Aspectizing Middleware Platforms

Charles Zhang, Hans-Arno Jacobsen
Department of Electrical and Computer
Engineering
Department of Computer Science
University of Toronto
10 King's College Circle
Toronto, Ontario, Canada

{czhang,jacobsen}@eecg.toronto.edu

ABSTRACT

Over the past decade, middleware platforms such as DCOM,
CORBA, and .NET, have become increasingly popular, ad-
dressing software engineering problems for distributed ap-
plication development. Often, the same functional middle-
ware platform model has also been applied to application
domains with varying requirements. CORBA, for example,
aims at supporting distributed enterprise, real-time, embed-
ded systems, and high performance computing applications.
Consequently, the architecture of middleware systems has
also evolved drastically to accommodate a large number of
new design requirements from a broad range of application
domains. Those new design requirements include, for in-
stance, transaction support, security, fault tolerance, real
time, various performance enhancements, and many more.
Although those additional features have made middleware
platforms more mature in terms of functionality; they have,
at the same time, made middleware systems more struc-
turally sophisticated, expensive to run and difficult to evolve
further. We therefore strongly believe that new architectural
methodologies should be applied to the current middleware
design to provide solutions to those problems. This paper
employs the methodology of aspect oriented programming to
analyze the architecture of middleware system, by using the
openly specified middleware platform standard, CORBA, as
a case study. We use AspectJ, a Java based aspect language,
to illustrate that certain features in CORBA, such as fault
tolerance and interceptor support, which are not possible
to be properly modularized using traditional programming
paradigm, can actually be modularized using aspect oriented
programming. We then show that, by applying AOP tech-
niques, we can factor in and out pervasive characteristics of
middleware systems and, thus, make the architecture more
modularized and more customizable.

*University of Toronto Technical Report CSRG-466 January
2003

Keywords

Aspect Oriented Programming, Middleware Architecture,
Software Architecture

1. INTRODUCTION

Middleware platforms, such as CORBA, DCOM, J2EE, and
.NET, have provided abstraction and simplicity for the com-
plex and heterogeneous computing environment. They fa-
cilitate the development of high quality distributed appli-
cations with shorter development cycle and much smaller
coding effort. Middleware systems are being adopted in a
very broad spectrum of application domains, ranging from
traditional enterprise platforms to mobile devices, embedded
systems, real time systems, and mission critical systems.

The problem with today’s middleware architectures is that
they cannot simultaneously satisfy multiple design require-
ments in order to support a large variety of target domains.
On one hand, implementations that are conglomerations of a
large number of features become increasingly sophisticated
in module compositions and more dependent on powerful
processors and vast memory spaces. On the other hand, al-
though the common distributed computing requirements do
not change, there exist many flavors of middleware imple-
mentations. Each of the flavors incorporates different design
alternatives and engineering tradeoffs to optimize the per-
formance for specific domains, which are characterized by
stringent resource constraints, execution deadlines, high per-
formance, and high availability. However, it is still difficult
to harness the complexity of the middleware platform and
tailor middleware for a specific user need, a concrete usage
scenario, or a particular deployment and runtime instance.
Current middleware architectures lack of methods to ad-
dress common distribution concerns and particular domain
requirements without incurring great architectural complex-
ity and performance penalty.

Recent research, such as OpenCOM [15] and DynamicTAO [4],
addresses those issues by introducing new software engineer-
ing techniques like component based architecture and reflec-
tion to establish better architectural abstractions. Those
techniques achieve higher levels of modularity and customiz-
ability. However, they are also insufficient in addressing
some other design concerns. For instance, although Dy-
namicTAO addresses configurability, it has limited ways of
achieving small memory foot print. OpenCOM addresses

adaptability by using meta frameworks, which introduces
performance overhead.

We believe that today’s distributed computing environment
requires an even higher degree of modularity for middleware
architectures. That high level of modularity is very hard to
obtain via traditional architectural methodologies. In this
paper, we examine middleware architectures from a new
perspective by applying aspect oriented design and devel-
opment methodologies to the requirements domain and the
corresponding functional decomposition domain. We think
the design challenges created by the dramatic evolution of
middleware platforms can be well addressed by the aspect
oriented approaches, because it enables the separation of
pervasive design concerns and allows us to optimize solu-
tions for particular design goals without coordinating with
others. Via aspect oriented techniques, we then are able
to include or exclude new features with minimum or even
no changes to the existing architecture. The deployment
of middleware systems can be more flexible, customizable,
and adaptive in terms of code size, memory footprint and
resource utilization.

In this paper, we focus on developing aspect oriented mid-
dleware architecture methodologies and make the following
contributions: 1. We present the definition of orthogonal
requirements and the method of horizontal decomposition,
which addresses tangled concerns introduced by orthogonal
design requirements, which include independent and con-
flicting design requirements. 2. We provide the aspect ori-
ented analysis to the architecture of middleware and define
a classification method of aspects in middleware. 3. We pro-
vide the evaluation of the horizontal decomposition method
through the aspect oriented implementation of several as-
pects of middleware, using CORBA as a case study. 4. We
list a few lessons learned that can serve as guidance for the
aspect oriented analysis and design of middleware.

