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A tlnnsaction is a unit of work that 
executes exactly once and produces 
permanent results. l‘hat is, transac- 
tions should be 

l serializable-the system should 
appear to process transactions 
serially; 

l all-or-nothing-each transaction 
should either execu1.e in its en- 
tirety or have no eff’ect; and 

l persistent-the effects of a trans- 
action should be resistant to fail- 
ures. 

A “user-oriented request” may 
require executing several transac- 
tions. For example, to process an 
order, a user may enter the order, 
request a shipment, and issue a bill, 
each of which may execute as a 
transaction. To simplify the discus- 
sion, this article assumes that a 
user-oriented request executes as 
one transaction. 

To ensure serializability, all-or- 
nothing, and persistence, the sys- 
tem requires application program- 
mers to delimit the boundary of 
each transaction, (e.g., by bracket- 
ing the corresponding application 
program with the Start-transaction 
and End-transaction operations). 
The programmer can cause the sys- 
tem to obliterate an active transac- 
tion by issuing the Abort-transac- 
tion operation. At execution time, 
each transaction either commits (it 
executes in its entirety and its re- 
sults persist) or abort5 (its effects are 
undone). 

Most of the system’s support for 
serializability, all-or-nothing, and 
persistence is within DBMSs. Each 

‘For the purposes of this article. “database 

DBMS uses concurrency control 
(usually locking) to make its execu- 
tion serializable. It uses recovery 
mechanisms (usually logging) to 
make transactions all-or-nothing 
and persistent, by undoing the ef- 
fects of transactions (hat do not fin- 
ish, and by writing all of a transac- 
tion’s updates to the log before the 
transaction commits. 

If multiple DBMSs are accessed 
by a single transaction, then addi- 
tional DBMS coordination is 
needed, often with TP monitor or 
OS support, via the two-phase com- 
mit protocol: To ensure all-or- 
nothingness despite failures, the 
first phase of two-phase commit 
requires every DBMS accessed by a 
transaction to put that transaction’s 
updates on stable storage (e.g., 
disk). After all DBMSs acknowl- 
edge phase one, each DBMS is told 
to commit the transaction. 

Concurrency control, recovery, 
and two-phase commit mechanisms 
are well-documented in the litera- 
ture, and are not discussed further 
in this article (see [a]). 

A typical TP application contains 
relatively few transaction types- 
sometimes less than ten, usually less 
than a few hundred. The resources 
required by a transaction can cover 
a broad range. Typically, it uses up 
to 30 disk accesses, up to a few mil- 
lion machine language instructions, 
and up to a few dozen network 
messages. Today’s largest TP sys- 
tems have about 100,000 terminals 
and 1000 disks, and can sustain sev- 
eral thousand transactions per sec- 
ond at peak load. Many TP systems, 
large and small, are distributed, 
consisting of multiple nodes that 
can process transactions. 

The TP Computing Style 
Most of the attention on TP tech- 
nology in the technical literature 
has focused on database aspects of 
TP. Although databases are quite 
important to TP, the database view 
of TP is incomplete, because per- 
formance and ease-of-use are also 
much affected by the OS and its in- 
tegration with communications. 

Unless a computing platform is 

specifically designed for TP (and 
few of them are), there are likely to 
be many inefficiencies and inconve- 
niences in implementing TP appli- 
cations. The reason is that TP is a 
style of computing different from 
other standard computing models: 
batch processing, time-sharing, and 
real-time. Most importantly, TP 
systems support the transaction 
abstraction, which is absent from 
the other three models. The trans- 
action is the basic unit of computa- 
tion, diff‘erent from the “process” 
or “task” abstraction supported by 
the underlying OS. TP differs in 
other ways too. 

In classical batch processing, a 
batch of sorted transaction requests 
is merged with an input master file 
to produce a new master file. TP 
differs from classical batch process- 
ing in its need to support a large 
number of terminals and active 
users, associative and random ac- 
cess to files, and fine-grain failure 
handling. 

In classical time-sharing, a user 
logs in from a terminal and exe- 
cutes a sequence of requests that is 
unpredictable from the system’s 
viewpoint. TP differs from time 
sharing in the regularity of its ap- 
plication load, the intensity of data- 
base management and communica- 
tions over computation, and its 
requirement for very high availabil- 
ity. 

In real-time systems, fast re- 
sponse time is the main goal. Due to 
its on-line response time require- 
ments, TP is essentially a database- 
intensive real-time system that sup- 
ports the transaction abstraction. 

TP Monitors 

Through the early 197Os, building 
a TP system was a roll-your-own 
activity. Computer vendors sup- 
plied hardware, an OS, and some- 
times a DBMS, although often the 
latter could not meet the response 
time requirements of TP. The ven- 
dor’s system was usually designed 
for batch, time sharing, or real- 
time. The customer had to modify 
it into a platform suitable for TP. 

Today’s customers expect far 
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more. The vendor must supply a 
f’ull complement of integrated basic 
software, including a high-perfor- 
mance DBMS, communications sys- 
tem, and TP monitor. Application 
builders expect the TP monitor to 
offer a seamless integration of the 
basic software. The TP monitor 
should manage processes, should 
provide an interprocess communi- 
cation abstraction that hides net- 
working details, and should help 
system managers efficiently and 
easily control large networks of 
processors and terminals. In this 
sense, a TP monitor is a combina- 
tion of “glue” and “veneer”-glue 
that ties together independent 
components and a veneer that pro- 
vides a single, integrated interface 
to those components. 

