Reference Model 4

4.1 Object Management Antecture

4.1.1 Introduction

The Object Managment Achitecture GuidOMAG) describes OMG's technical
objectivesand terminology and provides the concepin&iastructureupon which
supporting specifications are based. The guide include®th® Object Modelwhich
defines common semantics for specifying the externally visible characteristics of
objects in a standard implementation-indegent way, and th@MA Reference Model.

Through a series of RFPs, OMG is populating the OMA wiétaitied specifications
for each component and interface category in the Reference Model. Adopted
specifications include the Common Obj&equest Broker Athitecture (CORBA),
CORBAservices, and CORBacilities.

The wide-scale industry adoption of OMG's OMA provides application developers and
users with the means to build interoperable software systems distributed across all
major hardvare, operating system, and programming language environments.

4.1.2 Reference Modelv@rview

The Reference Model identifies and characterizes the components, inteafates,
protocols that compose the OMA. This includes @igect Request Brok€é©ORB)
component that enables clients argjects to communicate in a distributed
environment, and four categories of object interfaces:

» Object Serviceare interfaces for general services that are likely to be used in any
program based on distributed objects

 Common Facilitiesare interfaces for horizontal end-user-orierfedlities
applicable to most application domains

A Discussion of the Object Management Architecture 4-1

» Domain Interfacesre application domain-specific interfaces
» Application Interfacesre non-standardized application-specific interfaces

These interface categories are shown in Figure 4-1.

Non-standardized Application Horizontal
app-specific interfaces domain-specific interfaces facility interfaces
pplication Inte rfaces Domain Interfaces Common Faci lities

Object Request Broker

A A A 3 A

Object Services

General service interfaces

Figure 4-1 OMA Reference Model: Interface Categories

A second part of the Reference Model, shown in Figure 4-2, focuses on intevéaee
and introduces the notion of domain-specfibjectFrameworks An Object
Framework component is a collectionafoperating objects that provide an integrated
solution within an application or teaology domain and which is intended for
customization by the developer or user. Object Frameworks are explained in more
detail below.

4-2 A Discussion of the Object Management Architecture

4.1.3 Interface versus Implementation

It is important to note that applications need only support or use OMG-compliant
interfaces to participate in the OMAhey need nothemselves be constructed using
the object-oriented paradigm. Figure 4lows, in thecase of Object Services, how
existing non-object-orientedoftware can be embddd in object§sometimes called
object wrappers) that participate in the OMA.

4.1.4 Object Request Broker

The Common Object Request Broker Architectdedines the programming interfaces

to the OMA ORB component. An ORB is the basic mechanism by which objects
transparently make requests to - and receive responses from - each other on the same
machine or across a network.client need not be aware of the meclkars used to
communicate with or activate an object, how the object is implemented, nor where the
object is locatedThe ORB thudorms thefoundation for building applications

constructed from distributed objects and for interoperabil@iwveen applications in

both homogeneous arittterggeneous environments.

The OMG Interface Definition_anguage(IDL) provides a standardized way to define

the interfaces to CORBA objecfEhe IDL definition is the contradbetween the
implementor of an object and the client. IDL is a strongly typed declarative language
that is programming language-independent.duege mappings enable objects to be
implemented and sent requests in the developer's programming language of choice in a
style that is natural to that language.

4.1.5 Object Services

Object Services are general purpose services that are either fundamental for developing
useful CORBA-based applications composedlisfributed objects, or thatrovide a
universal - application domain-iegendent - basis for application interopeligbi

Object Services are the basic building blocksdistributed object applications.
Compliant objects can be combined in many different ways and put to diffargnt
uses in applications. They can be used to construct higherfémilties and object
frameworks that can interoperate across multiple platform environments.

Adopted OMG Obiject Services are collectively called CORBAservices and include
Naming, Events, LifeCycleRersistent Object, Transactiongr€urrency Control,
Relationships, Externalization, Licensing, Query, Properties, Security, Time,
Collections, and Trader. See “4.2 Summary of ObjectviSes” for additional
information.

