Synchronous and
Asynchronous

~

Flaviu Cristian

Group Communication

How can synchronous and asynchro-
NOUS group communication services
be integrated and understood in 2
common framework? Experience with
group communication in 3 complex
system for air traffic control suggests
one viable approach.

n distributed systems, high service availability

can be achieved by replicating the service state

on multiple server processes. If a server fails,

the surviving servers continue to provide the
service because they know its current state. Group
communication services, such as membership and
atomic broadcast, simplify the maintenance of state
replica consistency—despite random communica-
tion delays, failures, and recoveries. Membership
achieves agreement on the server groups that pro-
vide the service over time, while atomic broadecast
achieves agreement on the history of state updates
performed in these groups.

Since many highly available svstems must provide
both hard and soft real-time application services, it
is of interest to understand how s\nchronous (hard
real-time) and asynchronous (soft real-time) group
communication services can be integrated. This
article contributes toward this goal by discussing
and comparing the properties that synchronous
and asynchronous gToup communication can pro-
vide to simplify replicated programming. The arti-

April 1996/Vol. 39, No. 4 COMMUNICATIONS OF THR acm

A consequence of a weak definition
of correctness is the impossibility
of implementing fundamental
fault-tolerant services.

cle reflects our practical experience with the design of syn-
chronous and asynchronous group communication ser-
vices for a complex system for air traffic control—the
Advanced Automation System' [12].

For simplicity, we consider a unique application service
§ implemented by servers replicated on a fixed set of pro-
cessors P. The servers (one per processor) form the team of
S-servers. The one-to-one correspondence between serv-
ers and processors allows us to ignore the distinction be-
tween server groups and processor groups and the issues
related to multiplexing server-level broadcasts and
groups on top of processor-level broadcasts and groups.

Asynchronous System Model
Team processors do not share storage. They exchange
messages via a datagram communication service. Messages
can get lost and communication delays are unbounded,
although most messages arrive at their destination within a
known timeout delay constant d [5]. Thus, datagram com-
munication has omission/performance failure semantics [91.
Processors have access to stable storage and hardware
clocks. Clocks measure time with a known accuracy by run-
ning within a linear envelope of real time. Servers are
scheduled to run on processors in response to such trig-
ger events as message arrivals and timeouts. Scheduling
delays are unbounded; however, most actual scheduling
delays are shorter than a known constant s. When sched-
uling delays exceed s, servers suffer performance failures
[11]. Processors and servers use self-checking mechanisms
so it is very unlikely that they produce functionally erro-
neous outputs. Thus, servers have crash/performance failure
semantics. For simplicity, we assume that all crashed serv-
ers eventually restart. Lower case letters p, ¢, 7, ... are
used to denote both processors and the servers that run
on them. Processor names are totally ordered. The previ-
ously introduced likely bounds d and s on processor-to-
processor communication and scheduling delays deter-
mine a higher-level worst-case server-to-server timeout
delay of =5 +d +s.

TAs of this writing, versions of the Advanced Automation Systems have
been installed in Great Britain and Taiwan and are scheduled to be de-
ployed in the U.S. by January 1997.

N

We call a distributed system that satisfies the above hy-
potheses on processors, Servers, and communications a
timed asynchronous system. Most existing distributed sys-
tems are timed asynchronous. Previously (e.g., [5,9, 13])
we called such systems asynchronous, as opposed to the
synchronous systems investigated in [11, 8, 6, 10]. This
terminology was confusing, since other authors (e.g., [17])
have used the adjective “asynchronous” with another
meaning. The difference comes from the fact that the ser-
vices of interest to us are timed, while those investigated in
[17] are time-free.

Introducing the d and s likely time bounds makes pro-
cessor and communication service specifications timed,
that is, they prescribe not only which state transitions/
outputs should occur in response to trigger events, but
also the real-time intervals within which they are expected
to occur [9]. In contrast, the specifications considered in
[17] are time-free, that is, they specify, for each state and
input only the next state/output—uwithout imposing any
constraint on the real-time it takes a state transition/
output to occur. Thus, a time-free processor is, by defini-
tion, “correct” even when it would take it an arbitrary
amount of time (e.g., months or years) to react to an actual
input. A consequence of this very weak definition of cor-
rectness is the impossibility of implementing fundamental
fault-tolerant services, such as consensus and membership
in time-free asynchronous systems {17, 2]. These services
are, however, implementable in timed asynchronous sys-
tems in which certain stability conditions hold {14, 16].
Practical systems are often required to be fault-tolerant, so
they are naturally timed and make use of timeouts.” Since
this article examines only timed asynchronous systems, we
refer to them simply as asynchronous in the following
text.

Asynchronous systems allow timely communication most
of the time. However, due to congestion and other adverse
phenomena, processors may become temporarily discon-

2yhile true that many of the services encountered in practice do not have
explicitly defined response-time promises, it is also true that all such ser-
vices become “timed” whenever a higher-level service that depends on
them (in the worst case, the human user) fixes a timeout delay for deciding
of their failure.