There are several ways to struc- 
ture a TP monitor to provide these 
functions [2]. In the following sec- 
tion, a model for these structures is 
presented. All TP monitors of 

FIGURE 1. A Model f01 TP Monitors. 

which the author is aware conform 
to this model. The functions of 
each component are discussed in 
the section entitled “-1-P Monitor 
Functions.” A major aspect of TP 
monitor functionality is the way it 
maps the model’s components into 
OS structures. This is described in 
the section entitled “Process Man- 
agement.” Queuing functions that 
provide fault-tolerant message 
passing are described in the “Queu- 
ing” section, followed by a discus- 
sion of system management and 
application recovery in the section 
entitled “System Management and 
Recovery.” The article concludes by 
showing how distributed comput- 
ing features of new 0% are 
subsuming traditional TP monitor 
functions, and how TP monitors 
are likely to evolve as a result. 

Throughout the article, it is ex- 
plained why vendors choose one 
structure over another, using pop- 
ular commercial products as exam- 

ples, such as Digital’s ACMS [Y] and 
DECintact [S], IBM’s CICS [I 1, 16, 
241 and IMS/DC [Is], and Tan- 
dem’s Pathway [21] TP monitors. 
This is not an exhaustive list; most 
commercial computer manufactur- 
ers offer a TP monitor product. 

TP Monitor Architecture 

The main function of a TP monitor 
is to coordinate the flow of transac- 
tion requests between terminals or 
other devices and application pro- 
grams that can process these re- 
quests. To accomplish this, the TP 
monitor imposes a certain structure 
on the software components of a 
TP system and offers functions to 
support the activities of each com- 
ponent. In this section, TP monitor 
structure is described. Later sec- 
tions examine the support func- 
tions more deeply. 

The vast majority of TP applica- 
tions are structured to perform the 
following steps for each terminal: 



(1) 

(2) 

(3) 
(4) 

(5) 

(6) 

(7) 

Interact with the terminal use1 
to collect the transaction’s 
input, usually through forms 
and menus. 
Translate the tr.ansaction input 
into a standard-format request 
message. 
Start the transaction. 
Examine the request’s header 
to determine its type. 
Execute the request type’s ap- 
plication program, which may 
in turn invoke DBMSs and 
other application programs. 
Commit the transaction after 
the application has finished. 
Send the transaction’s output to 
the terminal. 

All TP applications can be struc- 
tured to follow this control flow. A 
TP monitor divides an application 
into components that perform the 
above steps (see Figure I): 

l Message Manager (MM)-- 
performs steps (I), (2), and (7). 

l Request Control (.RC)-performs 
steps (3), (4), and (6). 

l Application Server W+-- 
performs step (5), in collabora- 
tion with DBMSs. 

A particular system typically has 
many instances of MMs, RCs, ASS, 
and DBMSs. These instances follow 
a communication paradigm im- 
posed by the TP monitor: MMs 
communicate with RCs, which com- 
municate with ASS, which commu- 
nicate with DBMSs and with each 
other. This communication para- 
digm is consistent with the flow of 
events in the seven-step procedure 
of the previous paragraph. By de- 
composing the application in this 
manner, the TP monitor can sim- 
plify application programming by 
mapping these components into OS 
processes and by providing com- 

munication support between com- 
ponents. It also provides system 
management operations to monitor 
and control performance, faults, 
and security. 

Despite the importance of these 
system management operations, 
this article contains relatively little 
about system management, in the 
section entitled “System Manage- 
ment and Recovery.” Instead, this 
article will focus on the components 
that directly affect the execution of 
each transaction--message man- 
agement, request control, and ap- 
plication servers. 

TP Monitor runctlonr 

Message Manager 
A Message Manager (MM) must 
interact with a variety of terminal 
types to collect input and display 
output. It performs four main 
functions: it formats requests, man- 
ages forms, validates input, displays 
output, and performs user- 
oriented security checking. Each 
function is described in the follow- 
ing paragraphs. 

Since terminal technology 
changes frequently, today’s TP sys- 
tems have a mix of terminal types, 
such as character-at-a-time termi- 
nals, screen-at-a-time (i.e., block 
mode) terminals, and personal 
computers. There are many in- 
dustry-specific variations of these 
devices, such as bar-code readers, 
automatic teller machines, and 
point-of-sale terminals. For the 
purposes of this article, “terminal” 
is used to describe all these devices. 

To isolate Request Control (RC) 
from the diverse interfaces pro- 
vided by these devices, an MM 
translates each input that asks to 
run a transaction into a standard- 
format request mesqe or, simply, a 
request. RC can count on receiving 
its input in standard format. This 
makes RC programs independent 
of terminal types: such terminal in- 
dependence provided by MMs is akin 
to the data independence provided 
by DBMSs, which insulate applica- 
tions from the variety of physical 
database formats through a stan- 
dard database format. 

The format of requests is de- 
lined by the TP monitor. It in- 
cludes a standard header, which is 
the same for all applications that 
use the TP monitor, and a request 
body, which is defined by the appli- 
cation. The header may include the 
terminal’s address, the name of the 
user at that terminal, and the name 
of the request type. This header 
format varies from one TP monitor 
to the next. The request body in- 
cludes the parameters to the trans- 
action. 

The forms mnnc~gel- is the compo- 
nent of an MM that is responsible 
for translating between terminal- 
specific format and standard re- 
quest format. Each form consists of 
a set of fields, each field has a set of 
,characteristics, such as a label, a 
data type, and a representation on 
the physical screen or window. The 
forms manager provides an editor 
for the application programmer to 
define and modify forms. The 
forms manager also provides a 
compiler, which translates a form 
definition into a translation table 
and a record definition (see 
Figure 2). The translation table is 
the compiled version of the form 
that is used by the forms manager’s 
run-time system to translate be- 
tween terminal-specific format and 
standard request format. The rec- 
ord definition is a high-level lan- 
guage declaration for the form’s 
standard request format, suitable 
for including in an application pro- 
gram that uses the form. 