4.1.6 Common Facilities

Common Facities are interfaces for horizontal end-user-oriented facilities applicable
to most application domains. Adopted OMG Common Facilities are collectively called
CORBAfacilitiesand include an @enDoc-based Distributed Documenadéility.

OMA Object Management Architecture January 1997 4-3

A specification of a Common Facility or Object Service typically includes the set of
interface definitions - expressed in OMG IDL - that objects in various roles must
support in order t@rovide useor participate inthe facility or service. As with all
specifications adopted by OM@acilities and services are defined tiearms of

interfaces andheir semantics, and not a particular implementation.

4.1.7 Domain Interfaces

Domain Interfaces are domain-specific interfaces for application doreaaisas
Finance, Healthcare, Manufacturing, Telecom, Electromim@erce, and
Transportation. Figure 4-1, highlights tfact that Domain Interfaces will lgrouped
by application domain bghowing a pssible set of collections of Domain Interfaces.

4.1.8 Object Frameworks

Unlike the interfaces to individual parts of the OMA “plumbingfrastructure, Object
Frameworks are complete higher level components that provide funiioofadiirect
interest to end-users in particular application or technology domains.

Object Frameworks arepllections of cooperating objects categorized fpplication,
Domain, Facility, andService ObjectsEach object in a framework suppoftsr

example, by virtue of interface inheritance) or makes use of (via client requests) some
combination of Application, Domain, Commormgility, and Object Services

interfaces

A particular Object Framework may ieain zero or more Application Objects, zero or
more Domain Objects, zero or moradiity Objects, andero or more Service

Objects. Service Objects support Objeenices (OS) interfaces; Facility Objects
support interfaces that are some combination of Common Facilities (CF) interfaces and
potentially inherited OS interfaceBpmain Objects suppoimterfaces that are some
combination of Domain Interfaces (DI) and, potentially, inherited CF and OS
interfaces; and so on for Application Objects. Thus, higher level components and
interfaces build on and reuse lower level components and interfaces.

A Discussion of the Object Management Architecture

Application
Objects

Domain Facility
Objects Objects

0S CF,
oS

Object Request Broker

Object
=" Framework
0OS (O]
Service

Objects

Figure 4-2 OMA Reference Model: Interface Usage

The concept of an Object Framework Igstrated in Figure 4-2. Objects are shown as
an implementation “core” surrounded by a partitioned concentric shell (or “donut”)
representing the interfaces that the object supports.

The pictureshowsthe most general case where objects support all the possible
interfaces for their category. In any given specific situatilagenerative cases may
exist, such as Domain Objects that support onheiited Object Services interfaces
(e.g. the event channel pull consumer interface) and no CorfRauility interfaes, or
Domain Objects that support neither Object Services or Commoailit{F interfaces in
order to provide their functionality.

Figure 4-3shows how objects in anlect Framework can make requests to other
objects in the framework in order to provide the overall functionality of the framework.
The pictureshows three requests: oftem an Application Object to a Service Object;

OMA Object Management Architecture January 1997 4-5

4-6

onefrom a Facility Object to a Service Objeand onerom a Domain Object to an
Application Object which could, for example, be a “call back” tocarin Interface
supported by the Application Object.

Implementation provided by Implementation provided by
application developer “service” provider

CF
.
/ CF ////
(O]
request
(e.g call back)
request request
s C e . V7 Object
{/{/ {/{/ Framjework

Figure 4-3 Example request flow (runtime reuse)

4.1.9 Object Framework Spécations

A specification of an Object Framework defines such things as the structure, interfaces,
types, operation sequencing, amhlities of service of the objects that make up the
framework. This includes requirements iatplementations in order to guarantee
application portabilityand interoperability across differeplatforms. Object

Framework specifications may include new Domain Interfacepddticular

application domains.