COMMUNICATIONS OF THE ACM April 1996/Vol.39, No. 4

In a synchronous context,
time means clock time,
while in an asynchronous context,
time means real time.

nected. When we say that processors p, g are connected in a
time interval [¢, ¢'], we mean that p and q are correct, that
is, non-crashed and timely, in [¢,#'], and each message
sent between them in [¢, t'-8] is delivered within & time
units. When we say that p, q are disconnected in [t, t'], we
mean that no message sent between them is delivered in
[t, T or p or ¢ is crashed in [t, t']. Processors p, q are par-
tially connected in [t,'] when they are neither connected
nor disconnected in [¢, ¢']. For example, when transient
network overload causes some, but not all, messages be-
tween p and ¢ to be lost or late, p and g are partially con-
nected. When we say that an asynchronous system is stable
in [¢, '], we mean that, throughout [, ¢'}):

® No processor fails or restarts;

¢ All pairs of processors in P, are either connected or dis-
connected; and

¢ The “connected” relation between processors is transi-
tive.

Because of the low failure rates achieved with current pro-
cessor and communication technologies, well-tuned asyn-
chronous systems are likely to alternate between long sta-
bility periods and comparatively short instability intervals.

Synchronous System Model

Asynchronous systems are characterized by communica-
tion uncertainty: a server p that tries to communicate with q
and times out cannot distinguish between such scenarios
as:

® g has crashed;

® g is slow;

® Messages from p to ¢ are lost or slow; and

® Messages from ¢ to p are lost of slow, even though ¢ may
be correct and may receive all messages from p.

Synchronous systems rely on real-time diffusion to make
communication between correct processors certain. Pro-
cessor p diffuses a message to processor ¢ by sending mes-
sage copies in parallel on all paths between p and ¢. The
implementability of a real-time diffusion service depends
on adding the following assumptions to the asynchronous
system models already discussed:

N

90 April 1996/V0l.39, No. 4 commumnscaTions OF THE ACM

H1. All communication delays are smaller than 8, all
scheduling delays for processes that implement dif-
fusion and broadcast are smaller than s.

H2. The number of communication components, such as
processors and links, that can be faulty during any
diffusion is bounded by a known constant F. .

H3. The network possesses enough redundant paths be-
tween any two processors p, g, so g always receives a
copy of each message diffused by p, despite up to F
faulty components.

H4. The rate at which diffusions are initiated is limited by
flow-control methods; this rate is smaller than the
rate at which processors and servers can correctly
receive and process diffusion messages.

Methods for implementing real time diffusion in point-to-
point and broadcast networks are discussed in [11,6, 18]
where it is shown that, under assumptions H1-H4, any
message m diffused by p is received and processed at ¢
within a computable network delay time constant N (which
depends on F, network topology, and §). We say that a
communication network is diffusion-synchronous, or sim-
ply synchronous, if it ensures that any diffusion initiated by
a correct processor reaches all correct processors within N
time units.

A synchronous network enables processor clocks to be
synchronized within a known maximum deviation e. To
highlight commonalities between synchronous and
asynchonous group communication protocols, this article
does not always distinguish between real-time and syn-
chronized clock time. It is important, however, to remem-
ber that in a synchronous context, time means clock time
(as in (11, 8, 6]), while in an asynchronous context, time
means real time (as in (14, 16]), unless otherwise specified.
Diffusion and clock synchronization enable implementa-
tion of a synchronous reliable broadcast service [11, 6, 18],
which, for some constant D (depending on N and e), en-
sures three properties:

® If a processor p starts broadcasting message m at time ¢,
then at time ¢ + D, either all correct processors deliver m
or none of them delivers m (atomicity).

® If p is correct, then all correct processors deliver m at

t + D (termination).
*® Only messages broadcast by team members are deliv-
ered, and they are delivered at most once (integrity).

The processor-to-processor reliable broadcast defines a
new worst-case, end-to-end bound for server-to-server
broadcasts of A =s + D + 5. When one adds to the above
reliable broadcast requirements the order requirement
that all messages delivered by correct processors be deliv-
ered in the same order, one obtains a synchronous atomic
broadcast [11, 6]. Since the protocols for synchronous reli-
able and atomic broadcast are so similar, we assume they
have the same termination time A. For simplicity, we also
assume that messages made available for delivery by a
broadcast service are consumed instantaneously by service
users, that is, a message scheduled for delivery to a broad-
castuser p at timet + Aisapplied by patt + A—instead of
e+ A+s3

Synchronous Group Communication

The § service exports queries, which do not change the
S-state, and updates, which change the S-state. Updates are
not assumed commutative. The service is assumed deter-
ministic, that is, its behavior is a function of only the initial
S-state so and the updates applied so far. At any moment,
the current state of the replicated S implementation con-
sists of:

® The group of correct S-servers that interpret S-requests;
and

® A service-specific §-state, resulting from applying all S-
updates issued so far to s,

Since we are considering a unique service $ and team P,
we refer for brevity to correct S-servers as servers or group
members, to correctly running team members as processes;
to S-requests as requests; to S-updates as updates; and to
S-states as states. For simplicity, we assume that no total
system failures occur.

To ensure that servers agree on the state of the repli-
cated service S, it is sufficient that:

Gl. they agree on the history of server groups that pro-
vide S over time, including the membership of each
such group [8}; and

G2. for each group g, all members of g (called g members
for brevity) agree on a) the initial service state sg when
g is formed* and b) the history of updates to apply to
sg while g exists. [11].

If go is the first group to exist, the initial g, state $g, must be
the initial service state so. The initial state of future groups
is defined inductively as follows: If group &2 succeeds
group g, the initial gy state s, is the final g, state 5!, where
the final g, state %! is the result of applying all updates

*From an implementation point of view, this can be approximated if the
membership, reliable, atomic broadcast, and $ services are all imple-
mented in a single thread. This “instantaneity” assumption allows us to
simplify the description of group communication by ignoring delays
caused by multitasking.