The rest of the paper is organized as the following: We first
present more detailed discussion of the problems of middle-
ware architecture in section 2. We then briefly introduces
the aspect oriented programming techniques in the context
of middleware design in section 3 . Section 4 conceptually
discusses how AOP can be applied to the middleware archi-
tecture. In light of that, section 5 provides a case study of
those concepts, which includes the AOP implementation of
several aspects of CORBA. Related work is summarized in
section 6. And section 7 concludes the paper.

2. PROBLEMS OF MIDDLEWARE ARCHI-
TECTURE

2.1 Evolving to the unmanageable

A prominent challenge to architecture of middleware sys-
tems is that, in recent years, the spectrum of target plat-
forms is being greatly broadened from traditional enterprise
systems to mobile devices, network devices, control units
and other platforms. The characteristics of those platforms,
referred to as the emerging application domains, differ from
each other significantly. For example, middleware systems
are used on the Cisco ONS 15454 optical transport platform
to deal with hardware customizations and the communica-
tions between management software and hardware drivers .

Middleware systems are also adopted by the US Navy as the
software bus for subunits in the submarine combat control
systems [14]. Those types of platforms have introduced new
design requirements and new features to middleware sys-
tems, such as high performance, real time, high availability,
handling expensive memory resource and limited computing
power.

Although the functionality of middleware platforms has come
to a great maturity, the traditional methodology for archi-
tecting middleware platforms exhibits a lot of inherent lim-
itations which has made middleware system relatively com-
plex to develop and to deploy. Those limitations can be
shown by using CORBA as an example.

The Common Object Request Broker Architecture (CORBA) [9]

is an open specification defined by the Object Management
Group to unify and to standardize key elements of the mid-
dleware architecture. The original design goal of CORBA,
more specifically the Object Request Broker, was to “pro-
vide interoperability between applications in heterogeneous
distributed environments and seamlessly interconnect multi-
ple object systems.” [7] The distributed environment today
mandates CORBA to carry more responsibilities. Examples
of those responsibilities include transaction support, secu-
rity, high performance, small memory footprint, fault toler-
ance support, real time computing, high performance, and
more. The enrichment of features has made the architecture
of CORBA extremely sophisticated in terms of its module
compositions.

We illustrate that problem by inspecting historical releases
of JacOrb , an open source CORBA implementation in Java.
The earlier release of JacOrb implements the CORBA 2.0
specification with BOA (basic object adaptor), ACL(access
control list) based security and proprietary interceptor im-
plementation. The latest release is a significant evolution
with a CORBA 2.4 implementation of POA (portable object
adaptor), portable interceptor and the full range of CORBA
services. Figure 1 plots chronicle releases of JacOrb against
the number of files, which roughly equals to the number of
Java classes, and the size of the code in thousand line of
code (KLOC). It shows that in JacOrb the number of mod-
ules has increased around 50%, and the lines of code tripled
during a development period of approximately four years .
The trend undoubtedly points to a direction of ever growing
development size and maintenance task.

In addition to the increasing size, the typical runtime of
middleware platforms also requires more and more comput-
ing resources, such as CPU, memory and network resources.
That has become the main challenge for applying middle-
ware systems, such as CORBA, to platforms with stringent
resource constraints, despite the fact that middleware sys-
tems are greatly needed on those platforms. For instance, in
the context of wireless mobile computing, industries have re-
alized that middleware can provide an abstraction to the un-
derlying network detail, and decouple the application logic
from the complex, error prone low level details including op-
timization of data packaging and the compression of trans-
mission'. That makes mobile applications more portable,

1Joey Caron, Scott Herscher, Ann Marie O’Connor CORBA
in the palm of your hand whitepaper Vertel Corporation

Number of Files vs. Release Lines(KLOC) vs. Releases

1400 200
e e
1000 — 140
800 120
500 100 z
80
400 60
200 33
0 - o I
AP SIS EC IO, S -] LI I NI IR S S o
ST AT AT AT N Y BV o 7 AT AT a7 AN oY 5
A DI Moy R b:oe Q’Z
NN NN

Figure 1: Evolution of CORBA: The JacOrb example

text of middleware architecture. We then discuss how to

faster to develop, and easier to evolve. Unfortunately, un-
less specifically designed, the runtime cost of most of the
middleware infrastructures found today is too high to jus-
tify the benefit of middleware.

Another problem is that there has been a proliferation of
middleware specifications to accommodate different require-
ments that come from many application domains. In the
case of CORBA, OMG defines Real Time CORBA spec-
ification in order to address execution predictability, Fault
Tolerant CORBA specification for high availability and Min-
imum CORBA for embedded platforms. The Java platform
exhibits the same syndrome of having multiple editions tar-
geting different application domains. Microsoft .NET plat-
form is moving into the same direction. Those specifications
bring challenges to vendors, who must architect the system
differently to comply with particular specifications while
maintaining platform compatibility and functional consis-
tency. The new adopters often find the platform hard to
comprehend and to use since it is not always easy to match
a particular specification with user specific deployment set-
tings.

Furthermore, in traditional middleware architectures, many
systematic properties are not implemented in modules. At
the same time, not all of these systematic properties need to
participate in middleware operations for every application
domain, deployment instance, or runtime condition. For
example, the property of thread-safeness could lose it ap-
plicability if the middleware is deployed on a platform only
supporting a single thread of execution. And the support
for security might not be needed for middleware deployed
on internal networks for application integration. Losing of
modularity greatly hinders the adaptability and the config-
urability of middleware platforms.

