
.,L

A tlnnsaction is a unit of work that
executes exactly once and produces
permanent results. l‘hat is, transac-
tions should be

l serializable-the system should
appear to process transactions
serially;

l all-or-nothing-each transaction
should either execu1.e in its en-
tirety or have no eff’ect; and

l persistent-the effects of a trans-
action should be resistant to fail-
ures.

A “user-oriented request” may
require executing several transac-
tions. For example, to process an
order, a user may enter the order,
request a shipment, and issue a bill,
each of which may execute as a
transaction. To simplify the discus-
sion, this article assumes that a
user-oriented request executes as
one transaction.

To ensure serializability, all-or-
nothing, and persistence, the sys-
tem requires application program-
mers to delimit the boundary of
each transaction, (e.g., by bracket-
ing the corresponding application
program with the Start-transaction
and End-transaction operations).
The programmer can cause the sys-
tem to obliterate an active transac-
tion by issuing the Abort-transac-
tion operation. At execution time,
each transaction either commits (it
executes in its entirety and its re-
sults persist) or abort5 (its effects are
undone).

Most of the system’s support for
serializability, all-or-nothing, and
persistence is within DBMSs. Each

‘For the purposes of this article. “database

DBMS uses concurrency control
(usually locking) to make its execu-
tion serializable. It uses recovery
mechanisms (usually logging) to
make transactions all-or-nothing
and persistent, by undoing the ef-
fects of transactions (hat do not fin-
ish, and by writing all of a transac-
tion’s updates to the log before the
transaction commits.

If multiple DBMSs are accessed
by a single transaction, then addi-
tional DBMS coordination is
needed, often with TP monitor or
OS support, via the two-phase com-
mit protocol: To ensure all-or-
nothingness despite failures, the
first phase of two-phase commit
requires every DBMS accessed by a
transaction to put that transaction’s
updates on stable storage (e.g.,
disk). After all DBMSs acknowl-
edge phase one, each DBMS is told
to commit the transaction.

Concurrency control, recovery,
and two-phase commit mechanisms
are well-documented in the litera-
ture, and are not discussed further
in this article (see [a]).

A typical TP application contains
relatively few transaction types-
sometimes less than ten, usually less
than a few hundred. The resources
required by a transaction can cover
a broad range. Typically, it uses up
to 30 disk accesses, up to a few mil-
lion machine language instructions,
and up to a few dozen network
messages. Today’s largest TP sys-
tems have about 100,000 terminals
and 1000 disks, and can sustain sev-
eral thousand transactions per sec-
ond at peak load. Many TP systems,
large and small, are distributed,
consisting of multiple nodes that
can process transactions.

The TP Computing Style
Most of the attention on TP tech-
nology in the technical literature
has focused on database aspects of
TP. Although databases are quite
important to TP, the database view
of TP is incomplete, because per-
formance and ease-of-use are also
much affected by the OS and its in-
tegration with communications.

Unless a computing platform is

specifically designed for TP (and
few of them are), there are likely to
be many inefficiencies and inconve-
niences in implementing TP appli-
cations. The reason is that TP is a
style of computing different from
other standard computing models:
batch processing, time-sharing, and
real-time. Most importantly, TP
systems support the transaction
abstraction, which is absent from
the other three models. The trans-
action is the basic unit of computa-
tion, diff‘erent from the “process”
or “task” abstraction supported by
the underlying OS. TP differs in
other ways too.

In classical batch processing, a
batch of sorted transaction requests
is merged with an input master file
to produce a new master file. TP
differs from classical batch process-
ing in its need to support a large
number of terminals and active
users, associative and random ac-
cess to files, and fine-grain failure
handling.

In classical time-sharing, a user
logs in from a terminal and exe-
cutes a sequence of requests that is
unpredictable from the system’s
viewpoint. TP differs from time
sharing in the regularity of its ap-
plication load, the intensity of data-
base management and communica-
tions over computation, and its
requirement for very high availabil-
ity.

In real-time systems, fast re-
sponse time is the main goal. Due to
its on-line response time require-
ments, TP is essentially a database-
intensive real-time system that sup-
ports the transaction abstraction.

TP Monitors

Through the early 197Os, building
a TP system was a roll-your-own
activity. Computer vendors sup-
plied hardware, an OS, and some-
times a DBMS, although often the
latter could not meet the response
time requirements of TP. The ven-
dor’s system was usually designed
for batch, time sharing, or real-
time. The customer had to modify
it into a platform suitable for TP.

Today’s customers expect far

76

more. The vendor must supply a
f’ull complement of integrated basic
software, including a high-perfor-
mance DBMS, communications sys-
tem, and TP monitor. Application
builders expect the TP monitor to
offer a seamless integration of the
basic software. The TP monitor
should manage processes, should
provide an interprocess communi-
cation abstraction that hides net-
working details, and should help
system managers efficiently and
easily control large networks of
processors and terminals. In this
sense, a TP monitor is a combina-
tion of “glue” and “veneer”-glue
that ties together independent
components and a veneer that pro-
vides a single, integrated interface
to those components.

There are several ways to struc-
ture a TP monitor to provide these
functions [2]. In the following sec-
tion, a model for these structures is
presented. All TP monitors of

FIGURE 1. A Model f01 TP Monitors.

which the author is aware conform
to this model. The functions of
each component are discussed in
the section entitled “-1-P Monitor
Functions.” A major aspect of TP
monitor functionality is the way it
maps the model’s components into
OS structures. This is described in
the section entitled “Process Man-
agement.” Queuing functions that
provide fault-tolerant message
passing are described in the “Queu-
ing” section, followed by a discus-
sion of system management and
application recovery in the section
entitled “System Management and
Recovery.” The article concludes by
showing how distributed comput-
ing features of new 0% are
subsuming traditional TP monitor
functions, and how TP monitors
are likely to evolve as a result.

Throughout the article, it is ex-
plained why vendors choose one
structure over another, using pop-
ular commercial products as exam-

ples, such as Digital’s ACMS [Y] and
DECintact [S], IBM’s CICS [I 1, 16,
241 and IMS/DC [Is], and Tan-
dem’s Pathway [21] TP monitors.
This is not an exhaustive list; most
commercial computer manufactur-
ers offer a TP monitor product.