*Through a slight abuse of language, we refer to s, as the initial g group state,
despite the fact that sg is in general different from the initial service state So.

N

LI: Communication

accepted by g; members to the initial g state s, . While g,
members that also join gy know the final state 5% (hence,
the initial g, state 5,,), any newly started server p that joins
g2 without having been joined to g, must learn of the initial
group state s, by getting it from a member of g, that was
also a member of g,. It is convenient to think of such a
state transfer to p as being logically equivalent to p’s learning
of the sequence U of all updates accepted in all groups
that preceeded go—since the state 5g, that p receives is the
result of applying U to so.

synchronous Membership Properties

New groups of team members are created dynamically in
response to server failure and team member start events.
(For simplicity we do not differentiate between “volun-
tary” server departures and “involuntary” failures.) At
any time, a server can be joined to at most one group.
There are times at which a team member may not be
joined to any group, for example, between the time it
starts and the moment it joins its first group. (We assume
that a process always initiates a group join request at the
same time it starts.) All groups that exist over time are
uniquely identified by a group identifier g drawn from a
totally ordered set G. Group identifiers are essential for
distinguishing between groups with the same member-
ship but which exist at different times in the history of a
system. The membership of any group g is, by definition,
a subset of the team P.

The membership service can be specified by defining its
state variables and the safety and timeliness properties it
satisfies. Each team member p that is non-crashed main-
tains three membership state variables: joined of type
Boolean, group of type G, and mem of type subset of P, with
the following meaning: joined(p) is true when p is joined to
a group and is false otherwise. When joined(p) is true,
group(p) yields the identifier of the group joined by p and
mem(p) yields p’s local view of the membership of group(p).
Since we require all members of the same group g to agree
on their local view of g's membership, we sometimes write
mem(g) to mean mem(group(p)) for some member p joined
to g. We say that a group g’ is a successor of a group g—if
there exists a member p of g so that the next group p joins
after leaving g is g’ (p leaves a group as soon as it is no
longer joined to it). We denote by succ(g, p) the successor
of group g relative to p. Equivalently, when g’ = succ(g, p),
we say that g is a predecessor of group g’ relative to p, and
we write g = pred(g’, p). When g’ = succ(g, p), we also say
that p successively joins groups g and g’.

The membership interface consists of a “join-request”
downcall and two upcalls. A process calls “join-request”
when starting. The first upcall (to a client supplied
“state?” procedure) asks for the value of the client’s local
state (to transfer it, if necessary, to newly started pro-
cesses, according to the synchronous join protocol of [8]).
A process that starts responds to a “state?” upcall by sup-
plying the initial service state so. The other upcall—to a
“new-group” client supplied procedure—notifies the cli-
ent (in our case the S-server) that it has just joined a new
group g. This upcall has (at least) two parameters supplied
by the membership service: mem(g) and s,, the initial g
state. A synchronous membership service M is required to

COMMUNICATIONS OB Tsmt ACo April 1996/ Vol 39, No. 4 91

satisfy the following safety and timeliness properties®:

(M) Agreement on group membership. 1f p and q are joined
to the same group g, they agree on its membership;
if joined(p) and joined(q) and group(p) = group(q), then
mem(p) = mem(q).

(M}) Recognition. A process p joins only groups in which it
is recognized as a member; if joined(p), then p €
mem(p).

(M;) Monotonically increasing group identifiers. Successive
groups have monotonically increasing group identi-
fiers, that is, g < succ(g, p).

(M) Addition justification. Ifp joins a group g’ = succ(g, p)

at time ¢’ such that g’ contains a new member qE
mem(g’)-mem(g), then ¢ must have started before ¢'.
Deletion justification. If p joins a group g’ = succ(g, p)
att’ such that a member ¢ of its predecessor group g
is no longer in g’ (i.e., q € mem(g)-mem(g’)), then q
must have failed before ¢,

Agreement on linear history of groups. Let p, ¢ be mem-
bers of a common group g- If p and g stay correct
until they join their successor groups g’ = succ(g, p)
and g" = succ(g, ¢), respectively, then these succes-
sor groups must be the same, that is, g’ = g
Bounded failure detection. There exists a time constant
D such that if a g member q fails at ¢, then each g
member p correct throughout I = [, ¢ + D] Jjoins by
t + D a new group g’ such that q & mem(g’).
Bounded join delay. There exists a time constant
such that, if p starts at ¢ and stays correct throughout
I'=1t,¢ + f], then p joins by + / a group that is also
Jjoined by all processes correct throughout 1.
Group stability. If no process failures or joins occur in
[t,t'], then no server leaves its group in [t +
max(D, [), t'].

The synchronous membership protocols of [8], which depend
on the synchronous reliable broadcast specified earlier,
satisfy the safety and timeliness properties above. The
protocols use local clock times for group identifiers and
ensure lockstep progress, in the sense that all members
Jjoining a new group g join it at the same local time g + A,
The values of the D and / constants for the first protocol of
[8] are, for example: 7 + A and 24, respectively, where =
is the period for broadcasting “I-am-alive” messages. To
ensure that servers will not be confused by too close fail-
ures and joins, it is sufficient that the delay between a
server crash and its restart be at least max(D,]). Any serv-
ers p, ¢ that join a common group g agree on a unique
subsequent history £ of groups for as long as both stay
correct (Mj). Since, for each group in &, p and ¢ agree on
its membership (M:,), they agree on a unique order in
which failures and joins occur.® The timeliness properties
(M, MJ'-) bound the time needed by servers to learn of
failures and joins. On the other hand, the safety proper-

(M)

(M)

(My)

(M)

(M3)

*When writing service properties, we use the notation S}, where S repre-
sents the service name, the superscript designates the property type—s for
safety and ¢ for timeliness—and the subscript differentiates between differ-
ent properties of S.