2.2 The AOP alternative

Aspect oriented programming (AOP), a new software engi-
neering methodology, can help us to address those problems
of middleware architecture design. We introduce, comple-
menting the method of “vertical decomposition” the idea of
“horizontal decomposition”, which can be considered as a
superimposition method. We can use aspect oriented tech-
niques to “horizontally” compose or to “superimpose” the
implementation for orthogonal design requirements onto the
existing architecture without modifying the existing archi-
tecture.

In the following sections, we first introduce AOP in the con-

apply AOP methods to the design of highly modular mid-
dleware architectures.

3. ASPECT ORIENTED PROGRAMMING

Aspect oriented programming provides an alternative design
paradigm that achieves a very high degree of the separation
of concerns in software development. The primary purpose
of AOP is to liberate developers from coordinating with dif-
ferent and potentially conflicting sets of systematic proper-
ties. A systematic property can be treated as a different pur-
pose of the system other than its primary operational logic.
Examples of such properties can be found in [6]. AOP over-
comes the limitations of traditional programming paradigms
by providing language level facilities to modularize those sys-
tematic properties as an independent development activity.
The AOP compiler is capable of producing the final system
by merging the aspect modules and the primary functional-
ities together. To understand AOP further, we first look at
the definition of crosscutting concerns and aspect.

3.1 Crosscutting concern

A concern, in the context of software engineering, can be
typically identified as a purpose, a property, a concept or
a design goal. The problem of crosscutting concerns arises
when “two properties being programmed must compose dif-
ferently and yet be coordinated.” [12]. Those two properties
are said to cross-cut each other.

The crosscutting phenomenon is quite common in middle-
ware platforms. For example, one of the primary design con-
cerns of the ORB is to transparently enable invocations on
remote objects through the marshalling and unmarshalling
mechanism. In ORBacus?, an open source industrial CORBA
implementation, the steps involved in remote invocations
can be exemplified by the sequence diagram in Figure 2.

This design satisfies the OMG specification and works effi-
ciently. However, it is quite possible that the remote objects
can sometimes be deployed or migrate into the client ma-
chine or even the client process. Therefore, the design goal,
in the case of in-process server objects, is that invocations
should largely cost the same as a normal method call. The
design should avoid socket communications and the mar-
shalling /unmarshalling work. It is easy to observe that those
two concerns, location transparency and optimization of in-
process invocations, require very different designs and dis-

20ORBacus http://www.iona.com/products/orbacus_home.htm

Stub Buffer Downcall

IIOP IIOP POA

Skeleton
Client Server

1. marsha] data and copyto buffer ‘
| |
l create a downcall containingthe buffer

3. send the: buffer

—
[T‘ ummarl the results
-——— |
| |

> 4.senddata

- —copyinto buffec - - -

|
L 5. unmarshalling
‘ “*“ ; invoke server
| S |
I [esults. _ﬁ
| marshallleg resu!ts ¢ |
| receive data _|:|<_ T |

| T :“\

\ S
‘ cross the
network boundary

Figure 2: Remote Invocation: ORBacus

tinct decomposition models. Conventional decomposition
methods cannot implement both requirements in separate
modular forms simultaneously. The result is a decomposi-
tion model with tangled logic. That can be illustrated by
the ORBacus implementation of dynamic invocation in Fig-
ure 3. Figure 3 shows that, in order to maintain object trans-
parency and also to be efficient in invoking in-process server
objects, the actual implementation changes the picture in
Figure 2 by introducing the collocated servers and the col-
located clients. Collocation in ORBacus means in-process.
Step 3 in Figure 2 is replaced by a call to POAManager, typi-
cally a server-side object, to check if the target exists in the
same process. If it does, the Downcall object simply copies
the data to the buffer of the collocated server. Otherwise,
the data is sent through the IIOP client to TCP/IP sockets.

There are several drawbacks of this implementation. Firstly,
it adds multiple execution paths to Figure 2 and involves
server objects, such as POA manager, in the client side
downcall process. Secondly, for server objects located on
the same host but not in the same process, the ORBacus
implementation still uses TCP/IP based sockets, which is
not efficient for inter-process communications. Adding cor-
responding support will complicate the picture even more.

From the example above, we say that the concern for ob-
ject location transparency and the concern for optimization
of local invocations crosscut each other. It is an example
of satisfying conflicting design requirements. The result of
the crosscutting is the tangled logic as in Figure 3. What
we desire in this case is that the mechanism of making opti-
mized local invocations does not break the modularity of the
remote object invocation mechanism. We then have oppor-
tunities of optimizing the performance of both mechanisms.
That can be accomplished using aspect oriented program-
ming.

3.2 AOP Artifacts

“Aspects tend not to be units of the system’s functional
decomposition, but rather to be properties that affect the
performance or semantics of the components in systemic

ways.” [12] The existence of aspects is attributed to handling
crosscutting concerns via the traditional “vertical” decom-
position paradigms. Aspect oriented programming method-
ology can help us to separate the tangled concerns from
each other and to compose them independently. That is
particularly beneficial to the middleware design. To address
crosscutting concerns such as in the location transparency
problem, we can utilize the following artifacts provided by
aspect oriented programming techniques.

a. A component language. A component language is used
for performing the primary decomposition. ORBacus can
be treated as the component program written in the Java
component language.

b. An aspect language. The aspect language defines logic
units that can be used to compose aspects into modules.
Representative aspect languages are AspectJ [1] and Hy-
perJ [2]. We can use those languages to implement cross-
cutting concerns, such as the local invocation optimization
in our example.

c. Aspect weaver. The responsibility of an aspect weaver is
to instrument the component program with aspect programs
to produce a final system. In our case, the implementations
of both remote and local invocation mechanisms can be de-
fined separately and coexist in the final “woven” system.

