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The emergence of process-group environments for distributed computing represents a
promising step towards robustness for mission-critical distributed applications. Process
groups have a “natural” correspondence with data or services that have been replicated for
availability, or as part of a coherent cache. They can been used to support highly available
security domains. And, group mechanisms fit well with an emerging generation of intelligent
network and collaborative work applications.

Yet there is little agreement concerning how process groups should look or behave. The
requirements that applications place on a group infrastructure can vary tremendously, and
there may be fundamental tradeoffs between semantics and performance. Even the most
appropriate way to present the group abstraction to the application depends on the setting.

This paper reports on the Horus system, which provides an unusually flexible group
communication model to application-developers. This flexibility extends to system interfaces,
the properties provided by a protocol stack, and even the configuration of Horus itself, which
can run in user space, in an operating system kernel or microkernel, or be split between them.

Horus can be used through any of several application interfaces. These include toolkit-
styled interfaces, but also interfaces that hide group functionality behind Unix communi-
cation system-calls, the Tk/Tcl programming language, and other distributed computing
constructs. The intent is that it be possible to slide Horus beneath an existing system
as transparently as possible, for example to introduce fault-tolerance or security without
requiring substantial changes to the system being hardened [3].

Horus provides efficient support for the wvirtually synchronous execution model. This
model was introduced by the Isis Toolkit [2], and has been adopted with some changes
by such systems as Transis [1], Psync [11], Trans/Total [9], RMP [19], and Rampart [14].
The model is based on group membership and communication primitives, and can support
a variety of fault-tolerant tools, such as for load-balanced request execution, fault-tolerant
computation, coherently replicated data, and security.

Although often desirable, properties like virtual synchrony may sometimes be unwanted,
introduce unnecessary overheads, or conflict with other objectives such as real-time guar-
antees. Moreover, the optimal implementation of a desired group communication property
sometimes depends on the runtime environment. In an insecure environment, one might
accept the overhead of data encryption, but wish to avoid this cost when running inside a
firewall. On a platform like the IBM SP2, which has reliable message transmission, protocols
for message retransmission would be superfluous.

Accordingly, Horus provides an architecture whereby the protocol supporting a group can
be varied, at runtime, to match the specific requirements of its application and environment.

!This work was supported by grants from ARPA/ONR (N00014-92-J-1866), GTE, IBM, Schweizer Na-
tionalfonds, and Siemens-AG. The Horus system 1is available at no fee for research use; see the Horus project
page at http://www.cs.cornell.edu/Info/Projects/HORUS for details.



It does this using a structured framework for protocol composition, which incorporates ideas
from systems such as the Unix “streams” framework [16] and the z-kernel [12], but replaces
point-to-point communication with group communication as the fundamental abstraction.
In Horus, group communication support is provided by stacking protocol modules that have
a regular architecture, and in which each module has a separate responsibility. A process
group can be optimized by dynamically including or excluding particular modules from its
protocol stack.

Horus also innovates by introducing run-time configuration, group communication inter-
faces, full thread-safety, and supporting messages that may span multiple address spaces.
Since Horus does not provide control operations, and has one single address format, protocol
layers can be mixed and matched freely. In both streams and the x-kernel, the different
protocol modules supply many different control operations, and design their own address
format, both severely limiting such configuration flexibility?® (see also [4]).

1 A layered process group architecture

We find it useful to think of Horus central protocol abstraction as resembling a Lego™ block;
the Horus “system” is thus like a “box” of Lego blocks. Each type of block implements a
microprotocol that provides a different communication feature. To promote the combination
of these blocks into macroprotocols with desired properties, the blocks have standardized
top and bottom interfaces that allows them to be stacked on top of each other at run time
in a variety of ways (see Figure 1). Obviously, not every sort of protocol block makes sense
above or below every other sort. But the conceptual value of the architecture is that where
it makes sense to create a new protocol by restacking existing blocks in a new way, doing so
is straightforward [18].

Technically, each Horus protocol block is a software module with a set of entry points for
downcall and upcall procedures. For example, there is a downcall to send a message, and an
upcall to receive a message. Each layer is identified by an ASCII name, and registers its upcall
and downcall-handlers at initialization time. There is a strong similarity between Horus
protocol blocks and object classes in an object-oriented inheritance scheme, and readers
may wish to think of protocol blocks as members of a class hierarchy.