6

1f the memberships of successive groups contain several deletions or addi-
tions, they can be ordered following an arbitrary convention (e.g., by using
the total order on team member names).

N

April 1996/Vol.39, No. 4 COMMUNMICATIONS OF THR ACM

ties (M, M) require that new groups be created only in
response to failures and joins, and (M) implies that all
created groups are maximal. Thus, synchronous member-
ship provides accurate, up-to-date information on which
processes are correct and which are not. In particular, the
service can be used to implement another frequently
needed service—the highly available leadership service [8]. A
synchronous leadership service is required to ensure:

® The existence of at most one leader at any point in real
time; and

® The existence of a real-time constant E, such that, if the
current leader fails at real-time ¢, a new leader exists by
t+E.

To implement this service, it is sufficient that any process
that suffers a performance failure at real-time ¢ stops com-
municating with others past real-time ¢ + A — €7 and
that, for any group g created by the membership service,
the member| with the'smallest identifier; plays the role of
leader. These two leader election rules ensure £ = 7+
A+te

Synchronous Group Broadcast Properties

A synchronous group broadcast service can be imple-
mented by the members of any group g created by a mem-
bership protocol satisfying the previous specification if
they add to the atomic broadcast protocols [L1, 6] the fol-
lowing restriction: any update u delivered by a g member
p is applied by p (to its local state replica) only if the sender
of w is a member of g. The resulting group atomic broadcast
service has the following interface: A down-call “broad-
cast(s,u)” initiates the broadcast of u if the calling server s
is joined to a group, otherwise signals an exception. An
up-call “update(s,u)” notifies a broadcast service user of
the broadcast of u by a member s of the current group. A
synchronous group atomic broadcast service B is required
to satisfy the following safety and timeliness properties:

(B3) Atomicity. 1f g member p broadcasts an update u at
time ¢, then either (a) « is applied at ¢ + A by all g
members that are correct in [t + A), or (b) u is not
applied by any g member correct in [t + A).

(By) Order. All updates applied by correct team members
are applied in the same order.

(BY) Causality. If u, depends causally upon u,, and Uo IS
applied by some correct team member, then u, is
applied before u3 by all team members,

(BY) Termination. If a correct g member broadcasts u at
time ¢, then u is applied at ¢ + A by all g members
correct in [¢¢ + Al].

(Bj) Integrity. Only updates broadcast by a team member
Joined to a group are applied by team members.
Each update is applied at most once.

(Big) Agreement on initial group states. Let p be a starting

process that joins group g’. If g’ has a member q
previously joined to g = pred(g’, q), p's copy of the
initial g’ state must be set to ¢’s copy of the initial g’

"Such performance failures can be detected and transformed into crashes
or requests for re-joining a new group as suggested in [8] by letting a
server s process an event ¢ scheduled to be processed by local deadline ¢
only if the local clock value when s is awakened to process ¢ is at most ¢,

Communication

Synchronous group communication
simplifies replicated
Pprogramming considerably,
since each replica has the same, accurate, up-to-date knowledge
of the system state.

state (which must reflect all updates applied by ¢ by
the time it joins g'), else p’s copy of the initial g’ state
is set to s,.
(Bua) Updates precede departures. If g member p broadcasts u
and then fails, any surviving g member that applies
u does it before learning of p's failure.
Updates follow joins. If g member p applies an update
u broadcast by team member g, then all g members
have learned of ¢’s join of group g before they
apply u.
Synchronous agreement on update history. Let b, ¢ be
correct servers joined to a group at time ¢ and let
hy(t), hy(t) be the histories of updates applied by ¢ by p
and ¢, respectively. Then hy(t) and hg(t) are the same.

(Bju)

(B

These properties imply the following global synchronous
group communication property:

(MB;) Agreement on failures, Jjoins, and updates. If team
members p,q, are correct between local time ¢ when
they join group g and local time ¢’ when they join
group g’, then p and ¢ see the same sequence of
join, failure, and update events in [¢,).

This easy-to-understand property substantially simplifies
the programming of replicated applications (see {10] for
an example). If applications agree on their initial state and
undergo deterministic state transitions in response only to
upcalls to their “new-group” and “update” routines, the
total order on joins, failures, and updates observed by cor-
rect team members ensures consistency of their states at
any point in (synchronized) time.

Asynchronous Group Communication
Synchronous group communication simplifies replicated
programming considerably, since each replica has the
same, accurate, up-to-date knowledge of the system state.
However, this comes at a price: the need to ensure that
hypotheses H1-H4 hold at run-time. If these hypotheses
become false, the properties mentioned previously may be
violated.

Asynchronous group communication services can be
designed with goals similar to the synchronous goals dis-
cussed earlier:

Gl. Agree on a linear history of server groups; and

G2. For each group g: a) agree on the initial g state and
on a linear history of g updates, and b) for successive
groups g, g’, ensure that all members of g’ correctly
inherit the replicated state maintained by the mem-
bers of g.