Often the execution of a request 
produces output. The output may 
be displayed by the forms manager, 
or may be interpreted as a special 
device command, for example, ask 
a teller machine to dispense cash. 

An MM is also responsible for 
validating input. It can check that 
each input is of the proper type 
(e.g., no alphabetic characters in a 
numeric field) and that it is in the 
allowable range of values (e.g., by a 
table lookup). While performing 
data validation, an MM ordinarily 
may not read shared databases that 
are updated by transactions. This 
allows it to efficiently execute close 
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to the terminal and far from the 
shared database. However, it may 
use a local snapshot copy of such 
databases. 

In an MM, the application pro- 
grammer writes forms definitions 
and data validation routines. The 
TP monitor does the rest: it com- 
piles forms definitions and does 
run-time translation of each form 
into a request. 

In addition to request preproc- 
essing, an MM usually performs 
some security functions. It authen- 
ticates each user, by checking a 
password, and puts the user’s iden- 
tifier in each request the user sub- 
mits. It may also perform access 
control, by only displaying menu 
entries that correspond to request 
types that the user is authorized to 
access from the terminal he or she 
is using. (Certain requests can only 
be issued from terminals in a 
guarded area, such as a money 
transfer room.) Since the OS does 
not know about request types, and 
DBMSs typically do not know the 
terminal from which requests origi- 
nate, this function must be per- 
formed in the TP monitor. 

Request Control 

Each request constructed by an MM 
is passed to an RC for processing. 
The RC is responsible for sending 
the request to an application server 
(AS) that can process the request. 
The application programmer only 
has to provide a table that relates 
each request type to the identifier 
of the AS that can process that re- 
quest type. The RC does the rest. 

The RC looks in the request’s 
header for the symbolic request 
type, and maps it into the identifier 
of the appropriate AS. The RC 
then calls the AS that has that iden- 
tifier, passing parameters that it 
extracted from the request. Usu- 
ally, the RC is responsible for 
bracketing the transaction, by call- 
ing Start-Transaction before invok- 
ing any AS, and calling End-Trans- 
action or Abort-Transaction when 
the transaction is completed. 

RC-to-AS Mapping. The mapping 

Following is a list defining acronyms 
used throughout this article 
(excluding commercial products). 
AS: Application Server 
DBMS: Database Management System 
MM: Message Manager 
OS: Operating System 
RC: Request Control 
RPC: Remote Procedure Call 
TP: Transaction Processing 

FIGURE 2. A Forms Manager’s Complhtion Process. 

from symbolic request type to AS 
identifier should be dynamic. This 
is helpful for fault tolerance, since 
it allows the system to quickly 
remap a request type to a different 
AS identifier if the original AS fails. 
It also allows the system manager to 
redistribute request types to differ- 
ent ASS, e.g., for performance rea- 
sons. 

A table that is local to the RC 
provides an easy way to implement 
this dynamic mapping. If there is 
more than one copy of the RC, then 
each copy may have a different 
copy of this table, leading to a prob- 
lem: If different RCs control dif- 
ferent request types, then a request 
might arrive at an RC that cannot 
handle that request’s type. There 
are two standard solutions: 

l Every MM knows which RCs can 
handle each request type. Each 
MM is designed to send each re- 
quest, R, to an RC that can han- 
dle R’s request type. 

l Every KC knows which RCs can 
handle each request type. An 
MM sends R to any KC, and that 
KC forwards it, if necessary, to 
another KC that handles R’s re- 
quest type. 

Some systems support a globnl 
tzun~e service [ 121. This service maps 
names into attribute-value pairs, 
and is accessible from any node. 
One can use a global name service 
to map request types into KC iden- 
tifiers. Since the name service is 
globally accessible, either MMs or 
RCs can take responsibility for for- 
warding each request to the 
proper KC. 

RC-to-AS Binding. To call an AS, an 
RC must use the AS’s identifier to 
bind to that AS. The nature of this 
binding is determined by the OS 
and communications architecture. 
For example, if an RC and AS are 
bound in the same address space, 
then an AS identifier could be an 
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external reference that is resolved 
by the linker. Alternatively, if an 
KC and AS execute in different 
address spaces that are bound 
through a communications session, 
then the AS identifier could be a 
network address that is used to cre- 
ate a session binding. 

A global name service may be 
used to store the nlapping from 
request types into AS identifiers. 
Since the mapping is globally acces- 
sible, ASS can access it directly, 
without using KCs as intermediar- 
ies. In this case, the I‘P monitor 
neecl not distinguish ICCs from ASS. 
That is, the notion of’ KC disap- 
pears. 

However, even if’the ‘1-l’ monitor 
does not distinguish RCs from ASS, 
applications usually r,etain the dis- 
tinction. That is, some ASS map 
request types into AS identifiers 
(i.e., they perform the RC func- 
tion), and others execute a request 
type’s application program. l‘his 
structure tends to minimize the 
number of bindings, which is im- 
portant for performance in a dis- 
tributcd system. Typically, each 

MM binds to one-or at most a 
few--ASS that perfijrm the RC 

function. And each AS that does 
not perform KC functions only 
binds to those that do. In the ab- 
sence of‘ this structure, all MMs 
would have to bind to all ASS, and/ 
or all ASS would have to bind to 
each other. To minimize rebinding 

cost, these bindings are usually 
long-lived. 

After an AS completes a call, it 
may return a result to the KC. The 
KC: typically returns this result to 
the appropriate MM. ‘l‘herefore, 
the KC must be able to map each 
request back to the MM that sent it. 
For this reason, each request’s 
header ~rsually contains the identi- 
fier of the request’s originating 

MM. 