A Discussion of the Object Management Architecture

4

The applicabn-specific part of an Application Object’s interface is, by definition, not
included in the specification of an Object Framework. This part is totally defined by
the application developer. On the other hand, standardized interfextasust be
inheritedand supported in orde¢hat the Application Object can function in the
framework mayform part of the framewark specification.

4.2 Summary dDbject Services

This section provides a brief description of each Object Service.

» The Naming Service provides tlability to bind a name to an object relative to a
naming context. A naming context is an object that contains a set of name
bindings in which each name is unigue. To resolve a namedstésmine the
object associated with the name in a given context. Ugirdhe use of a very
general model and in dealingith names in their structural form, Naming Service
implementationgan be application specific or be based aragety of naming
systems currently available on system platforms.

Graphs of naming contextan be supported indistributed, federated fashion.
The scalable design allows tdestributed,heterogeneousnplementatiorand
administration of names and name contexts.

Because name component attribute values are not assigned or interpreted by the
Naming Service, higher levels of software are not constrained in terpwdicies
about the use and managemenatifibute values.

» The Event Service provides basic capabilities that can be configured together
flexibly and powerfully.The service supports asynchronous events (decoupled
event suppliers and consumers), event “fan-in,ification “fan-out,"—and
through appropriate event channel implementations—reliable elediaery.

The Event Service design is scalable ansuisable for distrioted environments.
There is no requirement for a centralized server or digrezy on any global
service. Both push and pull event delivery models are suppaoiniztis,
consumers can either request events ondidied of events.

Suppliers can generate events withoubwing theidentities of the consumers.
Conversely, consumers can receive events without knowinglémtities of the
suppliers. There can be multiple consunerd multiple suppliers of events.

Because event suppliers, consumers, and channels are objects, advantage can be
taken of performance optimizations provided by ORB implementations for local
and remote objects. No extension is required to CORBA.

The Life Cycle Service defines operationsctipy, move, and remove graphs of
related objects, while the Relationship Service allows graphslatd objects to

be traversed without activating the related objects. Distributed implementations of
the Relationship Service can have navigation performance and availahiiitgrsi

OMA Summary of Object Services January 1997 4-7

4-8

to CORBA object references: role objects can be located with their objects and
need not depend oncantralized repository of relationship information. $\gh,
navigating a relatioship can be a local operation.

The Persistent Object Service (POS) provides a set of common interfaces to the
mechanisms used for retaining and managing the persistent state of objects. The
object ultimatelyhas the responsibility of managiitg state, butan use or

delegate to the Persistent Object Service for the actual work. A major feature of
the Persistent Object Servi¢end the OMG architecture) is its opennesghia

case, that means that there can be a variety of different ciindts

implementations of the Persistent Obj8etrvice, and they can work together.

This is particularly important for storage, where mechanisms useful for
documents may not be appropriate for employee databases, or thenmeeh
appropriate for mobile computers do not apply to mainframes.

The Transaction Service supportslitiple transaction models, including the flat
(mandatory in the specificatio@nd nested (optional) modelBhe Transaction
Service supports interoperability between diffengrtigramming models. For
instance, some users want to add object implementations to existing procedural
applications and to augment object implemeatest with code that uses the
procedural paradigm. To do so in a transaction environment requires the object
and procedural code to share a single transaction. Network interoperability is also
supported, since users nesmimmunicatiorbetweendifferent systemsincluding

the ability to rave one transaction service interoperaii \& cooperating

transaction service usirjfferent ORBs.

The Transaction Service supports both igip[(system-managed transaction)
propagation and explicit (application-managed) pgaten. With implicit
propagation, transactional behavior is nodédfied in the operation’s signature.
With explicit propagation, applications define their own mechanisms for sharing a
common transaction.

The Transaction Service can be implemented in a TP monitor environment, so it
supports the ability to execute multiple transactions concurremttyto execute
clients, servers, and transaction services in separate processes.