However, communication uncertainty introduces a num-
ber of complications. First, since processes cannot distin-
guish between process and communication failures, to
achieve agreement on a linear history of groups, one has
to impose some restriction on the kind of groups that can
contribute to history. For example, one could restrict the
groups that can contribute to history to be majority
groups—where a group g is a majority group if its members
form a numeric majority of the team members, that is,
{mem(g)| > Ig;l This restriction can be used not only to
order groups on a history line to achieve (G1), but also to
ensure (G2b) by relying on the fact that any two successive
majority groups have at least a member in common. Second,
while it is possible to design asynchronous protocols with
safety properties similar to those of the synchronous pro-
tocols, the timeliness properties satisfied by asynchronous
protocols are much weaker; the delays with which pro-
cesses learn of new updates, joins, and failures are
bounded only when certain stability conditions hold. The
stability condition considered in this article is system stabil-
ity, as defined in the Asynchronous System Model section.
(Weaker stability conditions, such as majority stability, are
investigated in [16].) Third, because delays are un-
bounded in asynchronous systems, ensuring agreement
on initial group states requires more work than in the syn-
chronous case.

Another article [14] explored a suite of four increas-
ingly strong asynchronous membership specifications. All
protocols described in [14] generate both minority and
majority groups, but while the first two expose all these
groups to membership service users, the last two restrict
the groups visible to users to be majority groups only. For
the first (one-round) and the second (three-round with
partition detection) protocols, the “successor” relation on
the groups seen by membership service users has

COMMUNICATIONS OF THE ACM April 1996/Vol. 39, No. 4 93

“branches” and “joins”; groups can split and merge.
Thus, these two protocols do not construct a linear history
of groups. The third (three-round majority) protocol is
the first protocol of the suite to achieve agreement on a
linear history of completed majority groups, where a group is
termed completed if it is joined by all its members. The
“successor” relation for majority groups can still have
short-lived branches of incomplete majority groups off the
main linear branch of completed majority groups. The
last (five-round) protocol achieves agreement on a linear
history of all majority groups. Thus, this protocol allows
no “branches” in the history.

If one were to use the first two membership protocols of
[14] and allow state updates to occur in both minority and
majority groups to achieve group agreement [7], the state
views held by team members joined to different groups
co-existing in time could diverge. The three-round-with-
partition-detection protocol enables team members to de-
tect all potential divergences between the states of merging
groups. Once such potential conflicts are detected, the
methods in [26] can be used to automatically merge group
states (e.g., when updates are commutative or when only
the most recent update to a replicated variable is of im-
portance). However, since for most practical applications,
such automatic conflict resolution is not feasible, the price
generally paid for allowing updates in minority groups is
the need for manual conflict resolution [24]. If updates
are allowed to occur only in the completed majority
groups created by the three-round majority (or the more
expensive five-round) protocol, one can achieve (either
majority or strict) agreement on a unique history of up-
dates [7].

Majority agreement ensures that all team members cur-
rently joined to a completed majority group agree on a
unique history of updates; other correct team members
not joined to this group might have divergent views on
the history of updates. Some applications, however, can-
not tolerate any replica state divergence [23]. These re-
quire the stronger strict agreement. Strict agreement guar-
antees that all correct team members p agree on a linear
history & of updates by ensuring that, at any time, any
team member p sees a prefix of 4. Issues related to achiev-
ing partial (that is, group and majority) agreement on
update histories are discussed in [7, 14]. This article will
discuss only strict agreement, the asynchronous agree-
ment that most resembles the synchronous agreement
presented earlier.

Agreeing on a Linear History of Completed
Majority Groups

As in the synchronous case, all groups created by the
membership service are uniquely identified by a group
identifier g drawn from a totally ordered set G. In our re-
quirements, a universally quantified group g can either be
a minority or a majority group. When we restrict our at-
tention to majority groups, we always mention this explic-
itly. The state of the membership service is defined by the
same replicated variables—joined, group, and mem—with
the same meanings. An asynchronous membership service
M’ that achieves agreement on a unique history of com-
pleted majority groups should satisfy the (My,), (M}), and

N
April 1996/Vol. 39, No. 4 commumicaTions o THE ACM

(M;) safety properties introduced earlier. However, the
timeliness properties to be satisfied are weaker than in the
synchronous case:

My Conditionally bounded partition detection delay. There is
a time constant D’ such that, if team members p, ¢
are disconnected in I = [t, t + D'), the system P is
stable in / and p stays correct throughout /, then p is
joined in I to a group g such that g & mem(g).

Conditionally bounded join delay. There is a time con-
stant /' such that, if team members p, ¢ are con-
nected in / = [¢, ¢t + /'] and the system P is stable in
I, then p, ¢ are joined to a common group g in /.

'

The D' and J’ constants provided by the three-round ma-
jority protocol in [14] are 98 + max(w + ({P| + 3)3, p),
where u is the period for “probing” the network connec-
tivity. The protocol uses three rounds of messages to cre-
ate a new group g: first, the group creator proposes g to all
team members; second, some of these accept to join g; and
third, the creator of g defines the membership of g as con-
sisting of all accepting team members and then lets all g
members effectively join g. In addition to the properties
mentioned above, this membership protocol also satisfies
the following safety properties:

(My)" Conditional stability of groups. If the system P is stable
in [t,¢'], then no server leaves its group in [t +
max(D', "), t'].

(M,)" Justification of additions. 1f a process p joins g at ¢ and
g has a new member ¢ not in the predecessor group
pred(g, p) joined by p, then some r € mem(g), r # q,
was not disconnected from ¢ in {¢', ¢], where ¢’ is the
time at which r left its predecessor group pred(g, r).