TP Monitor Architecture

The main function of a TP monitor
is to coordinate the flow of transac-
tion requests between terminals or
other devices and application pro-
grams that can process these re-
quests. To accomplish this, the TP
monitor imposes a certain structure
on the software components of a
TP system and offers functions to
support the activities of each com-
ponent. In this section, TP monitor
structure is described. Later sec-
tions examine the support func-
tions more deeply.

The vast majority of TP applica-
tions are structured to perform the
following steps for each terminal:

(1)

(2)

(3)
(4)

(5)

(6)

(7)

Interact with the terminal use1
to collect the transaction’s
input, usually through forms
and menus.
Translate the tr.ansaction input
into a standard-format request
message.
Start the transaction.
Examine the request’s header
to determine its type.
Execute the request type’s ap-
plication program, which may
in turn invoke DBMSs and
other application programs.
Commit the transaction after
the application has finished.
Send the transaction’s output to
the terminal.

All TP applications can be struc-
tured to follow this control flow. A
TP monitor divides an application
into components that perform the
above steps (see Figure I):

l Message Manager (MM)--
performs steps (I), (2), and (7).

l Request Control (.RC)-performs
steps (3), (4), and (6).

l Application Server W+--
performs step (5), in collabora-
tion with DBMSs.

A particular system typically has
many instances of MMs, RCs, ASS,
and DBMSs. These instances follow
a communication paradigm im-
posed by the TP monitor: MMs
communicate with RCs, which com-
municate with ASS, which commu-
nicate with DBMSs and with each
other. This communication para-
digm is consistent with the flow of
events in the seven-step procedure
of the previous paragraph. By de-
composing the application in this
manner, the TP monitor can sim-
plify application programming by
mapping these components into OS
processes and by providing com-

munication support between com-
ponents. It also provides system
management operations to monitor
and control performance, faults,
and security.

Despite the importance of these
system management operations,
this article contains relatively little
about system management, in the
section entitled “System Manage-
ment and Recovery.” Instead, this
article will focus on the components
that directly affect the execution of
each transaction--message man-
agement, request control, and ap-
plication servers.

TP Monitor runctlonr

Message Manager
A Message Manager (MM) must
interact with a variety of terminal
types to collect input and display
output. It performs four main
functions: it formats requests, man-
ages forms, validates input, displays
output, and performs user-
oriented security checking. Each
function is described in the follow-
ing paragraphs.

Since terminal technology
changes frequently, today’s TP sys-
tems have a mix of terminal types,
such as character-at-a-time termi-
nals, screen-at-a-time (i.e., block
mode) terminals, and personal
computers. There are many in-
dustry-specific variations of these
devices, such as bar-code readers,
automatic teller machines, and
point-of-sale terminals. For the
purposes of this article, “terminal”
is used to describe all these devices.

To isolate Request Control (RC)
from the diverse interfaces pro-
vided by these devices, an MM
translates each input that asks to
run a transaction into a standard-
format request mesqe or, simply, a
request. RC can count on receiving
its input in standard format. This
makes RC programs independent
of terminal types: such terminal in-
dependence provided by MMs is akin
to the data independence provided
by DBMSs, which insulate applica-
tions from the variety of physical
database formats through a stan-
dard database format.

The format of requests is de-
lined by the TP monitor. It in-
cludes a standard header, which is
the same for all applications that
use the TP monitor, and a request
body, which is defined by the appli-
cation. The header may include the
terminal’s address, the name of the
user at that terminal, and the name
of the request type. This header
format varies from one TP monitor
to the next. The request body in-
cludes the parameters to the trans-
action.

The forms mnnc~gel- is the compo-
nent of an MM that is responsible
for translating between terminal-
specific format and standard re-
quest format. Each form consists of
a set of fields, each field has a set of
,characteristics, such as a label, a
data type, and a representation on
the physical screen or window. The
forms manager provides an editor
for the application programmer to
define and modify forms. The
forms manager also provides a
compiler, which translates a form
definition into a translation table
and a record definition (see
Figure 2). The translation table is
the compiled version of the form
that is used by the forms manager’s
run-time system to translate be-
tween terminal-specific format and
standard request format. The rec-
ord definition is a high-level lan-
guage declaration for the form’s
standard request format, suitable
for including in an application pro-
gram that uses the form.

Often the execution of a request
produces output. The output may
be displayed by the forms manager,
or may be interpreted as a special
device command, for example, ask
a teller machine to dispense cash.

An MM is also responsible for
validating input. It can check that
each input is of the proper type
(e.g., no alphabetic characters in a
numeric field) and that it is in the
allowable range of values (e.g., by a
table lookup). While performing
data validation, an MM ordinarily
may not read shared databases that
are updated by transactions. This
allows it to efficiently execute close

18 November 199O/Vol.33. No II /COMMUNICATIONS OFT”E ACM

to the terminal and far from the
shared database. However, it may
use a local snapshot copy of such
databases.

In an MM, the application pro-
grammer writes forms definitions
and data validation routines. The
TP monitor does the rest: it com-
piles forms definitions and does
run-time translation of each form
into a request.

In addition to request preproc-
essing, an MM usually performs
some security functions. It authen-
ticates each user, by checking a
password, and puts the user’s iden-
tifier in each request the user sub-
mits. It may also perform access
control, by only displaying menu
entries that correspond to request
types that the user is authorized to
access from the terminal he or she
is using. (Certain requests can only
be issued from terminals in a
guarded area, such as a money
transfer room.) Since the OS does
not know about request types, and
DBMSs typically do not know the
terminal from which requests origi-
nate, this function must be per-
formed in the TP monitor.

Request Control

Each request constructed by an MM
is passed to an RC for processing.
The RC is responsible for sending
the request to an application server
(AS) that can process the request.
The application programmer only
has to provide a table that relates
each request type to the identifier
of the AS that can process that re-
quest type. The RC does the rest.