There are a number of aspect oriented languages. AspectJ®
uses Java as the component language. The AspectJ com-
piler is the aspect weaver that weaves the aspect program
back into the component program on the source level or on
the byte code level. The produced system is a regular java
program, which can be compiled by a regular java compiler
or executed by a regular JVM. In addition to Java language
features, AspectJ defines a set of new language constructs to
model the aspects. A joinpoint represents an interception
point in the execution flow of the component program. For
convenience and elegance, a pointcut construct can be used
to denote a collection of joint points. Actions can be trig-
gered before, after or in place of the program execution when
a joint point is reached. Those actions are defined using

3 AspectJ http://www.aspectj.org

Downcall POAManager

Collocate IIoP

| Collocate

| 1IOP

o buffer

[} I
Tcreate a dwncall containing the buffer
3. check if IOR is local

4. sendihe buffer -=*~"

Client
T

|

I

|

I

1
It

|

Client erver Server
T T T

| I

I I

| I

AN
-1if server is remote

|
4. sendthrs buffer
. |

AN
If server is local

I
I
I
I
I
: cogyinto buffer !

_____ . 2
|
ummarshal thedj:l-s Ot

does not cross
network boundaries,
simply copy data

|
6. unmarshalling

R |
. I:T_ - ~teceivedta _ - _ [TV
PR P !

I

I
I
I
I
I
I
I
I
I
I
I
I
. invoke servér

-

|

|

! | marshalledfésylts
e = =

"""" r

| receive' cita

cross the
network boundary

Figure 3: Addressing Remote and Local Invocations Simultaneously in ORBacus

advices. An aspect module in AspectJ contains pointcuts
and the associated advices.

HyperJ? supports multi-dimensional programming by allow-
ing programmers to compose the system differently accord-
ing to specific concerns in Java. the HyperJ compiler per-
forms bytecode transformations to generate different final
systems according to extraction specifications. Each extrac-
tion is analogously termed as “hyperslicing”.

4. APPLYING AOP TO MIDDLEWARE AR-

CHITECTURE

We observe that the high degree of orthogonality among the
design requirements of middleware is one of the main causes
to the problems with today’s middleware architecture. Or-
thogonality between two requirements means that two re-
quirements can be implemented independently without the
need to coordinating with one another. Two requirements
could be independent or conflicting. The goal of satisfy-
ing multiple orthogonal design requirements simultaneously
cannot be handled adequately by the traditional software
decomposition paradigms due to the problems of the dom-
inant decomposition model [16]. The modularity designed
to address a particular set of requirements will eventually
get broken by trying to address other existing orthogonal
requirements, and especially the new ones incorporated at
later times.

In the context of middleware design where the orthogonal-
ity among the design requirements arises very often, we be-
lieve AOP appropriately fits in producing unprecedented de-
gree of modularity and customizability comparing to con-
ventional techniques. The first step of applying the aspect
oriented methodology is to clearly understand from the def-
inition of aspects the primary functional decomposition of
middleware systems and the pervasive properties. Those
properties crosscut the basic functionality of middleware and
therefore can be considered as middleware aspects.

4.1 Defining The Aspects Of Middleware

“HyperJ http://www.alphaworks.ibm.com/tech/hyperj

To correctly identify aspects, we need to use the primary de-
composition model as the reference to discover and to eval-
uate the orthogonality of design goals. It is then possible to
observe, in the primary model, the crosscutting properties,
which can be treated as aspects. We think that the funda-
mental functionality of a middleware system mainly consists
of the following:

1. A standardized programming model or API that allows
applications to make abstractions of the distributed objects
or services.

2. The mechanism of publishing the representation of an
object or a service to client programs.

3. The dispatching mechanism that forwards the requests
associated with the published representation to its concrete
instance.

4. The commonly agreed representation of data and opera-
tions on the network layer in order to exchange information
with its remote counterparts.

To be more specific, Table 4.1 shows the architecture ele-
ments that fall into the categories listed above for popu-
lar middleware platforms, including CORBA, DCOM, Java
RMI and .NET. Therefore, an aspect in middleware can
be defined as the decomposition of a design requirement
that is orthogonal to middleware’s fundamental function-
ality, which includes all four mechanisms identified above.
A design requirement is orthogonal if its implementation
in the component language crosscuts the implementation of
the fundamental functionality of middleware, which includes
any of the four mechanisms. Using this definition, we discuss
in further details the aspects of middleware in the following
section.