The Concurrency Control Service enables multiple clients to coordineite

access to shared resources. Coordinating access to a resource means that when
multiple, concurrent clients access a single resource canflicting actions by

the clients are reconciled so that the resource remains in a consfatent

Concurrent use of a resource is regulated with locks. Each lock is associated with
a single resource and a single client. Coordination is achieved by preventing
multiple clients from shultaneously possessing locks for the same resource if the
client’s activities might conflict. Ence, a client must obtain an appropriate lock
before accessing a shared resource. The Concurrency Control Service defines
several lock modes, which correspond to different categories of access. This
variety of lock modes provides flexible ctinf resolution. For example,

A Discussion of the Object Management Architecture

4

providing different modes for reading and writing lets a resource support multiple
concurrent clients on a read-only transactibine Concurrency @ntrol service
also defines Intention Locks that support locking at multiple levels of granularity.

» The Relabnship Service allowentitiesand relationships to bexplicitly
represented. Entities are represented as CORBA objects. The service defines two
new kinds of objectsrelationshipsandroles A role represents a CORBA object
in a relationship. The Relationship interface can be extended to add relationship-
specificattributes and operations. bddition, relatimships of arbitrary degree
can be definedSimilarly, the Role interface can be extended to add role-specific
attributes and operations. Type acadrdinality constraints can be expressed and
checked: exceptions are raised when the constraints are violated.

» The Externalization Service defines protocat&l conventions foexternalizing
and internalizing objects. Externalizing an object is to record the object state in a
stream of data (in memory, on a disk file, across the netvemdk,soforth) and
then be internalized into a new object in the same or a different process. The
externalized object can exist for arbitrary amounts of time, be transported by
means outside of the ORB, and be internalized in a different, disconnected ORB.
For portability,clients can request that externalized data be stored in a file whose
format is defined with the Externalization Service Specification.

The Externalization Service is related to the Relationship Service and parallels the
Life Cycle Service in defining externalization protocols $ample objects, for
arbitrarily related objects, and for facilities, directory servieasl fle services.

e The Licensing Service provides a mechanism for producers to control the use of
their intellectual propertyProducers caimplement the Licensing Service
according to their own needs, and the needs of their customers, because the
Licensing Service does not impose its own business policies or practices.

A license in the Licensing Service has three types of attributes that allow
producers to apply controls flexibly: time, value mapping, and consumer. Time
allows licenses to have start/duratamd expiration dates. Value mapping allows
producers to implement a licensing scheme according to units, allocation (through
concurrent use licensing), or consumption (for example, metering or allowance of
grace periods through “overflow” licenses). Consumer attributes allow a license to
be reserved or assigd for spedic entities; forexample, a license could be
assigned to a particular machiriéhe Licensing Service allows producers to
combine and derivérom license attributes.

The Licensing Service consists of. @wenseServiceManagénterfaceand a

Producer®ecificLicenseServicaterface: these interfaces do not impose business
policies upon implementors.

OMA Summary of Object Services January 1997 4-9

4-10

» The Query Service allows users and objects to invoke queriesli@ctions of

other objects. The queries are declarative statements with predicates and include
the ability to specify values of attributes; to invakbitrary operations; and to
invoke other Object Services.

The Query Service allows indexing; mapslto the query mechanismsed in
database systems and other systdrats gtoreand access largeollections of

objects; and is based on existing standards for query. The Query Service provides
an architecture for a nestedhd federated service that can coordimatstiple,

nested query evaluators.

The Property Service provides the ability to dynamically associate named values
with objects outside the static IDL-type system. It defines operations to create and
manipulate sets of name-value or name-value-mode tuples. The names are simple
OMG IDL strings. The values are OMG IDdnys The use of typanyis

significant in that it allows a property service implementation to deal with any
value that can be represented in the OMG-IDL-type system.