The RC looks in the request’s
header for the symbolic request
type, and maps it into the identifier
of the appropriate AS. The RC
then calls the AS that has that iden-
tifier, passing parameters that it
extracted from the request. Usu-
ally, the RC is responsible for
bracketing the transaction, by call-
ing Start-Transaction before invok-
ing any AS, and calling End-Trans-
action or Abort-Transaction when
the transaction is completed.

RC-to-AS Mapping. The mapping

Following is a list defining acronyms
used throughout this article
(excluding commercial products).
AS: Application Server
DBMS: Database Management System
MM: Message Manager
OS: Operating System
RC: Request Control
RPC: Remote Procedure Call
TP: Transaction Processing

FIGURE 2. A Forms Manager’s Complhtion Process.

from symbolic request type to AS
identifier should be dynamic. This
is helpful for fault tolerance, since
it allows the system to quickly
remap a request type to a different
AS identifier if the original AS fails.
It also allows the system manager to
redistribute request types to differ-
ent ASS, e.g., for performance rea-
sons.

A table that is local to the RC
provides an easy way to implement
this dynamic mapping. If there is
more than one copy of the RC, then
each copy may have a different
copy of this table, leading to a prob-
lem: If different RCs control dif-
ferent request types, then a request
might arrive at an RC that cannot
handle that request’s type. There
are two standard solutions:

l Every MM knows which RCs can
handle each request type. Each
MM is designed to send each re-
quest, R, to an RC that can han-
dle R’s request type.

l Every KC knows which RCs can
handle each request type. An
MM sends R to any KC, and that
KC forwards it, if necessary, to
another KC that handles R’s re-
quest type.

Some systems support a globnl
tzun~e service [121. This service maps
names into attribute-value pairs,
and is accessible from any node.
One can use a global name service
to map request types into KC iden-
tifiers. Since the name service is
globally accessible, either MMs or
RCs can take responsibility for for-
warding each request to the
proper KC.

RC-to-AS Binding. To call an AS, an
RC must use the AS’s identifier to
bind to that AS. The nature of this
binding is determined by the OS
and communications architecture.
For example, if an RC and AS are
bound in the same address space,
then an AS identifier could be an

CCMMUNlCATlOWI CFl”E ACM/November 199O/Vo1.33, No.11

external reference that is resolved
by the linker. Alternatively, if an
KC and AS execute in different
address spaces that are bound
through a communications session,
then the AS identifier could be a
network address that is used to cre-
ate a session binding.

A global name service may be
used to store the nlapping from
request types into AS identifiers.
Since the mapping is globally acces-
sible, ASS can access it directly,
without using KCs as intermediar-
ies. In this case, the I‘P monitor
neecl not distinguish ICCs from ASS.
That is, the notion of’ KC disap-
pears.

However, even if’the ‘1-l’ monitor
does not distinguish RCs from ASS,
applications usually r,etain the dis-
tinction. That is, some ASS map
request types into AS identifiers
(i.e., they perform the RC func-
tion), and others execute a request
type’s application program. l‘his
structure tends to minimize the
number of bindings, which is im-
portant for performance in a dis-
tributcd system. Typically, each

MM binds to one-or at most a
few--ASS that perfijrm the RC

function. And each AS that does
not perform KC functions only
binds to those that do. In the ab-
sence of‘ this structure, all MMs
would have to bind to all ASS, and/
or all ASS would have to bind to
each other. To minimize rebinding

cost, these bindings are usually
long-lived.

After an AS completes a call, it
may return a result to the KC. The
KC: typically returns this result to
the appropriate MM. ‘l‘herefore,
the KC must be able to map each
request back to the MM that sent it.
For this reason, each request’s
header ~rsually contains the identi-
fier of the request’s originating

MM.

Application Seruers

Each AS consists of one or more
application program, which typi-
cally access a shared database. In
addition to linking ASS with KG,
the TP monitor usually provides
ASS with access to the terminal that
supplied each request. It may also
compensate for certain OS limita-
tions, in the areas of process man-
agement and communication,
which are discussed in the next sec-
tion.

Process Management
One function of a TI’ monitor is to
define a pwcL7s mann~pwvd .rtrategy

FIGURE 3. A Program Implementing MM, RC, and AS Functions for a Terminal.

for creating and managing proc-
esses fi)r MMs, KG, and ASS. By a

process, we mean the OS abstrac-
tion consisting of an address space.
processor state, and set of resources
(e.g., ;I tnsk in IBM MVS, or process
in UNIX or VAX/VMS OSs). There
are several popular process man-
agement strategies, which
depend on

(1)

(2)

whether MMs, KS, and ASS
execute together in a single
address space or separately in
different address spaces (i.e.,
client-server), and
whether a process has one or
more than one thread ofcontrol
(i.e., sillgle-threaded vs. multi-
threaded).

Wc treat each strategy in turn.

Single AUUress Space

Single-Threading. A simple process
management strategy is to create
one process for each terminal. Each
process executes an image (i.e., load
module) consisting of’ its MM, KS,
and ASS linked together. Thus. a
standard intraprocess procedure
call can be used by its MM to call an
KC, and by an RC to call an AS.
‘I-hat is, the process executes a se-
quential program of the form
shown in Figure 3. This process-
per-terminal structure is commonly
used in time-sharing systems,
where each terminal is assigned a
unique process when a user logs
into that terminal. It is used in small
-1-P systems too. Unfortunately, it
does not scale well; when a system
has a large number of terminals, it
is inefficient to have a process for
each terminal. The inefficiency
arises from OS overhead: lengthy
searches of the OS’s table of process
descriptors; too much processor
context switching between proc-
esses (i.e., swapping the contents of
registers, address translation tables,
and processor cache memory); too
much fixed memory per process:
and the potential for too much pag-
ing I/O if processes are not fixed in
memory. The problem may be
compounded in a distributed sys-
tem, since a terminal may require a

Novcmbcr 199O/Vul.33. No 1IICOMMUNICATIOWSOFTNEA~~

process on each system on which it
executes transactions.