4.2 Aspects of Middleware

As we have shown in the previous section, crosscutting con-
cerns, or equivalently speaking, the presence of aspects, hin-
der the primary operational logic of middleware in many
ways. It is unavoidable for software systems decomposed in
traditional methods to suffer from the presence of aspects

CORBA | DCOM .NET Web services
Programming model IDL MIDL C+#,CLR languages
Identity Publication IOR OBJREF WSDL File
Request Dispatching POA Service Control Manager | ASP.NET process °
On-wire representation | IIOP Object RPC SOAP

Table 1: Middleware Architecture Elmements

in terms of performance, maintenability, configurability, and
more. Although AOP does not solve all those problems, it
gives us the capability of modularizing aspects and having
more opportunities to optimize the system under certain cir-
cumstances. To better understand how AOP would benefit
the architecture of middleware, we group middleware as-
pects into three categories depending on their relationships
with the primary functionality of middleware.

1. Non-functional Aspects. Those aspects are properties
that relate to the maintenability or debuggability of mid-
dleware. Examples of such aspects are logging, tracing,
coding rule enforcements, and others. Those design require-
ments are related to the human factors in software engi-
neering which do not carry any operational purposes. How-
ever, those aspects could consume considerable computing
resources and major development efforts. Traditional pro-
gramming paradigms are not capable of modeling them as
modules and of decoupling them entirely from the system.

2. Augmentative Aspects. Augmentative aspects are ad-
ditional operational desgin requirements incorporated into
middleware to support specific target platforms. Exam-
ples of such requirements are error handling, pre/post con-
dition checking, transaction support, interception support,
synchronization, high performance enabling, object persis-
tency, fault tolerance, realtime characteristics, and many
more. The common characteristic of those aspects is that
they “augment” the primary functionality of middleware in
serving its primary operational purpose in particular do-
mains or on particular platforms. That also entails augmen-
tative aspects are not necessarily beneficial to many other
domains or platforms. However, traditional decomposition
methods are not capable of flexibly separating them entirely
out of the middleware architecture and adding them back
only when necessary.

3. Primary Aspects. Primary aspects deal with the architec-
tural choices about the essential functionality of middleware,
e.g. the primary decomposition. Many of those choices are
conflicting among each other as each design choice works
the best in a different setting and requires a different set of
high-level abstractions. There are several such conflicts in
the CORBA architecture, such as the dynamic and static
programming interfaces, object location transparency and
local invocation optimization, and others. Traditionally de-
composed models have no better ways but to pick one design
alternative and to coordinate with other alternatives at the
same time. The result is a degradation of modularity and
performance for both design alternatives.

Through the categrization of the middleware aspects, we
have a clearer picture of the different types of crosscutting
concerns in middleware architectures. The problems of each

A Stub
Object

Skeleton

Distribution

<j> ORB POA

GIOP

v

Requirements

Problem Space Solution Space

Figure 4: Prmary ORB decomposition

type of aspects and how AOP would improve the quality
of the architecture can then be better understood. Conse-
quently, the decomposition method for middleware can be
improved accordingly to incorporate AOP techniques. We
define the aspect oriented decomposition process more con-
cretely in the following section.

4.3 Aspect Oriented Decomposition of Mid-
dleware

Abstractly speaking, a decomposition paradigm is a map-
ping from the problem domain to the solution domain using
data and operations. For instance, we use procedural de-
composition to provide a solution to a given problem via
data structures and functions. We can also use object ori-
ented paradigm to decompose the same problem using ob-
jects. The model obtained in the solution domain, a calling
tree of procedures or a graph of object dependencies, can
be referred to as the primary decomposition model of that
particular problem.

Using CORBA as an example, we identify that the key re-
quirement of the ORB functionality is to provide object lo-
cation transparency. the OMG specification can be viewed
as an object oriented decomposition of that particular re-
quirement which we define as the primary decomposition
model of the ORB. To aid our discussion, we simplify that
model to only include the following major building blocks:
Stub, Skeleton, POA, ORB, GIOP. Figure 4 illustrates that
transformation from the requirement space, consisting of one
requirement, to the solution space, consisting of five compo-
nents.

Conventional decomposition paradigms, either procedural
or object oriented, achieve good modularity with a relative

fixed set of requirements. That is because only after the
problem is largely defined can we begin the process of archi-
tecture by making very high level abstractions as the first
stage. That abstraction is usually in the forms of API inter-
faces or abstraction layers. The detailed solution, which is
at the lower level below the abstraction, can be defined later
by the techniques of late binding. Late binding associates
the implementation to the declaration of the definition later
than the compile time. It allows certain flexibility of the ar-
chitecture because the detailed knowledge of the solution can
be deferred till later stages. That top-down fashion of soft-
ware architecture approach can be metaphorically referred
to as “vertical decomposition”

However, we believe that the vertical decomposition ap-
proach cannot achieve good modularity when implement-
ing multiple orthogonal design requirements simultaneously.
That is because orthogonal design requirements produce dif-
ferent decomposition models with different high level ab-
stractions. The decomposition model of the fundamental
requirements of the system needs to be maintained consis-
tently throughout the architecture process. Therefore, the
implementation of requirements, which are orthogonal to the
primary ones, needs to be compatible with and to be fitted
into the primary decomposition model. That is referred to
as the code tangling problem [12]or the drawback of the
primary decomposition.