Application Seruers 

Each AS consists of one or more 
application program, which typi- 
cally access a shared database. In 
addition to linking ASS with KG, 
the TP monitor usually provides 
ASS with access to the terminal that 
supplied each request. It may also 
compensate for certain OS limita- 
tions, in the areas of process man- 
agement and communication, 
which are discussed in the next sec- 
tion. 

Process Management 
One function of a TI’ monitor is to 
define a pwcL7s mann~pwvd .rtrategy 

FIGURE 3. A Program Implementing MM, RC, and AS Functions for a Terminal. 

for creating and managing proc- 
esses fi)r MMs, KG, and ASS. By a 

process, we mean the OS abstrac- 
tion consisting of an address space. 
processor state, and set of resources 
(e.g., ;I tnsk in IBM MVS, or process 
in UNIX or VAX/VMS OSs). There 
are several popular process man- 
agement strategies, which 
depend on 

(1) 

(2) 

whether MMs, KS, and ASS 
execute together in a single 
address space or separately in 
different address spaces (i.e., 
client-server), and 
whether a process has one or 
more than one thread ofcontrol 
(i.e., sillgle-threaded vs. multi- 
threaded). 

Wc treat each strategy in turn. 

Single AUUress Space 

Single-Threading. A simple process 
management strategy is to create 
one process for each terminal. Each 
process executes an image (i.e., load 
module) consisting of’ its MM, KS, 
and ASS linked together. Thus. a 
standard intraprocess procedure 
call can be used by its MM to call an 
KC, and by an RC to call an AS. 
‘I-hat is, the process executes a se- 
quential program of the form 
shown in Figure 3. This process- 
per-terminal structure is commonly 
used in time-sharing systems, 
where each terminal is assigned a 
unique process when a user logs 
into that terminal. It is used in small 
-1-P systems too. Unfortunately, it 
does not scale well; when a system 
has a large number of terminals, it 
is inefficient to have a process for 
each terminal. The inefficiency 
arises from OS overhead: lengthy 
searches of the OS’s table of process 
descriptors; too much processor 
context switching between proc- 
esses (i.e., swapping the contents of 
registers, address translation tables, 
and processor cache memory); too 
much fixed memory per process: 
and the potential for too much pag- 
ing I/O if processes are not fixed in 
memory. The problem may be 
compounded in a distributed sys- 
tem, since a terminal may require a 

Novcmbcr 199O/Vul.33. No 1IICOMMUNICATIOWSOFTNEA~~ 



process on each system on which it 
executes transactions. 

Another problem with the proc- 

css-per-tel.min~II approach is the 
inconvenience in controlling load. 
~1‘0 reduce load, the I‘P monitor can 
deactivate terminals by stopping 
the processes connected to those 
terminals. However, it callnot easily 
lower the priority of specific re- 
quest types, since the set of all proc- 
esses would need to cooperate to 
achieve this ef’f’ect. 

Multithreading. One can avoid the 
overhead of the process-per-ternii- 
nal approach by having a single 
process manage all terminals that 
arc connected to a node. Conceptu- 
ally, each terminal has a private 
thread of’ control, but shares its 
address space with all other threads 
in that process. .l‘hese private 
threads can bc implemented by the 
application. More of’ten, they are 
implemented by the ‘1-P monitor or 
OS. Each thread in a process musk 
have a private data area for local 
variables. If implemented by the 
OS, this data area normally consists 
of’ a private stack and register save 
area; if implemented by the TP 
monitor, it consists of a local proc- 
css memory region, indexed by 
thread. ~l‘lius, the system switches 
its attention between terminals by 
switching threads. By contrast, in 
the process-per-terminal model, 
the system switches between termi- 
nals hy switching processes. Switch- 
ing threacls is more efficient than 
switching processes, because 
switching threads does not involve 
replacing address translation tables 
or processor cache memory. 

.I‘he term service call is used to 
denote a call to an OS service, in- 
cluding communications and data- 
base frmctions implemented in the 
OS. ‘l‘wo aspects of service calls re- 
quire special treatment when im- 
plemcnting threads: context 
switching ;md synchrony. 

First, if a service call cannot com- 
plete its work immediately, it will 
change the processor context, so 
that another program can execute 
until the service call completes. For 

example, it may change the pro- 
gram counter, a register pointing to 
a stack, or a pointer to an address 
translation table. In this case, the 
processor context of the calling 
program must bc restored on the 
return from the call. 

Due to the possibility of‘ context 
switching, each service call must 
identif’y the thread that issued the 
call, so the call can return to the 
proper thread. If’ threacls are im- 
plemented by the OS, then the OS 
can implicitly attach a thread iden- 
tifier. If threads are implemented 
by the ‘I‘P monitor, the OS regards 
the service call as a call f’rom a proc- 
ess, not f’rom a thread. So the 
thread identifier must be aii explicit 
paranleter to the service call. When 
the OS returns to the process af’ter 
a call, the .I‘P monitor code in the 
process passes the return to the 
proper thread. 

Second, a service call may be .sy?~ 
cl1 1’0,lO us, meaning that the caller 
stops executing until the callee fin- 
ishes and returns to the caller. A 
synchronous service call may be- 
come blocked, because it is dealing 
with an external agent that will not 
immediately perform the operation 
(for example, a call to a DBMS, 
which call block while waiting f’or a 
disk l/O, or a call to receive a mes- 
sage, which can block until the mes- 
sage arrives). A synchronous call by 
a thread may cause the thread’s 
whole process (including other 
threads) to block, even though only 
one thread is waiting fbr the result 
of’the call. There are IWO solutions 
to this problem: 
(1) Implement every service with 

an asynchronous interface, so 
the caller is not blocked. The 
caller receives the return as a 
message or software interrupt 
(e.g., a .sig& in UNIX OSs, OI 
usy~lm~wc.s .\ytm tr@ in the 
VMS OS). 