To see how this works, consider the Horus message_send operation. It looks up the
message send entry in the topmost block, and invokes that function. This function may
add a header to the message, and will then typically invoke message_send again. This
time, control passes to the message send function in the layer below it. This repeats itself
recursively until the bottommost block is reached and invokes a driver to actually send the
message.

The specific layers currently supported by Horus solve such problems as interfacing the
system to varied communication transport mechanisms, overcoming lost packets, encryption
and decryption, maintaining group membership, helping a process that joins a group obtain

2We note that a follow-on to the z-kernel project, called Consul [10], has overcome some of these disad-
vantages by supporting sophisticated micro-protocols between protocol modules and providing extra support
for group communication.
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Figure 1: Group protocol layers can be stacked at run-time like Lego™ blocks, and support
applications through one of several application programmer interfaces.

the state of the group, merging a group that has partitioned, flow control, etc. (see sidebar).
Horus also includes tools to assist in the development and debugging of new layers.

Each stack of blocks is carefully shielded from other stacks. It has its own prioritized
threads, and has controlled access to available memory through a mechanism called memory
channels (see Figure 2). Horus has a memory scheduler that dynamically assigns the rate
at which each stack can allocate memory, depending on availability and priority, so that no
stack can monopolize the available memory. This is particularly important inside a kernel,
or if one of the stacks has soft real-time requirements.

Besides threads and memory channels, each stack deals with three other types of objects:
endpoints, groups, and messages. The endpoint object models the communicating entity.
Depending on the application, it may correspond to a machine, a process, a thread, a socket,
a port, and so forth. An endpoint has an address, and can send and receive messages.
However, as we will see later, messages are not addressed to endpoints, but to groups. The
endpoint address is used for membership purposes.

A group object is used to maintain the local protocol state on an endpoint. Associated
with each group object is the group address to which messages are sent, and a view: a list
of destination endpoint addresses that are believed to be accessible group members. Since
a group object is purely local, Horus technically allows different endpoints to have different
views of the same group. An endpoint may have multiple group objects, allowing it to
communicate with different groups and views. A user can install new views when processes
crash or recover, and can use one of several membership protocols to reach some form of
agreement on views between multiple group objects in the same group.



Horus provides a large collection of
microprotocols. Some of the most im-
portant ones are

COM - The COM layer provides the
Horus group interface to such low-level
protocols as [P, UDP, and some ATM
interfaces.

NAK - This layer implements a neg-
ative acknowledgement based message
retransmission protocol.

CYCLE - Multi-media message dis-
semination.

PARCLD - Hierarchical message dis-
semination.

FRAG - Fragmentation/reassembly.
MBRSHIP - This layer provides
each member with a list of endpoints
that are believed to be accessible. It
runs a consensus protocol to provide
its users with a wvirtually synchronous
execution model.

FC - Flow control.

TOTAL - Totally ordered message
delivery.

STABLE — This layer detects when
a message has been delivered to all
destination endpoints, and can be
garbage collected.

CRYPT - Encryption/decryption.
MERGE - Location and merging of
multiple group instances.

Table 1: PROPOSED SIDEBAR

The message object is a local storage structure. Its interface includes operations to push
and pop protocol headers. Messages are passed from layer to layer by passing a pointer, and

never need be copied.

A thread at the bottommost layer waits for messages arriving on the network interface.
When a message arrives, the bottommost layer (typically COM) pops off its header, and
passes the message on to the layer above it. This repeats itself recursively. If necessary, a
layer may drop a message, or buffer it for delayed delivery. When multiple messages arrive
simultaneously, it may be important to enforce an order on the delivery of the messages.

However, since each message is delivered using its own thread, this ordering may be lost
depending on the scheduling policies used by the thread scheduler. Therefore, Horus numbers
the messages, and uses event count synchronization variables [13] to reconstruct the order

where necessary.
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Figure 2: The Horus stacks are shielded from each other, and have their own threads and
memory, each of which is provided through a scheduler.

2 Protocol stacks

The microprotocol architecture of Horus would not be of great value unless the various classes
of process group protocols that we might wish to support can be simplified by being expressed
as stacks of layers, perform well, and share significant functionality. Our experience in this
regard has been very positive [18].