The case of satisfying multiple orthogonal design require-
ments happens often in middleware systems. For instance,

although the primary functionality of CORBA, or more specif-

ically the object request broker(ORB), is to facilitate trans-
parent invocation of remote objects, in certain domains, par-
ticularly enterprise computing domains, it is often manda-
tory for CORBA to provide services like security, transac-
tion, or fine-grained object access control as found in ACL-
based or role-based security schemes [3]. Typically, those
services are implemented through the support of intercep-
tors [9] in the ORB. The implementation of interceptors re-
quires changes not to one or two classes but rather systemat-
ically spanning many major functional areas in the architec-
ture of the ORB. Another example of such orthogonal design
requirements is the support for the dynamic programming
interface. As illustrated in the Figure 5, the implementation
for the requirements of supporting interceptors and the dy-
namic programming interface are scattered throughout the
primary model for object distribution. Since those two prop-
erties or features crosscut the basic functionality of ORB, we
can refer to them as two aspects of the ORB. Later sections
will provide detailed analysis of the aspects of the ORB.

The aspect oriented programming methodology can help us
re-architect middleware platforms in two ways. We can ex-
tract those scattered properties from the tangled model and
compose them separately as aspect programs. Weaving back
the aspect programs should yield the same system func-
tionality as before. Secondly, new orthogonal requirements
can be satisfied by weaving new features, which are imple-
mented as aspect programs, into the existing architecture.
Figure 6 depicts the concept of aspect decomposition and
aspect weaving using CORBA as an example. Comparing
to the diagram in Figure 5, not only is the modularity of

Stub Skeleton
A PT PT

bject P1 DPT DPT

Distribution Support DPT

ORB POA
PT = PT
<i:§j::> DPT DPT
GIOP
Requirements > DPT

Problem Space Solution Space

Figure 5: Decomposition of orthogonal require-
ments
b Stub Skeleton
bject PT DPT _ | v
Distribution Support
Vv
D

Requirements

Problem Space

Current RequestInfo

Dynamic R a
Tmp lementation LS

TORTnfo

ServerRequest

¢

Dynamic Programming

Interceptor Support
P P Interface

Aspect Space

Figure 6: Aspect Oriented Decomposition for ORB

the original components preserved, the composition for in-
terceptor support and dynamic programming interface also
become modular.

The advantage of the aspect oriented approach in middle-
ware architecture is multi-fold compared to the conventional
approach. First of all, decomposing middleware require-
ments along both the vertical dimension and the horizon-
tal dimension promotes a very high degree of specialization
in the architecture. That is, architects and developers can
now focus their attention on solving particular problems.
The artifacts obtained at the end of such architectural ac-
tivities are multiple abstraction models with one primary
decomposition and multiple aspect decompositions. Each
decomposition model focus on a specific orthogonal design
requirement. That separation of development concerns dra-
matically reduces the development effort and errors due to
the narrowing of the problem scope and the modularization

of aspects. Domain expertise can be better applied.

Secondly, horizontal decomposition promotes the stableness
and the openness of the architecture. In the case of tradi-
tional decomposed systems, an orthogonal design require-
ment typically brings changes not only to the implementa-
tional details but also to the abstractions made at the early
design stage. When applying AOP principles, since each
abstraction model is specialized to handle a much narrower
scope of problems, it is much easier to make stable abstrac-
tions. Architectural techniques such as design patterns can
help the architects to find solutions that are proven to be
optimal and unlikely to evolve very rapidly. As a direct
consequence, it becomes possible to “open up” the architec-
ture and to allow third party to develop high quality code
for a particular aspect. Taking CORBA as an example, if
the architecture of the ORB’s remote invocation mechanism
can be made stable and more concretely specified, a third
party is able to develop a specific synchronization library or
a multi-functional logging library for the ORB.

Another advantage of development software in the superim-
posing fashion is that it makes software more adaptive and
configurable not only “vertically” in the traditional dimen-
sion, but also “horizontally” in the dimension of aspects.
That capability is extraordinarily attractive to middleware
platforms because they support highly diversified platform
types. This allows us, at least statically, to pre-configure
the right set of systematic features to best suit a partic-
ular target platform. It also opens up the possibility to
dynamically configure the middleware substrate according
to the runtime information of the computing environment.
For example, we can either statically or dynamically un-
load properties like exception handling or synchronization
when the middleware substrate is deployed on an extremely
resource-constrained platform. That also allows more op-
portunities of lower level optimizations such as the dynamic
optimization techniques due to the decrease of runtime vari-
ants. Finally, from an economic point of view, the pricing
model for aspect oriented middlewares can be tailored to
match the exact user needs.

5. A CASE STUDY: RETROFITTING MID-
DLEWARE WITH AOP

From the conceptual picture presented previously, we will
now apply aspect oriented analysis and design to an exist-
ing middleware implementation to test our ideas. For sys-
tem architectures that did not embrace aspect oriented con-
cepts, the crosscutting phenomena in their implementations
should exist inherently. This section explores the viability
of aspect oriented approaches by analyzing some features
that can be considered as aspects of CORBA. We then per-
form the aspect implementation to prove that those features
like portable interceptors, dynamic programming interface,
or certain fault tolerance operations can be composed as
aspect programs in ORBacus.

5.1 Evaluation Metrics

The aspect oriented implementations should answer two ma-
jor questions: 1. Can AOP at least preserve the fundamental
functionality of middleware, in our case, ORBacus, in terms
of its performance? 2. Can aspectizing certain orthogonal

functionality lowers the complexity of the program struc-
ture for the primary decomposition? To anwser the first
question, we verify the correctness of our aspect oriented
implementation using the demo programs distributed with
the ORBacus source code. We then collect the time taken
to traverse the ORB stack by an integer CORBA message.
We divide the time into four intervals: A. Client down call.
B. Server up call. C. Server down call. D. Client up call.
The data are collected as the average time in microseconds
of 10,000 invocations on PIII 1G running with 2.4.19 Linux
kernel.