Another problem with the proc-

css-per-tel.min~II approach is the
inconvenience in controlling load.
~1‘0 reduce load, the I‘P monitor can
deactivate terminals by stopping
the processes connected to those
terminals. However, it callnot easily
lower the priority of specific re-
quest types, since the set of all proc-
esses would need to cooperate to
achieve this ef’f’ect.

Multithreading. One can avoid the
overhead of the process-per-ternii-
nal approach by having a single
process manage all terminals that
arc connected to a node. Conceptu-
ally, each terminal has a private
thread of’ control, but shares its
address space with all other threads
in that process. .l‘hese private
threads can bc implemented by the
application. More of’ten, they are
implemented by the ‘1-P monitor or
OS. Each thread in a process musk
have a private data area for local
variables. If implemented by the
OS, this data area normally consists
of’ a private stack and register save
area; if implemented by the TP
monitor, it consists of a local proc-
css memory region, indexed by
thread. ~l‘lius, the system switches
its attention between terminals by
switching threads. By contrast, in
the process-per-terminal model,
the system switches between termi-
nals hy switching processes. Switch-
ing threacls is more efficient than
switching processes, because
switching threads does not involve
replacing address translation tables
or processor cache memory.

.I‘he term service call is used to
denote a call to an OS service, in-
cluding communications and data-
base frmctions implemented in the
OS. ‘l‘wo aspects of service calls re-
quire special treatment when im-
plemcnting threads: context
switching ;md synchrony.

First, if a service call cannot com-
plete its work immediately, it will
change the processor context, so
that another program can execute
until the service call completes. For

example, it may change the pro-
gram counter, a register pointing to
a stack, or a pointer to an address
translation table. In this case, the
processor context of the calling
program must bc restored on the
return from the call.

Due to the possibility of‘ context
switching, each service call must
identif’y the thread that issued the
call, so the call can return to the
proper thread. If’ threacls are im-
plemented by the OS, then the OS
can implicitly attach a thread iden-
tifier. If threads are implemented
by the ‘I‘P monitor, the OS regards
the service call as a call f’rom a proc-
ess, not f’rom a thread. So the
thread identifier must be aii explicit
paranleter to the service call. When
the OS returns to the process af’ter
a call, the .I‘P monitor code in the
process passes the return to the
proper thread.

Second, a service call may be .sy?~
cl1 1’0,lO us, meaning that the caller
stops executing until the callee fin-
ishes and returns to the caller. A
synchronous service call may be-
come blocked, because it is dealing
with an external agent that will not
immediately perform the operation
(for example, a call to a DBMS,
which call block while waiting f’or a
disk l/O, or a call to receive a mes-
sage, which can block until the mes-
sage arrives). A synchronous call by
a thread may cause the thread’s
whole process (including other
threads) to block, even though only
one thread is waiting fbr the result
of’the call. There are IWO solutions
to this problem:
(1) Implement every service with

an asynchronous interface, so
the caller is not blocked. The
caller receives the return as a
message or software interrupt
(e.g., a .sig& in UNIX OSs, OI
usy~lm~wc.s .\ytm tr@ in the
VMS OS).

(2) Implement multithreaded proc-
esses in the OS. ‘l‘he OS knows
the iclenCly of the thread that
makes each synchronous call, so
it can block that thread without
blocking other threads in the
saiiie process.

In the above, (2) is a more gen-
eral solution than (I), because it
solves the problem for all services.
In (I), a special asynchronous inter-
face for each service type is re-
quired.

On shared-memory multiproces-
sors, OS-based multi~hreading has
ainothei advantage: dif‘ftrent
threads of’ a process c;m execute
concurrently on dif‘f’erent proces-
sors. If m~iltithre~iding is imple-
mented by the .l‘P moniLor, one
must create multiple (perhaps
multithreaded) processes to get this
physical concurrency.

MultiLhreadecl processes have
two main disadvantages: I;irsc. they
have weaker protection tha11 single-
threaded processes, in that all
threads can access the processes’
memory. .l‘his problem can be miti-
gated by using a stack-based m;~-
chine architecture (where each
thread has a private stack f’or local
data) and by using a strongly typed
programming Ianguage (to ensure
that programs do not make stray
memory references). Second, the
system now has Iwo levels of’ sched-
uling-processes ;untl thlYacls

wilhin processes. .l‘his makes it dit-
ficult to adjust scheduling paramc-
lers to obtain the desired rclaCve
priority of threads in different
processes.

On balance, the benef’its of’
threads outweigh the disadvantages
in most systems. Nearly all ‘I‘P mon-
itors that use a single address space
also use I~~~~ltithl.eading~i~lg (e.g., 113M’s
CICS ancl Digital’s DKintacc .I‘P
monitors).

Inter-Process Communieat~on
For efficiency reasons, I‘P systems
are often configured as distributed
systems. For example, a I‘P system
may have a large, geographically-
distributed terminal network. Since
there is generally more communi-
cation between a terminal and its
MM than between a11 MM and KG,
it is ef‘ficient 10 put each MM in a
computer near the terminals it
serves; if’ the “terminal” is ;I work-
station, it probably has its own MM.
However, since R(:s and ASS are

81

shared across the entire network,
these functions may be remote
from the ‘MMs.

A TP system may also be distrib-
uted for manageabIlity reasons. For
example, a TP system may include
several subsystems, each dedicated
to request types thalt are relevant to
one division of an enterprise. A
large bank may have separate TP
systems to process checking ac-
counts, credit cards, loans, and
trust accounts. In such a system, a
request that originates in one divi-
sion may require running ASS in
another division. For example, a
request to pay a credit card bill
from a checking account may re-
quire running an AS on the credit
card division’s system and an AS on
the retail banking division’s system.

These examples--and distrib-
uted computing environments in
general-pose a problem of inter-
process communication: How does
a program in one iaddress space
(i.e., process) call a program in an-
other address space (i.e., process)?

Message Passing. One popular ap-
proach is connection-oriented mes-
sage passing. A process establishes a
connection (i.e., a session or virtual
circuit) with another process, after
which the processes can exchange
messages.