(2) Implement multithreaded proc- 
esses in the OS. ‘l‘he OS knows 
the iclenCly of the thread that 
makes each synchronous call, so 
it can block that thread without 
blocking other threads in the 
saiiie process. 

In the above, (2) is a more gen- 
eral solution than (I), because it 
solves the problem for all services. 
In (I), a special asynchronous inter- 
face for each service type is re- 
quired. 

On shared-memory multiproces- 
sors, OS-based multi~hreading has 
ainothei advantage: dif‘ftrent 
threads of’ a process c;m execute 
concurrently on dif‘f’erent proces- 
sors. If m~iltithre~iding is imple- 
mented by the .l‘P moniLor, one 
must create multiple (perhaps 
multithreaded) processes to get this 
physical concurrency. 

MultiLhreadecl processes have 
two main disadvantages: I;irsc. they 
have weaker protection tha11 single- 
threaded processes, in that all 
threads can access the processes’ 
memory. .l‘his problem can be miti- 
gated by using a stack-based m;~- 
chine architecture (where each 
thread has a private stack f’or local 
data) and by using a strongly typed 
programming Ianguage (to ensure 
that programs do not make stray 
memory references). Second, the 
system now has Iwo levels of’ sched- 
uling-processes ;untl thlYacls 

wilhin processes. .l‘his makes it dit- 
ficult to adjust scheduling paramc- 
lers to obtain the desired rclaCve 
priority of threads in different 
processes. 

On balance, the benef’its of’ 
threads outweigh the disadvantages 
in most systems. Nearly all ‘I‘P mon- 
itors that use a single address space 
also use I~~~~ltithl.eading~i~lg (e.g., 113M’s 
CICS ancl Digital’s DKintacc .I‘P 
monitors). 

Inter-Process Communieat~on 
For efficiency reasons, I‘P systems 
are often configured as distributed 
systems. For example, a I‘P system 
may have a large, geographically- 
distributed terminal network. Since 
there is generally more communi- 
cation between a terminal and its 
MM than between a11 MM and KG, 
it is ef‘ficient 10 put each MM in a 
computer near the terminals it 
serves; if’ the “terminal” is ;I work- 
station, it probably has its own MM. 
However, since R(:s and ASS are 
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shared across the entire network, 
these functions may be remote 
from the ‘MMs. 

A TP system may also be distrib- 
uted for manageabIlity reasons. For 
example, a TP system may include 
several subsystems, each dedicated 
to request types thalt are relevant to 
one division of an enterprise. A 
large bank may have separate TP 
systems to process checking ac- 
counts, credit cards, loans, and 
trust accounts. In such a system, a 
request that originates in one divi- 
sion may require running ASS in 
another division. For example, a 
request to pay a credit card bill 
from a checking account may re- 
quire running an AS on the credit 
card division’s system and an AS on 
the retail banking division’s system. 

These examples--and distrib- 
uted computing environments in 
general-pose a problem of inter- 
process communication: How does 
a program in one iaddress space 
(i.e., process) call a program in an- 
other address space (i.e., process)? 

Message Passing. One popular ap- 
proach is connection-oriented mes- 
sage passing. A process establishes a 
connection (i.e., a session or virtual 
circuit) with another process, after 
which the processes can exchange 
messages. 

This approach is used in IBM’s 
CICS TP monitor, using SNA 
LU6.2 [lo]. A process establishes a 
half-duplex connection, called a 
co?luel-s&ion, with a process on an- 
other system. Each process can 
send and receive messages over the 
conversation. To control the half- 
duplex connection, when a process 
is finished sending, it explicitly tells 
the other process that the latter 
may now send. 

Conversations are intended to be 

long-lived, spanning many transac- 
tions. Consider a set of processes 
where there is a path of conversa- 
tions connecting every pair of pro- 
cesses in the set. All processes in the 
set are implicitly executing within 
the same transaction. Each process 
independently tells when it is fin- 
ished with its part of the transac- 
tion; at this point, the process is 
blocked. When all of the processes 
say that they are done with the 
transaction, the transaction com- 
mits. Then all of the processes con- 
currently begin executing the next 
transaction. This programming 
model is sometimes catted chained 
twinsactions, because each process 
begins executing a new transaction 
when the previous transaction com- 
mits. 

The main benefit of this ap- 
proach is that it imposes little struc- 
ture on message exchanges. For 
example, programs can communi- 
cate using a request-reply para- 
digm, or they can pass tong data 
streams. The LU6.2 version of this 
approach has another benefit; it 
exploits the half-duplex communi- 
cation style to minimize the number 
of messages required to control this 
distributed execution. 

Using connection-oriented mes- 
sage passing, programs in different 
processes communicate using a dif- 
ferent mechanism (message pass- 
ing) than within a single process 
(local procedure calls). There are 
two main problems with this ap- 
proach. First, it complicates the 
application-programming inter- 
face, since the application pro- 
grammer uses different syntax and 
semantics for calling local proce- 
dures and remote processes. Sec- 
ond, it makes application programs 
dependent on the assignment of 
functions to nodes of the distrib- 
uted system. For example, if an RC 
was programmed to call an AS in 
the same address space, and the AS 
is moved to a different node, then 
the RC must be modified to call the 
remote 4s. 