(My)' Justification of deletions. 1f p joins g at ¢ and g no
longer has a member ¢ that was in the predecessor
group pred(g, p) joined by p, then some r € mem(g)
was not connected to ¢ in [¢t',], where ¢’ is the time
at which r left its predecessor group pred(g, 7).

(M) Join Synchronization. 1f p joins group g at ¢, then no

member of g will be joined to a group g’ < g after ¢.

Predecessor Notification. When p joins majority group

g, the membership service notifies p of the majority

predecessor group Pred(g) of g, where Pred(g) is the

highest majority group g’ < g that was joined by a g

member.

(M3)' Agreement on a linear history of completed majority
groups. Let g<g' be two completed majority
groups. Then g is an ancestor of g’, where an ances-
tor of g’ is a group g such that either g = Pred(g’) org
is an ancestor of Pred(g’).

(Mp)

Together with the (M;) property, properties (M) and
(M})' ensure that all processes successively joined to com-
pleted majority groups agree on a unique, “official” his-
tory of completed majority groups and hence, on a unique
history of joins and failures as seen by the members of
these groups. Property (My) allows any member p of a
newly created majority group g to know whether it has the
correct view of the “official” history by checking whether
it is on the “official” history branch. If agreement on a
unique order of failures and joins is important, only serv-
ers joined to completed groups on this official history

Communication

Synchronous and asynchronous
programming are different
system design philosophies,
the first assuming communication is certain,
the second assuming it is not.

branch can act on membership changes. While properties
(My)' and (M)’ ensure there are no incomplete groups if
the system remains stable for at least max(/’, D) time
units, the following (unconditional) timeliness property
bounds the time a process can be joined to an incomplete
group, independently of whether the system is or is not
stable:

(M) Bounded Incompleteness Detection Delay. There is a con-
stant D" such that, if at time ¢, p joins a group g with
q € mem(g), p stays correct throughout I = ¢, ¢t + D")
and at notime in/ = [t,¢ + D"} ¢ joins g, then p learns
of g’s incompleteness (and leaves g) by ¢ + D".

Properties (M;) and (M) are useful in implementing an
asynchronous highly available leadership service, satisfying
two requirements: 1) There is at most one leader at any
point in real time; and 2) There exists a time constant E’
such that, if the system is stable in [¢, ¢ + E'] and a majority
of processes are connected, then there is a leader by ¢ +
E’. In {14], it is shown how to implement this service by
adding to the three-round majority membership protocol
the following leader designation rule: If g is a majority
group, the process with the smallest identifier in g be-
comes leader D" time units after it joins g. This leader
election rule yields the value D' + D" for E' and works
because properties (M;) and (M) ensure that any leader
that could have existed in a previously completed majority
group g’ < g has either leftg" or has joined g—and hence,
knows about the new leader. The leader election rule also
assumes that any process that suffers a performance fail-
ure at real-time ¢ detects it and stops communicating with
others past real-time ¢ + D' + D".

The asynchronous membership properties are some-
what harder to understand than the synchronous mem-
bership properties because asynchronous membership is
less accurate and up to date. There are no more bounds
on the time needed to learn of joins and failures, and
groups can be created—even when no team member joins
or failures occur during periods of system instability. Fi-
nally, the groups created by an asynchronous member-
ship service reflect the “is connected” rather than the “is
correct” physical process reality.

<

Agreeing on a Linear History of Updates

Perhaps the strict agreement broadcast protocol easiest to
understand is the “two-round” train protocol of [7]. In
this protocol, for any majority group g, a train of updates
circulates among g members according to a fixed cyclic
order. A g member that wants to broadcast an update
waits for the train, appends the update at the end of the
train, lets the train move around twice, and then purges
the update from the train. An update u transported by the
train is applied by any member p only when p knows that u
is stable, that is, p sees u for the second time. (An update
seen for the first time in the train is unstable:) This ensures:
1) that all g members agree on a unique history £ of up-
dates, where & reflects the order in which the updates pro-
posed by ¢ members board the train; and 2) that any g
member p appends an update u to its local view of the
history & only when p knows that a majority of team mem-
bers know about u. This waiting rule ensures that even if
system instability forces p to separate from the majority
group g, any new majority group g’ will have at least one
member that knows about » and will ensure that u is ap-
pended to the history h.

Let g be a completed majority group joined by mem-
bers p, ¢ by time ¢, and assume system stability in [¢, ¢']. Ifp
and ¢ agree on the initial g state s;, the train protocol
keeps the local states of p, ¢ consistent at any time ¢’ €
[t, '], since each applies between ¢ and " a prefix of the
history & of updates that have boarded the train by ¢”. If
failures or recoveries result in the creation (by some pro-
cess ¢) of a new completed majority group g', the final
local states of ¢ members (when they leave g) will not in
general be identical, as in the synchronous case. To ensure
agreement on the initial g’ state, ¢ can proceed as follows.
In its first round of “proposal” messages for the new
group g', ¢ piggybacks a request that all processes p previ-
ously joined to g send their state when they left g as well as
the fragment &, of the history of unstable updates seen but
not applied in g. After receiving the states and the A, un-
stable history extensions piggybacked on the second
round of “accept” membership messages, ¢ computes the
initial g’ state by applying to the most recent state received
the corresponding extension. This initial g’ state is then

COMMUNICATIONS OF THE ACM April 1996/Vol.39, No. 4 95

Protocols that achieve weak forms
of agreement, may cven require human intervention
to solve the conflicts created by diverging replicas.

sent to all members of g’ piggybacked on the third round
of “join” membership messages. This initial group state
computation protocol ensures that all g’ members agree
on the initial g’ state, since this state is computed by ¢ and
sent to all g’ members. It also ensures strict agreement,
since any update u that could have been applied by a
member of g no longer in g’ must have been seen by at
least one member both in g and g, since by definition
majority groups have nonempty intersections. Thus, u is
applied to the initial g’ state and hence becomes part of
the history of applied updates for all members of g’.