This approach is used in IBM’s
CICS TP monitor, using SNA
LU6.2 [lo]. A process establishes a
half-duplex connection, called a
co?luel-s&ion, with a process on an-
other system. Each process can
send and receive messages over the
conversation. To control the half-
duplex connection, when a process
is finished sending, it explicitly tells
the other process that the latter
may now send.

Conversations are intended to be

long-lived, spanning many transac-
tions. Consider a set of processes
where there is a path of conversa-
tions connecting every pair of pro-
cesses in the set. All processes in the
set are implicitly executing within
the same transaction. Each process
independently tells when it is fin-
ished with its part of the transac-
tion; at this point, the process is
blocked. When all of the processes
say that they are done with the
transaction, the transaction com-
mits. Then all of the processes con-
currently begin executing the next
transaction. This programming
model is sometimes catted chained
twinsactions, because each process
begins executing a new transaction
when the previous transaction com-
mits.

The main benefit of this ap-
proach is that it imposes little struc-
ture on message exchanges. For
example, programs can communi-
cate using a request-reply para-
digm, or they can pass tong data
streams. The LU6.2 version of this
approach has another benefit; it
exploits the half-duplex communi-
cation style to minimize the number
of messages required to control this
distributed execution.

Using connection-oriented mes-
sage passing, programs in different
processes communicate using a dif-
ferent mechanism (message pass-
ing) than within a single process
(local procedure calls). There are
two main problems with this ap-
proach. First, it complicates the
application-programming inter-
face, since the application pro-
grammer uses different syntax and
semantics for calling local proce-
dures and remote processes. Sec-
ond, it makes application programs
dependent on the assignment of
functions to nodes of the distrib-
uted system. For example, if an RC
was programmed to call an AS in
the same address space, and the AS
is moved to a different node, then
the RC must be modified to call the
remote 4s.

Remote Procedure Call. The dispar-
ity between intraprocess and inter-

process communication can be hid-
den by making interprocess
message passing look like proce-
dure calls to the application pro-
grammer. This avoids modifying
programs whenever a process is
moved from one machine to an-
other. It also avoids certain com-
mon programming errors. For ex-
ample, suppose a client sends a
message to a server, but the client
forgets to wait for the reply. Replies
accumulate until an overflow con-
dition arises. Or, suppose a client
gives up waiting for a reply from a
server, deciding that the server
must be dead. If the server is
merely very slow and ultimately
does reply, the client may no longer
be able to cope with that reply and
may malfunction [131.

Remote procedure cull (RPC) is a
mechanism, implemented by the
OS or TP monitor, that makes mes-
sage passing look like procedure
calls [7]. In an RPC, a client process
issues what looks like a local (syn-
chronous) procedure call to a seruer
process. The RPC mechanism
translates this synchronous call into
an asynchronous message from the
client to the server, and then waits
for the reply. The client cannot for-
get to wait for the reply, because
the RPC mechanism is guaranteed
to do so. The client’s RPC mecha-
nism can give up waiting and re-
turn with an error message to the
client. In this case, it will throw
away any replies that arrive late.

When an RPC message arrives at
a server, the server allocates a
thread for this call, either by creat-
ing a new thread or by reusing an
idle one. Or, if no threads are avail-
able (e.g., the server is single-
threaded and is executing another
call), the message waits. After the
server executes the call, a return
message is sent to the client and the
thread either becomes idle or is
destroyed.

Some RPC designs hide some
differences between the program-
ming languages of the client and
server. The client and server each
have a stl~b program for the server.
The client’s stub translates the pa-

rameters into a standard, machine-
independent format. The server’s
stub translates the parameters from
the standard format into the serv-
er’s language-specific format.

The request-reply nature of RPC
communication can be inconve-
nient if a server has a lot of data to
send back to its client. It could send
it back in one big package, but this
prevents the client from working
on the result until the whole result
is available. It could require the cli-
ent to ask for the data a chunk-at-
a-time, but this requires a round-
trip pair of request-reply messages
from client to server for each
chunk. Or, a special mechanism can
be designed to stream data back to
the client a chunk-at-a-time, with-
out an acknowledgment message
for each chunk [14].

Client-Server In TP Monltors

An RPC system manages the prob-
lem of’ locating and invoking re-
mote servers. To fully exploit this
capability, one should separate dif-
ferent functions into different proc-
esses. In a TP monitor, this suggests
that

l MMs, RCs, and ASS execute in
different processes;

l Each MM process (a client) calls
KC processes (acting as servers);
and

l Each KC or AS process (acting as
a client) calls AS processes (acting
as servers).

Some processes act as both client
and server-an RC process is a cli-
ent with respect to AS processes,
and a server with respect to MM
processes.

The client-server model is used
in Digital’s ACMS and Tandem’s
Pathway TP monitors. In the
ACMS monitor, MMs, RCs, and
ASS execute in separate processes.
In the Pathway monitor, there are
two types of processes: requesters,

which execute MM and RC func-
tions, and servers, which are ASS.
Both systems support RPC for
interprocess communication.

Performance. The main benefits of

the client-server model are ease of
reconfiguration and ease of pro-
gramming. The main disadvantage
of the client-server model is the
expense of message-based commu-
nication. In the single-address-
space model, MMs, RCs, and ASS
call one another using a local proce-
dure call-typically costing under
50 instructions. In the client-server
model, these calls are implemented

by messages-typically costing
1000 to 10,000 instructions. Recent
research has shown that this per-
formance penalty can be greatly
reduced [6, 181. Another overhead
in the client-server model is its gen-
erous use of processes, which leads
to more context-switching over-
head than a single-address-space
model. This overhead can be mini-
mized using multithreading.

Multithreading. To limit the num-
ber of processes, MMs, RCs, and/or
ASS may be multithreaded. Multi-
threading may be implemented by
the TP monitor or the OS. If the
TP monitor implements multi-
threading, then the issue of syn-
chronous service calls must be han-
dled. In the single-address-space
model, this problem is usually
solved by intercepting synchronous
service calls in the TP monitor. In
the client-server model, the prob-
lem is often solved by restricting the
use of multithreading and synchro-
nous calls, as follows.