Remote Procedure Call. The dispar- 
ity between intraprocess and inter- 

process communication can be hid- 
den by making interprocess 
message passing look like proce- 
dure calls to the application pro- 
grammer. This avoids modifying 
programs whenever a process is 
moved from one machine to an- 
other. It also avoids certain com- 
mon programming errors. For ex- 
ample, suppose a client sends a 
message to a server, but the client 
forgets to wait for the reply. Replies 
accumulate until an overflow con- 
dition arises. Or, suppose a client 
gives up waiting for a reply from a 
server, deciding that the server 
must be dead. If the server is 
merely very slow and ultimately 
does reply, the client may no longer 
be able to cope with that reply and 
may malfunction [ 131. 

Remote procedure cull (RPC) is a 
mechanism, implemented by the 
OS or TP monitor, that makes mes- 
sage passing look like procedure 
calls [7]. In an RPC, a client process 
issues what looks like a local (syn- 
chronous) procedure call to a seruer 
process. The RPC mechanism 
translates this synchronous call into 
an asynchronous message from the 
client to the server, and then waits 
for the reply. The client cannot for- 
get to wait for the reply, because 
the RPC mechanism is guaranteed 
to do so. The client’s RPC mecha- 
nism can give up waiting and re- 
turn with an error message to the 
client. In this case, it will throw 
away any replies that arrive late. 

When an RPC message arrives at 
a server, the server allocates a 
thread for this call, either by creat- 
ing a new thread or by reusing an 
idle one. Or, if no threads are avail- 
able (e.g., the server is single- 
threaded and is executing another 
call), the message waits. After the 
server executes the call, a return 
message is sent to the client and the 
thread either becomes idle or is 
destroyed. 

Some RPC designs hide some 
differences between the program- 
ming languages of the client and 
server. The client and server each 
have a stl~b program for the server. 
The client’s stub translates the pa- 



rameters into a standard, machine- 
independent format. The server’s 
stub translates the parameters from 
the standard format into the serv- 
er’s language-specific format. 

The request-reply nature of RPC 
communication can be inconve- 
nient if a server has a lot of data to 
send back to its client. It could send 
it back in one big package, but this 
prevents the client from working 
on the result until the whole result 
is available. It could require the cli- 
ent to ask for the data a chunk-at- 
a-time, but this requires a round- 
trip pair of request-reply messages 
from client to server for each 
chunk. Or, a special mechanism can 
be designed to stream data back to 
the client a chunk-at-a-time, with- 
out an acknowledgment message 
for each chunk [14]. 

Client-Server In TP Monltors 

An RPC system manages the prob- 
lem of’ locating and invoking re- 
mote servers. To fully exploit this 
capability, one should separate dif- 
ferent functions into different proc- 
esses. In a TP monitor, this suggests 
that 

l MMs, RCs, and ASS execute in 
different processes; 

l Each MM process (a client) calls 
KC processes (acting as servers); 
and 

l Each KC or AS process (acting as 
a client) calls AS processes (acting 
as servers). 

Some processes act as both client 
and server-an RC process is a cli- 
ent with respect to AS processes, 
and a server with respect to MM 
processes. 

The client-server model is used 
in Digital’s ACMS and Tandem’s 
Pathway TP monitors. In the 
ACMS monitor, MMs, RCs, and 
ASS execute in separate processes. 
In the Pathway monitor, there are 
two types of processes: requesters, 

which execute MM and RC func- 
tions, and servers, which are ASS. 
Both systems support RPC for 
interprocess communication. 

Performance. The main benefits of 

the client-server model are ease of 
reconfiguration and ease of pro- 
gramming. The main disadvantage 
of the client-server model is the 
expense of message-based commu- 
nication. In the single-address- 
space model, MMs, RCs, and ASS 
call one another using a local proce- 
dure call-typically costing under 
50 instructions. In the client-server 
model, these calls are implemented 

by messages-typically costing 
1000 to 10,000 instructions. Recent 
research has shown that this per- 
formance penalty can be greatly 
reduced [6, 181. Another overhead 
in the client-server model is its gen- 
erous use of processes, which leads 
to more context-switching over- 
head than a single-address-space 
model. This overhead can be mini- 
mized using multithreading. 

Multithreading. To limit the num- 
ber of processes, MMs, RCs, and/or 
ASS may be multithreaded. Multi- 
threading may be implemented by 
the TP monitor or the OS. If the 
TP monitor implements multi- 
threading, then the issue of syn- 
chronous service calls must be han- 
dled. In the single-address-space 
model, this problem is usually 
solved by intercepting synchronous 
service calls in the TP monitor. In 
the client-server model, the prob- 
lem is often solved by restricting the 
use of multithreading and synchro- 
nous calls, as follows. 

First, the TP monitor imple- 
ments multithreading for MM and 
KC processes, but does not allow 
MM and RC processes to call 
DBMSs. Thus, the TP monitor does 
not need to intercept DBMS calls in 
MMs and RCs. But it still has to in- 
tercept receive-message calls by 
MMs and RCs, to make them asyn- 
chronous. 

Second, the TP monitor requires 
AS processes to be single-threaded. 
Thus, an AS process can make a 
synchronous service call that blocks. 
The process is put to sleep, but 
since there are no other threads in 
the process, this is acceptable. This 
avoids having to implement either 
an asynchronous interface to all 

service calls or multithreading in 
the OS. 

If an AS can only be single- 
threaded, then it may become a 
bottleneck. The obvious solution is 
to have many processes running the 
same AS program. But now there is 
a communications problem. When 
an RC wants to call an AS, to which 
AS process should it direct the call? 
What if it sends the call to an AS 
that is busy with another request? 
Since the AS is single-threaded, the 
request will wait until the callee fin- 
ishes and asks for another input 
message. This is undesirable if 
other AS processes are idle at that 
time. 

To avoid this problem, some TP 
monitors support an abstraction 
called AS classes. An AS chss is a set 
of AS processes that execute the 
same AS program. A process can 
send a message to an AS class, in- 
stead of directing it to a particular 
AS process. 