To measure the change of complexity, we have employed four
object oriented software metrics as described in [18]: Cyclo-
matic complezity number(CCN) is an heuristic index to mea-
sure the complexity of control flow in the program.Coupling
measures the degree of interconnection between classes. Weight
of class reflects how many methods are in a class. Size re-
ports the total number of executable lines. Except size, all
values are presented as the average per class.

5.2 Aspectizing Portable Interceptor Support

5.2.1 Analysis

“Portable Interceptors are hooks into the ORB through which
ORB services can intercept the normal flow of execution of

the ORB.” [9] They are observer [20] style entities that are

invoked by the ORB at various points in the execution path.

Interceptors allow a third party to plug in additional ORB

functionalities such as transaction support and security, etc.

The case of interceptor is an example of a new orthogonal
design requirement being added to the existing architecture.
The specification for interceptors are added to the ORB ar-
chitecture at a later time after the basic functionality of the
ORB has been defined. The implementation of intercep-
tor support crosscuts the implementation of the basic ORB
functionality systematically as the following;:

a. The CORBA::ORB interface contains methods and data
members to allow the registration of interceptors. It also
provides methods to allow access to those interceptors, when
it is necessary to notify them upon reaching interception
points.

b. During the propagation of the request, the invocation
context is checked to see if it is modified by interceptors.

c. The POA needs to bundle requests with interceptors, if
they are registered with the ORB.

Conceptually, the mechanism of portable interceptors is sim-
ilar to that of AOP as they both base on interceptions of the
execution flow of the program, a conventional solution, how-
ever, is not capable of modularizing the interactions among
ORB objects and the interceptors summarized by the above
list. The interaction code rather scatters around the ORB
implementation. The code includes the initialization of in-
terceptors, management of interceptors with upcall or down-
call creation, notification of interception points, and more.
Not only does the code introduce intermingled logic into
ORB objects, it also introduces performance overhead and
additional control paths because the extra code is always
executed despite whether interceptors are used or not for a
particular application.

In some domains, certain CORBA services that thrive on
interceptors, such as transaction services and security ser-
vice, are more applicable to enterprise application domains.
Middleware platforms, being indiscriminate of any partic-
ular domain, should also cleanly support applications that
are not willing to pay for the overhead of managing portable
interceptors. By composing the interceptor support using
AOP techniques, we can factor out the code dealing with
portable interceptors, and weave the feature back into the
ORB only if it is mandated by a particular application do-
main.

5.2.2 Implementation

We present a simplified version of our aspect implementation
of interceptor support in AspectJ for the ORBacus ORB.
The following aspect program performs two simple tasks.
The ORBInitIS aspect initializes the interceptor initializ-
ers as specified in [9], and the POAIS aspect intervenes in
the upcall creation of POA by creating a different UpCall
with interceptors support. Figure 7 is the UML diagram of
the relationship between aspects and primary models. Since
UML has no specific notations for AOP idioms, we model
pointcuts as attributes, and before,after, or around as
methods. We omitted portions of the long signatures in As-
pectJ aspect definitions to make the diagram more concise.
The diagram reflects the following facts:

a. The interceptor aspect for the ORB object is captured in
the ORBIS aspect entity. Same as POAIS for POA object.

b. The after idiom indicates that some interceptor support
code is executed after the execution of the bound method,
namely, the instantiateORBlnitializer method in ORB_Impl
class. The around idiom indicates that the interceptor sup-
port code is executed on behalf of the bound method, which
is the createUpcall method in POA _Impl class.

c. The directional association defines that aspects are ori-
ented around primary objects. Primary objects are not
aware of the existence of the aspect objects.

The code snippet 8 shows the aspect implementation for
ORB_Impl. We first introduce a new attribute of PIManager
to the singleton [20] instance of ORB. The PIManager is re-
ponsible for notifying all interceptors of the inception points.
The join point is defined as “tt Init”, which intercepts the
method call of invoking all initializers in the ORB. (Line
9-17). The run time arguments, properties and logger, are
exposed to be used later by advices. One advice is defined
using the “after” idiom(Line 21), so that the interceptor
specific initialization (Line 24-27) is executed after the ini-
tialization of other ORB initializers, designated by the Init
joint point. Note that the advice body is omitted because
it is merely an extraction from the original implementation
in ORBacus. The role of this aspect module is to separate
all ORB object related interceptor handling from the ORB
object.