First, the TP monitor imple-
ments multithreading for MM and
KC processes, but does not allow
MM and RC processes to call
DBMSs. Thus, the TP monitor does
not need to intercept DBMS calls in
MMs and RCs. But it still has to in-
tercept receive-message calls by
MMs and RCs, to make them asyn-
chronous.

Second, the TP monitor requires
AS processes to be single-threaded.
Thus, an AS process can make a
synchronous service call that blocks.
The process is put to sleep, but
since there are no other threads in
the process, this is acceptable. This
avoids having to implement either
an asynchronous interface to all

service calls or multithreading in
the OS.

If an AS can only be single-
threaded, then it may become a
bottleneck. The obvious solution is
to have many processes running the
same AS program. But now there is
a communications problem. When
an RC wants to call an AS, to which
AS process should it direct the call?
What if it sends the call to an AS
that is busy with another request?
Since the AS is single-threaded, the
request will wait until the callee fin-
ishes and asks for another input
message. This is undesirable if
other AS processes are idle at that
time.

To avoid this problem, some TP
monitors support an abstraction
called AS classes. An AS chss is a set
of AS processes that execute the
same AS program. A process can
send a message to an AS class, in-
stead of directing it to a particular
AS process.

The input message queue for an
AS class is shared by all AS proc-
esses. If a process sends a message
to an AS class, that message will be
processed immediately if uny AS
process is idle. AS classes are sup-
ported by Digital’s ACMS and Tan-
dem’s Pathway TP monitors.

The issues of synchronous ser-
vice calls and AS classes arise be-
cause multithreading is imple-
mented by the TP monitor, not the
OS. If the OS implements multi-
threaded processes, then the prob-
lems disappear. When a thread
makes such a synchronous call, the
calling thread can block, without
affecting other threads in the proc-
ess. In addition, there is no need
for AS classes. Since a thread can
send a message to a process,
not.just to another thread, and since
all threads in the process can share
the same input message queue, an
AS process functions just like an
AS class. However, a multithreaded
AS process does have weaker pro-
tection between threads than
AS classes, where the AS proc-
esses have independent address
spaces.

A system management benefit of

83

the client-server modeI arises from
the use of AS classes or multi-
threaded ASS: A system manager
can easily control the relative
speeds of different request types.
When AS classes are used, the
speed of that AS is controlled by the
number of processes in the AS
class. Allocating more processes in
an AS class increases the fraction of
the processor that is dedicated to
that class’ AS type. Multithreaded
AS processes achieve the same ef-
fect, whether threads are imple-
mented by the OS or TP monitor.

Oueulng
Another communication problem
arises from the fact tha.t clients and
servers can fail independently. If
possible, the failure of a server
should not prevent its clients from
making progress. TP monitors help
clients cope with server failures by
providing queued communications.

It is sometimes impossible to run
a transaction as soon as a user en-
ters a request. For example, con-
sider a distributed TP system in
which an MM sends messages to a
remote RC. If the RC’s process is
unavailable, due to a failure or
overload, then the hlM cannot for-
ward the requests that it receives.
The MM can either block until the
RC is again available, or it can save
the requests and forward them
when the RC is available.

In many applications, it is unnec-
essary to run a transaction as soon
as a user enters a request. For ex-
ample, a request by a clerk to ship
an order can be buffered for sev-
eral hours, with negligible loss of
service to the customer. As long as
the request is not lost, and the
transaction eventually runs, the
customer is satisfied.

In some applications, it is conve-

nient and cost effective to buffer
requests for long periods, and then
process the requests as a batch. For
example, a retail system can gather
information about sales from elec-
tronic cash registers during the day,
and then run a batch that updates
its inventory totals overnight. Batch
processing can often be made more
efficient than on-line TP, and is
therefore preferable when fast re-
sponse time is unimportant.

In each of these cases, the re-
quest produced by an MM may be
held for awhile before it is sent to
the appropriate RC. Since these
cases arise frequently in TP, most
TP monitors offer special facilities
to manage queues of requests. Each
queue has a name and is accessible
to MMs and RCs. MMs enqueue
requests. RCs dequeue requests
and process transactions on their
behalf.

Although a user may not need
fast response time, he or she may
want the system to guarantee that a
request will not be lost (e.g., the
shipping example above). For this
reason, it is important that there be
an option to store requests in stable
storage, such as a disk, before ac-
knowledging receipt of the request
to the user. In this case, the MM’s
processing of a request is essentially
a transaction, which must be com-
mitted before acknowledging that it
is done.

Additional reliability is attained
if each transaction that executes a
request dequeues the request
within its transaction. If the trans-
action aborts, the dequeue opera-
tion is undone. Thus, the request is
automatically restarted by the next
RC that dequeues the request. If
the queue is in main memory only,
then this approach guards against
losing the request due to a transac-
tion abort. If the queue is stable, it
also guards the request against los-
ing the contents of main memory
(e.g., if the OS crashes). This style
of operation is typical in the 1M.Y
DC and DECintact TP monitors2

A similar effect for guarding
against system failures can be ob-
tained if the TP monitor logs all

messages from an MM to an RC (an
option in CICS). In a stable data-
base, the application squirrels away
a description of each transaction it
executes. If the system fails and
subsequently recovers, the applica-
tion’s recovery procedures can
compare the message logs to infor-
mation about committed transac-
tions that it saved before the fail-
ure, so it knows which requests
were submitted before the failure
but did not execute.

A transaction can enqueue out-
put that is destined for a user. But
to guard against losing the output
in the event of failure, the MM
transaction that dequeues the out-
put must not commit until it is sure
that the user actually saw it. Again,
a message log can substitute for a
queue.

Some requests require the execu-
tion of more than one transaction.
To avoid losing information if the
system fails after some but not all of
a request’s transactions have exe-
cuted, each transaction can pass its
results to the next transaction via a
queue. Technical details of this
approach appear in [5].