For example, the stacks shown in Figure 2 all implement virtually synchronous process
groups. The left-most stack provides totally ordered, flow-controlled communication over
the group membership abstraction. The layers FRAG, NAK and COM respectively break
large messages into smaller ones, overcome packet loss using negative acknowledgements,
and interface Horus to the underlying transport protocols. The adjacent stack is similar,
but provides weaker ordering and includes a layer that supports “state transfer” to a process
joining a group, or when groups merge after a network partition. To the right is a stack
that supports scaling through a hierarchical structure, in which each “parent” process is
responsible for a set of “child” processes. The dual stack illustrated in this case represents
a feature whereby a message can be routed down one of several stacks, depending on the
type of processing required. Additional protocol blocks provide functionality such as data
encryption, packing small messages for efficient communication, isochronous communication
(useful in multimedia systems), etc.

For Horus layers to fit like Lego blocks, they each must provide the same downcall and
upcall interfaces. A lesson learned from the a-kernel [12] is that if the interface is not
rich enough, extensive use will be made of general purpose control operations (similar to
ioctl), which reduces configuration flexibility. (Since the control operations are unique to



a layer, the Lego blocks would not “fit” as easily.) The Horus Common Protocol Interface
(HCPI) therefore supports an extensive interface that supports all common operations in
group communication systems, going beyond the functionality of earlier layered systems such
as the z-kernel, Furthermore, the HCPI is designed for multiprocessing, and is completely
asynchronous and reentrant.

Broadly, the HCPI interfaces fall into two categories. Those in the first group are con-
cerned with sending and receiving messages, and the stability of messages.> The second
category of Horus operations are concerned with membership. In the down direction, they
let an application or layer control the group membership used by layers below it. As upcalls,
these report membership changes, communication problems, and other related events to the
application.

While supporting the same HCPI, each Horus layer runs a different protocol, each imple-
menting a different property. Although Horus allows layers to be stacked in any order (and
even multiple times), most layers require certain semantics from layers below it, imposing
a partial order on the stacking. These constraints have been tabulated. Given information
about the properties of the network transport service, and the properties provided by the
application, it is often possible to automatically generate the minimal protocol stack that
achieves a desired property [18].

Layered protocol architectures sometimes perform poorly. Traditional layered systems
impose an order on which protocols process messages, limiting opportunities for optimization,
and imposing excessive overhead. Clark and Tennenhouse have suggested that the key to
good performance rests in Integrated Layer Processing (ILP) [4]. Systems based on the ILP
principle avoid inter-layer ordering constraints, and can perform as well as monolithically
structured systems. Horus is consistent with ILP: there are no intrinsic ordering constraints
on processing, so unnecessary synchronization delays are avoided.

3 Using Horus to build a robust groupware applica-
tion

Earlier, we commented that Horus can be hidden behind standard application programmer
interfaces. A good illustration of how this is done arose when we interfaced the Tcl/TK
graphical programming language to Horus.

A challenge posed by running systems like Horus side by side with a package like X-
windows or Tecl/TK is that such packages are rarely designed with threads or Horus com-
munication stacks in mind. To avoid a complex integration task, we therefore chose to run
Tcl/TK as a separate thread in an address space shared with Horus. Horus intercepts certain
system calls issued by Tcl/TK (see Figure 3), such as the Unix open and socket system calls.
We call this mechanism an intercept proxy. The proxy redirects the system calls, invoking
Horus functions which will create Horus process groups and register appropriate protocol

31t is common to say that a message is stable when processing has completed and associated information
can be garbage collected. Horus standardizes the handling of stability information, but leaves the actual
semantics of stability to the user. Thus, an application for which stability means “logged to disk” can share
this Horus functionality with an application for which stability means “displayed on the screen.”
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Figure 3: Unix system calls can be intercepted by Horus using intercept prozies. These allow
the implementation of new socket domains in user space, and permit us to link thread-unsafe
applications with the Horus system.

stacks at run time. Subsequent 1/0O operations on these group 1/0 sockets are mapped to
Horus communication functions.

To make Horus accessible within Tcl applications, two new functions were registered with
the Tcl interpreter. One creates endpoint objects, and the other creates group addresses.
The endpoint object itself can create a group object using a group address. Group objects
are used to send and receive messages. Received messages result in calls to Tcl code, which
typically interpret the message as a Tcl command. This yields a powerful framework: a
distributed, fault-tolerant, whiteboard application can be built using only eight short lines
of Tcl code, over a Horus stack of seven protocols.