The input message queue for an 
AS class is shared by all AS proc- 
esses. If a process sends a message 
to an AS class, that message will be 
processed immediately if uny AS 
process is idle. AS classes are sup- 
ported by Digital’s ACMS and Tan- 
dem’s Pathway TP monitors. 

The issues of synchronous ser- 
vice calls and AS classes arise be- 
cause multithreading is imple- 
mented by the TP monitor, not the 
OS. If the OS implements multi- 
threaded processes, then the prob- 
lems disappear. When a thread 
makes such a synchronous call, the 
calling thread can block, without 
affecting other threads in the proc- 
ess. In addition, there is no need 
for AS classes. Since a thread can 
send a message to a process, 
not.just to another thread, and since 
all threads in the process can share 
the same input message queue, an 
AS process functions just like an 
AS class. However, a multithreaded 
AS process does have weaker pro- 
tection between threads than 
AS classes, where the AS proc- 
esses have independent address 
spaces. 

A system management benefit of 
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the client-server modeI arises from 
the use of AS classes or multi- 
threaded ASS: A system manager 
can easily control the relative 
speeds of different request types. 
When AS classes are used, the 
speed of that AS is controlled by the 
number of processes in the AS 
class. Allocating more processes in 
an AS class increases the fraction of 
the processor that is dedicated to 
that class’ AS type. Multithreaded 
AS processes achieve the same ef- 
fect, whether threads are imple- 
mented by the OS or TP monitor. 

Oueulng 
Another communication problem 
arises from the fact tha.t clients and 
servers can fail independently. If 
possible, the failure of a server 
should not prevent its clients from 
making progress. TP monitors help 
clients cope with server failures by 
providing queued communications. 

It is sometimes impossible to run 
a transaction as soon as a user en- 
ters a request. For example, con- 
sider a distributed TP system in 
which an MM sends messages to a 
remote RC. If the RC’s process is 
unavailable, due to a failure or 
overload, then the hlM cannot for- 
ward the requests that it receives. 
The MM can either block until the 
RC is again available, or it can save 
the requests and forward them 
when the RC is available. 

In many applications, it is unnec- 
essary to run a transaction as soon 
as a user enters a request. For ex- 
ample, a request by a clerk to ship 
an order can be buffered for sev- 
eral hours, with negligible loss of 
service to the customer. As long as 
the request is not lost, and the 
transaction eventually runs, the 
customer is satisfied. 

In some applications, it is conve- 

nient and cost effective to buffer 
requests for long periods, and then 
process the requests as a batch. For 
example, a retail system can gather 
information about sales from elec- 
tronic cash registers during the day, 
and then run a batch that updates 
its inventory totals overnight. Batch 
processing can often be made more 
efficient than on-line TP, and is 
therefore preferable when fast re- 
sponse time is unimportant. 

In each of these cases, the re- 
quest produced by an MM may be 
held for awhile before it is sent to 
the appropriate RC. Since these 
cases arise frequently in TP, most 
TP monitors offer special facilities 
to manage queues of requests. Each 
queue has a name and is accessible 
to MMs and RCs. MMs enqueue 
requests. RCs dequeue requests 
and process transactions on their 
behalf. 

Although a user may not need 
fast response time, he or she may 
want the system to guarantee that a 
request will not be lost (e.g., the 
shipping example above). For this 
reason, it is important that there be 
an option to store requests in stable 
storage, such as a disk, before ac- 
knowledging receipt of the request 
to the user. In this case, the MM’s 
processing of a request is essentially 
a transaction, which must be com- 
mitted before acknowledging that it 
is done. 

Additional reliability is attained 
if each transaction that executes a 
request dequeues the request 
within its transaction. If the trans- 
action aborts, the dequeue opera- 
tion is undone. Thus, the request is 
automatically restarted by the next 
RC that dequeues the request. If 
the queue is in main memory only, 
then this approach guards against 
losing the request due to a transac- 
tion abort. If the queue is stable, it 
also guards the request against los- 
ing the contents of main memory 
(e.g., if the OS crashes). This style 
of operation is typical in the 1M.Y 
DC and DECintact TP monitors2 

A similar effect for guarding 
against system failures can be ob- 
tained if the TP monitor logs all 

messages from an MM to an RC (an 
option in CICS). In a stable data- 
base, the application squirrels away 
a description of each transaction it 
executes. If the system fails and 
subsequently recovers, the applica- 
tion’s recovery procedures can 
compare the message logs to infor- 
mation about committed transac- 
tions that it saved before the fail- 
ure, so it knows which requests 
were submitted before the failure 
but did not execute. 

A transaction can enqueue out- 
put that is destined for a user. But 
to guard against losing the output 
in the event of failure, the MM 
transaction that dequeues the out- 
put must not commit until it is sure 
that the user actually saw it. Again, 
a message log can substitute for a 
queue. 

Some requests require the execu- 
tion of more than one transaction. 
To avoid losing information if the 
system fails after some but not all of 
a request’s transactions have exe- 
cuted, each transaction can pass its 
results to the next transaction via a 
queue. Technical details of this 
approach appear in [5]. 

Queuing systems usually incor- 
porate scheduling features. For 
example, each request may be as- 
signed a priority by the MM that 
enqueues it. An RC can then de- 
queue requests based on that prior- 
ity, or perhaps based on other fields 
in the request. An application can 
explicitly scan the contents of re- 
quest queues, to find especially 
important requests that should be 
expedited. Or the TP monitor may 
offer a scheduler that sits between a 
queue and RCs and explicitly as- 
signs requests to RCs based on the 
scheduling criteria. 