In addition to the asynchronous membership proper-
ties enumerated so far, the three-round majority mem-
bership and the two-round train protocols satisfy the
broadcast properties (B;), (Bc), (B..), and (Bj,) given ear-
lier for the synchronous case. To ensure (B;,), any server
in a majority group g is given the initial g state before it
learns of mem(g) and trains are stamped with the current
group id g, so that trains with a group id g’ # g are not
accepted by any g¢ member. Property (B},) is ensured by
allowing a majority group member to start broadcasting
only after it learns of the group membership. The train
protocol also satisfies the following properties:

(B)' Integrity. Only updates broadcast by servers joined to
completed majority groups can be applied (at most
once) by team members. :

(BY)' Conditional termination. If a g member broadcasts u at
t, and the system is stable in I = [t — max(J', D'), t +
(2|P| = 1)8], then u is applied by all g members in /.

(B'ig)' Agreement on initial group state. Let p join a completed
majority group g’. If g’ has a member g joined to the
preceding completed majority group g, p’s copy of
the initial g’ state is set to ¢'s copy of the initial g’
state (which must reflect all updates applied by any
member of any past completed majority group), else
p’s copy of the initial g’ state is set to s,.

(Bh)' Strict agreement on update history. Let p, ¢ be correct
team members and let ,(t) and A,(t) be the histories
of updates applied by real time ¢ by p and ¢, respec-
tively. Then either £,(¢) is a prefix of k(t) or hyt) isa
prefix of A,(¢).

If every process that is correct is eventually connected to a
majority of correct processes for a sufficiently long time
while the system is stable, the train protocol also satisfies
the following atomicity property:

(Bz)' Atomicity. If a completed majority group member g

N

April 1996/Vol.39, No. 4 cOMMUNICATIONS OF THE ACM

broadcasts u, then either (a) u is applied by all team
members or (b) u is not applied by any team mem-
ber.

Even though the asynchronous group communication
properties are more difficult to understand than the syn-
chronous ones, they can still substantially contribute to
simplifying distributed programming (see for an example
[13]), whenever the H1-H4 hypotheses used to render
communication certain cannot be guaranteed to be true at
run time.

Conclusions

Synchronous and asynchronous programming are differ-
ent system design philosophies, the first assuming com-
munication is certain, the second assuming it is not. Com-
munication certainty implies strong, easy-to-understand
safety and timeliness properties that substantially simplity
replicated programming. Synchronous programming is
natural for hard real-time systems, since it guarantees
bounded reaction time to such events as update arrivals,
failures, and joins. The price is the real-time scheduling
and hardware redundancy techniques needed to make
sufficiently small the probability of violating the hypothe-
ses H1-H4 at run time.

Asynchronous programming—based on communica-
tion uncertainty—is an umbrella for several program-
ming paradigms that differ in their underlying system
models. Examples of such models are the time-free model
in [17], the time-free model augmented with various “fail-
ure detectors” in [3], and the timed-model considered
implicitly in [5] and named in [14]. We believe that most
implemented asynchronous group communication sys-
tems are (implicitly) based on variants of the timed asyn-
chronous system model (see, for example, Totem, Transis,
and Horus in this special section and several other systems
[4,20,1,21, 19, 15]). This model does not assume anything
about the distribution of communication delays. A correct
protocol based on it always satisfies its safety invariants and
makes guaranteed progress whenever the underlying sys-
tem satisfies certain stability conditions. Therefore the
timed model achieves a clean separation between logical
correctness properties (that always hold) and stochastic
properties that predict the probability that the stability
conditions will be true at run time. Knowledge about
delay distributions is needed only when estimating the
probability that the stability conditions will be true. Asyn-
chronous programming is thus natural for soft real-time

systems that guarantee bounded responses with a certain
probability.

This article emphasized similarities between synchro-
nous and asynchronous programming by discussing only
strict agreement—the kind of asynchronous agreement
closest to synchronous agreement. In reality, the field of
asynchronous group communication is vaster—strict
agreement being one extreme where all replicas agree,
and group agreement the other where replicas managed
by members of different parallel groups can disagree. In
general, the stronger the agreement achieved by an asyn-
chronous protocol, the easier it is to understand and use
the protocol. The price is often higher message and time
complexity. Conversely, the weaker the agreement pro-
vided by an asynchronous protocol, the more difficult it is
to understand and use it. Protocols that achieve weak
forms of agreement, such as group agreement (also called
partitionable operation), may even require human inter-
vention to solve the conflicts created by diverging replicas
[22]. Group agreement protocols compensate for such
user unfriendliness by providing lower message and time
complexity and maximum update availability.

The tradeoffs possible between synchronous and asyn-
chronous programming, as well as the various possible
asynchronous agreement semantics, are not very well
understood at present. Work is needed to make these dif-
ferent programming paradigms understandable in a uni-
tied framework. This article is intended as a contribution
toward this goal. 3

Acknowledgments

I would like to thank David Powell for inviting me to write
this article and for suggesting the adjective “timed” for
the timed asynchronous system model. This research was
partly sponsored by IBM and the Air Force Office of Sci-
entific Research.