To validate our approach, we ported a sophisticated Tcl/TK application to Horus. The
Continuous Media Toolkit (CMT) [17] is a Tcl/TK extension that provides objects that read
or output audio and video data. These objects can be linked together in pipelines, and are
synchronized by a logical timestamp object. This object may be set to run slower or faster
than the real clock, or even backwards. This allows stop, slow motion, fast forward, and
rewind functions to be implemented.

Architecturally, CMT consists of a multi-media server process that multicasts video and
audio to a set of clients. We decided to replicate the server using a primary-backup approach.
where the backup servers stand by to back up failed or slow primaries.

The original CMT implementation depends on extensions to Tcl/TK. These implement
a master/slave relationship between the machines, provide for a form of logical timestamp
synchronization between them, and support a real-time communication protocol called Cyclic
UDP. The Cyclic UDP implementation consists of two halves, a sink object that accepts
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Figure 4: This figure shows an example of a video service implemented using the Continuous
Media Toolkit. MPEG is a video compression standard. In (a), a standard, fault intolerant
set-up is depicted. In (b), Horus was used to implement a fault-tolerant version that is also
able to multicast to a set of clients.

multi-media data from another CMT object, and a source object that produces multi-media
data and passes it on to another CMT object (see Figure 4a). The resulting system is
distributed but intolerant of failures, and does not allow for multicast.

Using Horus, it was straightforward to extend CMT with fault-tolerance and multicast
capabilities. Five Horus stacks were required. One of these is hidden from the application,
and implements a probabilistic clock synchronization protocol [5]. It uses a Horus layer
called MERGE to ensure that the different machines will find each other automatically
(even after network partitions), and employs the virtual synchrony property to rank the
processes, assigning the lowest ranked machine to maintain a master clock on behalf of the
others. The second stack synchronizes the speeds and offsets with respect to real-time of



the logical timestamp objects. To keep these values consistent, it is necessary that they be
updated in the same order. Therefore, this stack is similar to the previous one, but includes
a Horus protocol block that places a total order on multicast messages delivered within the
group.* The third tracks the list of servers and clients. Using a deterministic rule based
on the process ranking maintained by the virtual synchrony layer, one server decides to
multicast the video, and one server, usually the same, decides to multicast the audio. This
set-up is shown in Figure 4b.

To disseminate the multi-media data, we used two identical stacks, one for audio and one
for video. The key component in these is a protocol block that implements a multi-media
generalization of the Cyclic UDP protocol. The algorithm is similar to FRAG, but will
reassemble messages that arrive out of order, and drop messages with missing fragments (cf.
Application-Level Framing [4, 6]).

One might expect that a huge amount of recoding would have been required to accomplish
these changes. However, all of the necessary work was completed using 42 lines of Tcl code.
An additional 160 lines of C code supports the CMT frame buffers in Horus. Two new
Horus layers were needed, but were developed by adapting existing layers; they consist of
1800 lines of C code and 300 lines, respectively (ignoring the comments and lines common to
all layers). Thus, with relatively little effort and little code, a complex application written
with no expectation that process group computing might later be valuable was modified to
exploit Horus functionality.

4 Electra

The introduction of process groups into CMT required sophistication with Horus and its
intercept proxies. Many potential users would lack the sophistication and knowledge of Horus
required to do this, hence we recognized a need for a way to introduce Horus functionality
in a more transparent way. This goal evokes an image of “plug and play” robustness, and
leads one to think in terms of an object-oriented approach to group computing.

The Common Object Request Broker Architecture (CORBA) is emerging as a major stan-
dard for supporting object-oriented distributed environments. Object-oriented distributed
applications that comply with CORBA can invoke one-another’s methods with relative ease.
Our work resulted in a CORBA compliant interface to Horus, which we call Electra [8].
Electra can be used without Horus, and vice versa, but the combination represents a more
complete system.

In Electra, applications are provided with ways to build Horus process groups, and to
directly exploit the virtual synchrony model. Moreover, Electra objects can be aggregated
to form “object groups,” and object references can be bound to both singleton objects and
object groups. An implication of the interoperability of CORBA implementations is that
Electra object groups can be invoked from any CORBA-compliant distributed application,
regardless of the CORBA platform on which it is running, without special provisions for

4This protocol differs from the Total protocol in the Trans/Total[9] project in that the Horus protocol
only rotates the token among the current set of senders, while the Trans/Total protocol rotates the token
among all members.
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Figure 5: Object group communication in Electra.

group communication. This means that a service can be made fault-tolerant without chang-
ing its clients.