Given that requests are buffered 
in queues, the length of queues is a 
natural measure of system backlog, 
which can be made available to the 
system manager. 

The main disadvantage of re- 

“i%otice that this approach usually requires 
two-ohase commit. since the transaction ac- 
cesses two DBMSs-the queue manager and 
ordinary DBMSs. Two-phase commit is avoid- 
able if the queue manager and DBMSs share a 
c”“,,nOn recovery log. 
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TP monitors provide the “glue” that binds the many software components of a TP 
system through their support of multithreaded processes, interprocess communication, 
queue management, and system management. 

quest queues is performance. It 
generally is more expensive for an 
MM to enqueue a request and sub- 
sequently for an RC to dequeue it, 
than simply to send the request di- 
rectly from MM to RC. 

Most TP monitors offer queuing 
services. In some TP monitors it is 
an optional feature, as in IBM’s 
CICS and Digital’s ACMS TP moni- 
tors. In other TP monitors, it is the 
main communication technique, as 
in IBM’s IMYDC and Digital’s 
DECintact TP monitors. 

System Management 

and Recover 

System managers require on-line 
tools to monitor and control all as- 
pects of a running TP system, in- 
cluding perftirmance, failures and 
security. These tools gather data 
and adjust parameters in many 
component subsystems. For ease of 
use, the monitor and control func- 
tions of subsystems should be well- 
integrated into a seamless interface. 
This is especially important for a 
large distributed system, in which 
complexity and distributed control 
make it quite difficult to manage. 
Personal computers have com- 
pounded this problem enormously, 
since each desktop machine is now 
an independent node, with a user 
who wants to treat it as an appli- 
ance. System managers also need 
off-line tools to test early versions 
of applications, and to analyze data 
produced by monitoring tools (e.g., 
for capacity planning and to ana- 
lyze failures and security breaches). 

A TP monitor provides system 
management operations to manage 
the set of MM, RC, and AS pro- 
cesses. To do this, the TP monitor 
maintains a description of the con- 
figurdor~ of processes in the system. 
‘This description includes the termi- 
nals and forms attached to each 
MM, the security characteristics of 
users, the set of request types 
routed by each KC, the set of pro- 

grams managed by each AS, etc. In 
a distributed system, it also includes 
the names of the nodes on which 
each process executes. A system 
manager can create and destroy 
processes, move them between 
nodes, and alter the set of forms 
and programs used by each proc- 
ess. 

The TP monitor can measure the 
performance of the running sys- 
tem, and offer this information to 
the system manager in application- 
oriented terms-transaction rates, 
response times, etc. The system 
manager can use this information 
to adjust the configuration, to im- 
prove response time and through- 
put. 

The TP monitor’s system man- 
agement knowledge of the MM- 
KC-AS configuration is useful for 
managing failures. If a node fails, 
the TP monitor can re-create that 
node’s MMs on another node that 
has access to the same set of termi- 
nals (e.g., one that is connected to 
the same local area network), and 
can create sessions between those 
terminals and the new MMs. It can 
also re-create the failed node’s RCs 
and ASS on another node that can 
load the appropriate programs and 
has spare capacity to run the proc- 
esses. Using its configuration de- 
scription, the TP monitor can per- 
form these actions without human 
intervention-either by using pre- 
defined backup configurations or 
by redesigning a feasible configura- 
tion at recovery time. 

The transaction abstraction and 
queued requests help make recov- 
ery transparent. When a process 
fails, transactions that were execut- 
ing in that process abort. After the 
TP monitor recovers the failed 
process (possibly on another node), 
requests that correspond to the 
aborted transactions automatically 
restart, as described in the section 
entitled “Queuing.” If this recovery 
is fast enough, the terminal user 

sees this failure merely as slow re- 
sponse time. Moreover, this recov- 
ery is accomplished almost entirely 
by the TP monitor and transaction 
mechanisms, with little or no appli- 
cation programming. 

The TP monitor can also per- 
form system management func- 
tions related to accounting, secu- 
rity, and capacity planning. 

Future 06 TP Monitors 

In this article, it was shown that TP 
monitors have evolved to solve dis- 
tributed computing problems that 
are not solved by the underlying 
OS, DBMS, and network. In partic- 
ular, they support multithreaded 
processes, message routing, queu- 
ing, and system management and 
recovery. Sometimes, they support 
the transaction abstraction (e.g., the 
CICS monitor supports two-phase 
commit). 

Many TP Monitor functions are 
starting to be found in OSs and 
DBMSs, via name servers and data 
dictionaries, remote procedure call 
systems, and OS- or DBMS- 
supported transactions (i.e., two- 
phase commit). As such OS and 
DBMS facilities become popular, 
the need for these TP monitor 
functions may diminish. In re- 
sponse to this trend, we can expect 
TP monitor vendors to offer higher 
functionality versions of these facil- 
ities, to maintain demand. 

One positive effect of putting TP 
monitor facilities into the OS is that 
all programmers will be able to pro- 
gram using transactions-not just 
those working in an environment 
controlled by a TP monitor. Just as 
today’s programmer assumes that 
the computing environment in- 
cludes processes, memory manage- 
ment, and files, tomorrow’s pro- 
grammer will assume it includes 
transaction management and 
queue management. This will sim- 
plify the development of many reli- 
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able, distributed applications-not 
just those that fit the traditional TP 
mold. 

The need for TF’ monitors is 
likely to increase in the area of sys- 
tem management. With the prolif- 
eration of powerful workstations 
and servers, the complexity of the 
computing environment is quickly 
outstripping the ability of system 
managers to control it. Since TP 
monitors are already providing 
many of these management func- 
tions today, they are well positioned 
to fill this rapidly increasing re- 
quirement. 
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