Queuing systems usually incor-
porate scheduling features. For
example, each request may be as-
signed a priority by the MM that
enqueues it. An RC can then de-
queue requests based on that prior-
ity, or perhaps based on other fields
in the request. An application can
explicitly scan the contents of re-
quest queues, to find especially
important requests that should be
expedited. Or the TP monitor may
offer a scheduler that sits between a
queue and RCs and explicitly as-
signs requests to RCs based on the
scheduling criteria.

Given that requests are buffered
in queues, the length of queues is a
natural measure of system backlog,
which can be made available to the
system manager.

The main disadvantage of re-

“i%otice that this approach usually requires
two-ohase commit. since the transaction ac-
cesses two DBMSs-the queue manager and
ordinary DBMSs. Two-phase commit is avoid-
able if the queue manager and DBMSs share a
c”“,,nOn recovery log.

84 November 1990/V&33, No.ll/COYIUNICIT10NSOFTREdClll

TP monitors provide the “glue” that binds the many software components of a TP
system through their support of multithreaded processes, interprocess communication,
queue management, and system management.

quest queues is performance. It
generally is more expensive for an
MM to enqueue a request and sub-
sequently for an RC to dequeue it,
than simply to send the request di-
rectly from MM to RC.

Most TP monitors offer queuing
services. In some TP monitors it is
an optional feature, as in IBM’s
CICS and Digital’s ACMS TP moni-
tors. In other TP monitors, it is the
main communication technique, as
in IBM’s IMYDC and Digital’s
DECintact TP monitors.

System Management

and Recover

System managers require on-line
tools to monitor and control all as-
pects of a running TP system, in-
cluding perftirmance, failures and
security. These tools gather data
and adjust parameters in many
component subsystems. For ease of
use, the monitor and control func-
tions of subsystems should be well-
integrated into a seamless interface.
This is especially important for a
large distributed system, in which
complexity and distributed control
make it quite difficult to manage.
Personal computers have com-
pounded this problem enormously,
since each desktop machine is now
an independent node, with a user
who wants to treat it as an appli-
ance. System managers also need
off-line tools to test early versions
of applications, and to analyze data
produced by monitoring tools (e.g.,
for capacity planning and to ana-
lyze failures and security breaches).

A TP monitor provides system
management operations to manage
the set of MM, RC, and AS pro-
cesses. To do this, the TP monitor
maintains a description of the con-
figurdor~ of processes in the system.
‘This description includes the termi-
nals and forms attached to each
MM, the security characteristics of
users, the set of request types
routed by each KC, the set of pro-

grams managed by each AS, etc. In
a distributed system, it also includes
the names of the nodes on which
each process executes. A system
manager can create and destroy
processes, move them between
nodes, and alter the set of forms
and programs used by each proc-
ess.

The TP monitor can measure the
performance of the running sys-
tem, and offer this information to
the system manager in application-
oriented terms-transaction rates,
response times, etc. The system
manager can use this information
to adjust the configuration, to im-
prove response time and through-
put.

The TP monitor’s system man-
agement knowledge of the MM-
KC-AS configuration is useful for
managing failures. If a node fails,
the TP monitor can re-create that
node’s MMs on another node that
has access to the same set of termi-
nals (e.g., one that is connected to
the same local area network), and
can create sessions between those
terminals and the new MMs. It can
also re-create the failed node’s RCs
and ASS on another node that can
load the appropriate programs and
has spare capacity to run the proc-
esses. Using its configuration de-
scription, the TP monitor can per-
form these actions without human
intervention-either by using pre-
defined backup configurations or
by redesigning a feasible configura-
tion at recovery time.

The transaction abstraction and
queued requests help make recov-
ery transparent. When a process
fails, transactions that were execut-
ing in that process abort. After the
TP monitor recovers the failed
process (possibly on another node),
requests that correspond to the
aborted transactions automatically
restart, as described in the section
entitled “Queuing.” If this recovery
is fast enough, the terminal user

sees this failure merely as slow re-
sponse time. Moreover, this recov-
ery is accomplished almost entirely
by the TP monitor and transaction
mechanisms, with little or no appli-
cation programming.

The TP monitor can also per-
form system management func-
tions related to accounting, secu-
rity, and capacity planning.

Future 06 TP Monitors

In this article, it was shown that TP
monitors have evolved to solve dis-
tributed computing problems that
are not solved by the underlying
OS, DBMS, and network. In partic-
ular, they support multithreaded
processes, message routing, queu-
ing, and system management and
recovery. Sometimes, they support
the transaction abstraction (e.g., the
CICS monitor supports two-phase
commit).

Many TP Monitor functions are
starting to be found in OSs and
DBMSs, via name servers and data
dictionaries, remote procedure call
systems, and OS- or DBMS-
supported transactions (i.e., two-
phase commit). As such OS and
DBMS facilities become popular,
the need for these TP monitor
functions may diminish. In re-
sponse to this trend, we can expect
TP monitor vendors to offer higher
functionality versions of these facil-
ities, to maintain demand.

One positive effect of putting TP
monitor facilities into the OS is that
all programmers will be able to pro-
gram using transactions-not just
those working in an environment
controlled by a TP monitor. Just as
today’s programmer assumes that
the computing environment in-
cludes processes, memory manage-
ment, and files, tomorrow’s pro-
grammer will assume it includes
transaction management and
queue management. This will sim-
plify the development of many reli-

COMMUNIC*TIONSOFT”EdCM/No”ember 199O/Vol33, No.11 85

able, distributed applications-not
just those that fit the traditional TP
mold.

The need for TF’ monitors is
likely to increase in the area of sys-
tem management. With the prolif-
eration of powerful workstations
and servers, the complexity of the
computing environment is quickly
outstripping the ability of system
managers to control it. Since TP
monitors are already providing
many of these management func-
tions today, they are well positioned
to fill this rapidly increasing re-
quirement.

Acknowledgments.
This article grew from discussions
with many colleagues, I thank them
all for their help, especially, An-
drew Black, Umesh Dayal, Bill
Emberton, Jim Gray, Rivka Ladin,
Dave Lomet, Bruce hlann, Murray
Mazer, Mike Stonebraker, and Di-
ogenes Torres. 0

References
1.