When a method invocation occurs within Electra, object-group references are detected
and transformed into multicasts to the member objects (see Figure 5). Requests can be
issued either in transparent mode, where only the first arriving member reply is returned to
the client application, or in non-transparent mode, permitting the client to access the full
set of responses from individual group members. The transparent mode is used by clients
to communicate with replicated CORBA objects, while non-transparent mode is employed
with object groups whose members perform different tasks. Clients submit a request either
in a synchronous, asynchronous, or deferred-synchronous way.

Our work on Electra shows that group programming can be integrated in a natural,
transparent way with popular programming methodologies. To the degree that process-group
computing interfaces and abstractions represent an impediment to their use in commercial
software, technologies such as Flectra suggest a possible middle ground, in which fault-
tolerance, security, and other group-based mechanisms can be introduced late in the design
cycle of a sophisticated distributed application.

5 Performance

A major concern of our architecture is the overhead of layering, hence we now focus on this
issue. We present the overall performance of Horus on a system of SUN Sparc10 workstations
running SunOS 4.1.3, communicating through a loaded Ethernet. We used two network
transport protocols: normal UDP, and UDP with the Deering IP multicast extensions (shown
as “Deering”).

10



To highlight some of the performance numbers: we achieve a one-way latency of 1.2 msecs
over an unordered virtual synchrony stack (over ATM, it is currently 0.7 msecs), and, using
a totally ordered layer over the same stack, 7,500 1-byte messages per second. Given an
application that can accept lists of messages in a single receive operation, we can drive up
the total number of messages per second to over 75,000 using the FC Flow-Control layer,
which buffers heavily using the “message list” capabilities of Horus [7]. We easily reach
the Ethernet 1007 Kbytes/second maximum bandwidth with a message size smaller than 1
kilobyte.

Our performance test program has each member do exactly the same thing: send k
messages and wait for k x (n — 1) messages of size s, where n is the number of members. This
way we simulate an application that imposes a high load on the system while occasionally
synchronizing on intermediate results.

Figure 6 depicts the one-way communication latency of 1-byte Horus messages. As can be
seen in the top graph, hardware multicast is a big win, especially when the message size goes
up. In the bottom graph, we compare FIFO to totally ordered communication. For small
messages we get a FIFO one-way latency of about 1.5 milliseconds and a totally ordered
one-way latency of about 6.7 milliseconds. A problem with the totally ordered layer is that
it can be inefficient when senders send single messages at random, and with a high degree of
concurrent sending by different group members. With just one sender, the one-way latency
drops to 1.6 milliseconds.

Figure 7 shows the number of 1-byte messages per second that can be achieved for
three cases. For normal UDP and Deering UDP the throughput is fairly constant. For
totally ordered communication we see that the throughput becomes better if we send more
messages per round (because of increased concurrency). Perhaps surprisingly, the throughput
also becomes better as the number of members in the group goes up. The reason for this is
threefold. First, with more members there are more senders. Second, with more members it
takes longer to order messages, and thus more messages can be packed together and sent out
in single network packets. Last, our ordering protocol allows only one sender on the network
at a time, thus introducing flow control and reducing collisions.

6 Ongoing work

Although the initial version of Horus is nearing completion, significant challenges remain.
Broadly, we are interested in moving Horus to more advanced platforms, such as stripped-
down computing nodes linked by ATM. For this purpose, we are running Horus in the
application’s address space, with I/O directly in and out of message buffers allocated by the
application. Based on preliminary results, we anticipate that this configuration of the system
will expand our application domain to parallel computing, high performance 1/0 servers,
multi-media, and computer-supported collaborative work. To enable these new types of
applications, we are extending Horus to support real-time features, and are cooperating with
the Transis project at the Hebrew University to develop a group security architecture and
general purpose tools for building robust applications that are also secure and private [15].

11
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Figure 6: The top figure compares the one-way latency of 1-byte FIFO Horus messages
over straight UDP and UDP with the Deering IP multicast extensions. The bottom figure
compares the performance of total and FIFO order of Horus, both over UDP multicast.
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