, i.e. the
concepts relevant tealizing the behavior of objects in a computational system.

The mplementation of an object system carries out the computational activities needed
to effect the behavior of requested services. Tlaeseities may includeomputing

the result of the requeand updating theystem state. In the process, additional
requests may be issued.

OMA Object Implementation January 1997 3-7

The mplementation model consists wfo parts: the execution modahd the
construction modelThe executioomodel describes how services are performed. The
construction model describes how services are defined.

3.3.1 The Execution Model: Performing Services

A requested service is performed in a computational system by executing code that
operates upon some data. The data represents a component of the state of the
computational system. The code performs the requested service, which may change the
state of the system.

Code that is executed to perform a service is callegethhod A method is an
immutable description of a computation that can be interpreted by an exesngioe.
A method has an immutable attribute callechethod formathat defines the set of
execution engines that camerpret the methd. Anexecution enginé an abstract
machine (not a program) that can interpret method=segain formatscausing the
described computations to be performed. An execuditgine defines a ayamic
context for the execution of a methdithe execution of a method éalled amethod
activation

When a client issues a request, a method of the target objdteid. The input
parameters passed by the requestor are passed to the method and the output parameters
and return value (or @eption and its parameters) grassed back to the requestor.

Performing a requested service causes a method to execute that may operate upon an
object’s persistent state. If the persistent form of the method or state is not accessible
to the executiorngine, it may be necessaryfiist copy the method or state into an
execution context. This process is caliedivation the reverse process is called
deactivation

3.3.2 The ConstructioModel

A computational object system must provide mechanismeefdizing behavior of
requests. These mechanisms inclddénitions of object state, definitions of metts,
anddefinitions of how the object infrastructure is to select the methodsetutxand

to select the relevant portions of object state to be made accessible to the methods.
Mechanisms must also be provided to describe the concrete actions associated with
object creation, such as association of the new object with appropriate methods.

An object implerentatior—or implementationfor short—is a definition that provides

the informationneeded to create an object and to allow the object tipate in

providing an appropriate set of services. An implementation typically includes, among
other things, definitions of the methods that operate upon the state of an object. It also
typically includes informatiombout the intended type of the object.

A Discussion of the Object Management Architecture

	The Object Model
	3.1 Overview
	3.2 Object Semantics
	3.2.1 Objects
	3.2.2 Requests
	3.2.3 Object Creation and Destruction
	3.2.4 Types
	3.2.5 Interfaces
	3.2.6 Operations
	3.2.7 Attributes

	3.3 Object Implementation
	3.3.1 The Execution Model: Performing Services
	3.3.2 The Construction Model