2.

3.

4.

5.

6.

Acker, R.D., and P.H. Seaman.
Modeling distributed processing
across multiple ClCS/VS sites. IBM
.Spt.J. 21, 4 (1982). 471-489.
Anderson, K.J. Bucket brigade
computing. UNIX Rev 8, 3 (Aug.
19X5), 58-64.
Anon. et al. A measure of transac-
tion processing power. Datamation
31, 7 (Apr. 1985)#, 113-l 18.
Bernstein, P.A., Hadzilacos, V., and
Goodman, N. Concurrency Control
and Recovq in Database Systems.
Addison-Wesley, Reading, Mass.,
1987.
Bernstein, P.A., Hsu, M., and
Mann, B. Implementing recovera-
ble requests using queues. In Pro-
ceedings of the 19’90 ACM SIGMOD
Couference on Management of Data
(May 1990). pp. 112-122.
Bershad, B., Anderson, T.,
Lazowska, E., and Levy, H. Light-

7.

8.

weight remote procedure call. In
Proceedings of the Twelfth ACM Syw-
posium 0)~ OS Principles. (December,
1989), pp. 102-l 13.
Birrell, A.D., and Nelson, B.J. Im-
plementing remote procedure calls.
ACM Trans. Comput. Sys 2, I (Feb.
1984). 39-59.
Digital Equipment Corp. DECIntact
Transaction Processing System: Appli-
cation Programming Guide. Order
number AA-KZOJB-TE, Maynard,
Mass., 1989.

9.

10.

11.

12.

13.

Digital Equipment Corp. VAX
ACMS Guide to Transaction Processing
ProLgramming. Order number AA-
N69lE-TE, Maynard, Mass., 1989.
Duquesne, W. LlJ6.2 as a network
standard for transaction processing.
In High Performance Transuction Sys-
tems, D. Gawlick, M. Haynie,
A. Reuter Eds., Springer-Verlag,
New York, 1989, 20-37.
International Business Machines.
CICSIOSIVS Intercommunications Fa-
cilities Guide, Form SC33-0230,
White Plains, New York, 1986.
Lampson, B. Designing a global
name service. In Proceedings of the
Fifh ACM Symposium on Principles of
Distributed Computing. (Aug., 1986),
ACM, NY, pp. l-10.
Liskov, B.H., and Herlihy, M.P. Is-
sues in process and communication
structure for distributed programs.
In Proceedings of the Third Symposium
on Reliability in Distributed Software
and Database Systems (October, 1983)
IEEE Computer Society Press, pp.
123-132.

14.

15.

16.

Liskov, B.. and Shrira, L. Promises:
Linguistic support for efficient
asynchronous procedure calls in
distributed systems. ACM SIGPLAN
‘88 Conference on Programming Lan-
guage Design and Implementation
(June, 1988).
McGee, W.C. The information
management system IMS/VS, Part
V: Transaction processing facilities,
IBM Syst. J. 16, 2 (1977). 148-168.

PaciIico, A. CICSIVS Command Level
with ANS Cabal Examples. Van Nos-
trand Reinhold Co., New York,
1982.

17.

18.

Serlin. 0. Fault-tolerant systems in
commercial applications. IEEE
Cornput. 15, 8 (Aug. 1984). 19-30.
Schroeder, M. and Burrows, M.
Performance of Firefly RPC. In
Proceedings of the Twelfth ACM Sym-
posium on OS Principles, (December,
1989), pp. 83-90.

19. Siewiorek, D.P. Architecture of

20.

21.

22.

23.

24.

fault-tolerant computers. IEEE
Comput. 15, 8 (Aug. 1984), 9-18.
Siwiec, J.E. A High-Performance
DBiDC System. IBM Syst. J. 16, 2
(1977). 169-195.
Tandem Computers Inc. An Infro-
duction to Pathrqy, Part: T82339,
1985, Cupertino, CA.
Wallace, J.J., and Barnes, W.W.
Designing for Ultrahigh Avaitabil-
ity: The Unix RTR operating sys-
tem. IEEE Comput. 15, 8 (Aug.
1984), 31-39.
Wipfler, A.J. CICS Application Devel-
opment and Programming. Macmillan,
New York, 1987.
Wipfler, A.J. Distributed Processing in
the CICS Environment. McGraw-Hilt,
New York, 1989.

CR Categories and Subject Descript-
ors: C.2.4 [Computer-Communication
Networks]: Distributed Systems-
Distributed applicatious; D.4.4 [Operating
Systems]: Communications Manage-
ment--iMessage sending, Network commu-
nicution; H.2.4 [Database Management]:
Systems-Transaction processing

General Terms: Design
Additional Key Words and Phrases:

Client-server, forms management,
interprocess communication, multi-
threading, processes, queuing, remote
procedure call, system management,
transaction processing, TP monitor

About the Author:
PHILIP A. BERNSTEIN is a member
of the technical staff at Digital Equip-
ment Corporation’s Cambridge Re-
search Laboratory, and is an architect of
Digital’s transaction processing prod-
ucts. Author’s Present Address: Digital
Equipment Corporation, One Kendall
Square-Building 700, Cambridge, MA
02 139. Internet: phernstein@crl.dec.com.

TtxIemarks used in this article: Digital, DEC,
DECintact, ACMS, VAX, and VMS are trade-
marks of Digital Equipment Corp. CICS,
IBM, IMS/DC. and MVS are trademarks of
International Business Machines Corp. UNIX
is a trademark of AT&T Bell Laboratories.
Tandem and Pathway are trademarks of Tan-
dem Computers.

Permission to copy without fee all or part of this
material is granted provided that the copies are not
made or distributed for direct commercial advan-
tage, the ACM copyright notice and the title ofthe
publication and its date appear, and notice is given
that copying is by permission ofthe Association for
Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

0 1990 ACM 0001.0782/90/1000-0075 $1.50

86 November 199O/Vo1.33. No.li/COYYUNlCITlONSCFT”E~C.CY