References

1. Birman, K., Schiper, A., and Stephenson, P. Lightweight
causal and atomic group multicast. ACM Transactions on Com-
puter Systems 9, 3 (Aug. 1991) 272-314.

2. Chandra, D., Hadzilacos, V., Toueg, S., and Charon-Bost, B.
On the impossibility of group membership. Technical Report
95-1548, Computer, Science Dept., Cornell University, Oct.
1995.

3. Chandra, T., Hadzilacos, V., and Toueg, S. The weakest fail-
ure detector for solving consensus. In Proceedings of the 11th
ACM Sympostum on Principles of Distributed Computing (Aug.
1992) pp. 147-158.

4. Chang, J., and Maxemchuk, N. Reliable broadcast protocols.
ACM Transactions on Compuler System 2, 3 (Aug. 1984) 251-
273.

5. Cristian, F. Probabhilistic clock synchronization. Distributed
Computing 3 (1989) 146~158. Early version: IBM Research
Report, San Jose, R] 6432, 1988.

6. Cristian, F. Synchronous atomic broadcast for redundant
broadcast channels. The Journal of Real Time Systems 2 (1990)
195-212. Early version: IBM Research Report, San Jose, R]
7203, 1989.

7. Cristian, F. Asynchronous atomic broadcast. IBM Technical
Disclosure Bulletin 33, 9 (Feb. 1991) 115-116. Presented at the
Ist IEEE Workshop on Management of Replicated Data (Nov.
1990, Houston, Tex.)

N

Communication

8. Cristian, F. Reaching agreement on processor-group mem-
bership in synchronous distributed systesm. Distributed Com-
puding 4 (1991) 175-187. Early version: FTCS-18, 1988,
Kyoto, Japan.

9. Cristian, F. Understanding fault-tolerant distributed systems.
Commun. ACM 34, 2 (Feb. 1991) 56-78.

10. Cristian, F. Automatic reconfiguration in the presence of fail-
ures. Software Engineering Journal (Mar. 1993) 53-60.

11. Cristian, F., Aghili, H., Strong, R., and Dolev, D. Atomic
broadcast: From simple message diffusion to Byzantine
agreement. Information and Computation 118 (Apr. 1995) 158-
179. Early version: FICS15, June 1985,

12. Cristian, F., Dancey, B., and Dehn, J. Fault-tolerance in the
advanced automation system. In Proceedings of the 20th Sympo-
sium on Foult-Tolerant Computing (June 1990, Newcastle-upon-
Tyne, UK) pp. 6-17.

13. Cristan, F., and Mishra, S. Automatic service availability
management in asynchronous distributed systems. In Pro-
ceedings of the 2nd International Workshop on Configurable Dis-
tributed Systems, (Mar. 1994, Pittsburgh, Penn.)

14. Cristian, F., and Schmuck, F. Agreeing on processor-group
membership in asynchronous distributed systems. Technical
Report CSE95-428, UCSD, 1995. Available via anonymous
ftp at cs.ucsd.edu as /pub/team/asyncmembership.ps.Z.

15. Ezhilchelvan, P., Macedo, R., and Shrivastava, S. Newtop: A
fault-tolerant group communication protocol. In Proceedings
of the 15th International Conference on Distributed Systems (May
1995, Vancouver, Canada). -

16. Fetzer, C., and Cristian, F. On the possibility of consensus in
asynchronous systems. In 1995 Pacific Rim International Sym-
posium on Fault-Tolerant Systems (Dec. 1995, Newport Beach,
Calif)

17. Fischer, M.]., Lynch, N.A,, and Paterson, M.S. Impossibility
of distributed consensus with one faulty process. Journal of the
ACM 32, 2 (Apr. 1985) 374-382.

18. Hadzilacos V., and Toueg, S. Fault-tolerant broadcasts and
related problems. In S. Mullender, ed., Distributed Systems,
Addison-Wesley, Reading, Mass., 1993.

19. Jahanian, F., Fakhouri, S., and Rajkumar, R. Processor
group membership protocols: Specification, design and im-
plementation. In Proceedings of the 12th Symposium on Reliable
Distributed Systems (Oct. 1993).

20. Kaashoek, F., and Tanenbaum, A. Group communication in
the Amoeba distributed system. In Proceedings of the 11ih In-
ternational Conference on Distributed Computing Systems. (May
1991) pp. 882-891.

21. Mishra, S., Peterson, L., and Schlichting, R. Consul: A com-
munication substrate for fault-tolerant distributed programs.
Distributed Systems Engineering [ournal (1993).

22. Satyanarayanan, M., Kistler, J., Kumar, P., Okasaki, M., Sie-
gel, E., and Steere, D. Coda: A highly available file system for
a distributed workstation environment. [EEE Transactions on
Computers 39, 4 (April 1990).

23. Schiper A., and Raynal, M. From group communication to
transactions in distributed systems. Commun. ACM 39, 4
(April 1996).

24. Strong, R,, Skeen, D, Cristian, F., and Aghili, H. Handshake
protocols. In Proceedings of the 7th International Conference on
Distributed Computing Systems (Sept. 1987, Berlin, Germany)
pp- 521-528.

About the Author:

FLAVIU CRISTIAN is Professor of Computer Science and Engi-
neering at the University of California, San Diego. Author’s Pres-
ent Address: Dept. of Computer Science and Engineering, O114,
University of California, San Diego, La Jolla, CA 92093-0114;
email: flaviu@cs.ucsd.edu

9?7

COMMUNICATIONS OF THR AEW April 1996/Vol.39, No. 4