The Property Service was des@gl to be a basiouilding block, yet robust
enough to be aphble for a broad set of applications. It provides “batch”
operations to deal with sets pfoperties as a whole. The use of “batch”
operations is significant in that the systeamsl network management (SNMP,
CMIP,...) communities have proven such a ne#éndealing with “attribute”
manipulation in a distributed environment.

e The Security Service comprises:

eldentification andauthentication of principals (human users and objects
which need to operatender their own rights) to verify they are who they
claim tobe.

eAuthorization andaccessontrol - deciding whether a principal can access
an object, normally using the identity and/or other privilege attributes of the
principal (such as role, groups, security clearance) and the control attributes
of the target object (stating which principals, or principals wittich
attributes)can access it.

*Security auditing to make users accountable fbeir security related
actions. It is normally the human user who should be accountable. Auditing
mechanismshould be able to identify the user correctly, esfter a chain
of calls through many objects.

*Security of communicationbetween objects, which is often over insecure
lower layer communications. This requires trust to be establisbtdeen
the client and target, which may requénethentication of clients to targets
and authentication of targets toclients. It also requiresntegrity
protection and (optiondy) confidentiality protection of messages in
transit between objects.

A Discussion of the Object Management Architecture

4

*Non-repudiation provides irrefutable evidence attionssuch as proof of
origin of data to the recipient, or proof of receipt of data to the sender to
protect against subsequent attempts to falsely deny the receiving or sending
of the data.

*Administration of security information (for example, security policy) is also
needed.

e The Time Service enables the user to obtain current time together with an error
estimate associated with it. It ascertains the ordemictw‘events” occurred and
computes the interval between two events.

Time Service consists of two services, hence defines two service interfaces:

*Time Service manages Universal Time Objgti$Os)and Tme Interval
Objects(T10s), and is represented by thieneServicanterface.

*Timer Event Service manages Tinterent Hamller objects, and is
represented by th&@imerEventServicenterface.

» The Collections Service provides a uniform way to creat manipulate the
most common collections generically. Collections gnaups of objects which, as
a group, support some operations and exhibit specific behaviors that are related to
the nature of the collection rather than to the type of object they contain.
Examples of collections are sets, queues, stéisks,and binary trees.

For example, sets might support the following operations: insert new element,
membership test, union, intersection, cardinality, aqutast, emptiness test, etc.
One of the defining semantics of a set is that, if an object O is a member of a set
S, then inserting O into S results in the set beimghanged. This pperty would

not hold for another collection type calledag.

» The Trader Service provides a matchmaking service for objEltsservice
provider registers the availability of the service by invoking an export operation
on the trader, passing as parameters information about the offered service. The
export operation carries an object reference ¢hatbe used by a client to ioke
operations on the advertised services, a description of the type of the offered
service (i.e., the names of the operations to which it will respond, along with their
parameter and result types), information on distinguishingattributes of the
offered service.

The offer space managed by traders may be partitioned to easesaiciion and
navigation. This information is stored persistently by the Trader. Whenever a
potential client wishes to obtain a reference to a service that does a particular job,
it invokes an import operation, passing as parameters a description of the service
required. Giverthis import request, the Trader checks appropriate offers for
acceptability. To be acceptable, an offer meste a type that cdorms to that
requested and have pperties consistent with the constraints specified by an
importer.

OMA Summary of Object Services January 1997 4-11

Trading service in a single trading domain maydstributedover a number of

trader objects. Traders in different domains may be federated. Federation enables
systems in different domains to negotiate the sharing of services without losing
control of their own policieandservices. A domain can thus share information
with other domains with which it hasbn federated, and it cannot be searched

for appropriate service offers.

4-12 A Discussion of the Object Management Architecture

	Reference Model
	4.1 Object Management Architecture
	4.1.1 Introduction
	4.1.2 Reference Model Overview
	4.1.3 Interface versus Implementation
	4.1.4 Object Request Broker
	4.1.5 Object Services
	4.1.6 Common Facilities
	4.1.7 Domain Interfaces
	4.1.8 Object Frameworks
	4.1.9 Object Framework Specifications

	4.2 Summary of Object Services