The code segment 9 shows the aspect module that collects
all POA related interceptor support. A pointcut is defined
to be the call to the regular Upcall creation method in POA.
(Line 5). This example uses the around advice to suppress
the original call of creating a regular upcall and to execute

import java.util.x;
priviledged aspect ISOrbInit
extends InterceptorSupport

//Add a new attribute to class ORBInstance
private PIManager
ORBInstance.interceptorManager_=null;

//Define a weaving point when
/ /instantiate ORBlnitializer get invoked
pointcut Init(ORB_impl orb,
java.util.Properties properties,
com.ooc.0B.Logger logger):
execution(private void
ORB_impl.instantiateORBInitializers(
java.util.Properties, com.ooc.0B.Logger))
&&target(orb)&&args(properties,logger);

// Define additional initialization logic performed
//after the normal initialization
after(ORB_impl orb,Properties properties,
com.ooc.0B.Logger logger):
Init(orb,properties,logger)

// The code is omitted. It is extracted from and
// identical to the code in the original source

}

Figure 8: Interceptor Support: Initialization

the advice, which creates a upcall that contains interceptor
instances instead. (Line 20-31)

The aspect implementation improves the efficiency of the
original implementation. That is, for domains that do not
require interceptors, application can enjoy simpler system
structure, as certain classes such as PIManager needs not to
be known to and loaded into the system. Consequently, the
extra execution can be avoided as well.

5.2.3 Results and Evaluation

Table 2 shows a comparison of the original ORB, the aspec-
tized ORB with the aspect of Portable Interceptors taken
out. Table 3 shows a comparison of those metrics between

Interval A | B|C|D
Original 78 | 8 | 42 | 118
Aspectized | 79 | 9 | 42 | 122

Table 2: Response Time of Aspectizing PI

the original ORB and the aspectized ORB with the aspect
taken out. The values are computed as the average per class,
except size. We can conclude from the performance data and
the structural changes that: 1. Aspect oriented implemen-
tation of supporting portable interceptors in ORB is able
to preserve the original ORB functionality by correctly per-
forming remote invocations and invocations of interceptors.

© 00O U W

NN N NN R s e e e
B W N RO © 00NN OOtk W~ O

25
26

27
28

29
30

Aspect
Implementation

! { Intercé;i:;:éllpport ‘

Weaving modules

Primary Model

I0ORInterceptor

ORB_Impl

interceptorManage
(void

ORB_impl.instantiateORBInitializ

nuil Finstanty 0
ers(...)): pointcut

<<aspect>>

POAIS

POA_impl
e TT0+ peall

steDestroy ()] : pointcut

Figure 7: UML diagram for Interceptor Support Aspect

CCN | size Weight | Coupling
Original 4.11 3016 | 26.8 34.75
Aspectized | 4.0 2909 | 26.7 32.38

Table 3: Structural Metrics of Aspectizing PI

2. The performance of aspectized ORB is equivalent to the
original ORB. 3. The structural complexity of the primary
model decreases as the result of the aspectization. 4. We are
able to weave the aspect either in or out at the compile time
which greatly enhances the configurability of ORBacus.

5.3 Aspectizing Dynamic Programming Model

5.3.1 Analysis

The dynamic invocation mechanism in an ORB is supported
by the dynamic invocation interface (DII) and the dynamic
skeleton interface (DSI), which are part of the CORBA spec-
ification. By using DII and DSI, an application can, during
runtime, compose an invocation on an interface that it has
no prior knowledge of.

IDL and its language mappings provide developers with a
strongly typed programming model. Data are represented
by their types and operations can be identified by their dis-
tinguished names and signatures. One of the advantages of
using that programming model is that it imposes a rigorous
and precise programming rule on developers to ensure the
consistency and accuracy of their applications. That is why
strongly typed programming languages are widely adopted.

However, a strongly typed programming model alone is not
able to satisfy the requirements of some application do-
mains. The reason is, a strongly typed programming model
requires developers to have early knowledge of all the types
and interfaces prior to the application development. ORB
allows applications to be developed by different parties at
different time. It is, therefore, extraordinarily hard to have
that early knowledge because, in a collaborative computing
environment such as what CORBA provides, it is a huge task
to define all the types and interfaces, and to prevent them
from evolving out of synch. Under certain circumstances,
such as for application bridges that integrate multiple sys-
tems, the interface contracts simply do not exist. In these
cases, static programming model is not applicable.

The dynamic properties supported by DII and DSI are in-

10

dependent of that of the static programming model. For
the same design requirement, applications written using DII
and DSI are composed very differently from using Stub and
Skeleton based static programming model. Therefore, those
two models are rarely used together. However, the ORB
needs to coordinate the support for DII and DSI regardless
in following ways:

a. The IDL language mappings, which are part of the pro-
gramming interface of the ORB, need to support dynamic
invocation. An example is the extraction operation from the
Any type defined in the Java language mappings [17].

b. The CORBA::ORB interface contains operations that
allow dynamical creation of invocation arguments and re-
quests.

c. The request processing mechanism needs to support dy-
namic invocations including marshaling and unmarshaling
of dynamically composed requests and their arguments.

Based on the above analysis, we conclude that the code
for supporting DII and DSI is not modular and scatter-
ing around an architecture, of which the primary invocation
model is static We argue that, since the dynamic program-
ming model is orthogonal to the fundamental functionality
of the ORB, it can be treated as an aspect of the ORB
and implemented as aspect programs. We then are able to
factor in and out dynamic programming model depending
on available computing resources and target application re-
quirements.

5.3.2 Implementation

The aspect oriented implementation of the dynamic pro-
gramming interface for ORBacus consists of two parts: the
dynamic invocation interface(DII) and the dynamic skele-
ton interface(DSI). For purpose of illustration, we present a
simplified version of the implementation of DII. The UML
diagram in Figure 10depicts the relationships among aspect
implementations and the primary program.

The UML diagram shows two classes, namely ORB_impl and
Delegate, are being manipulated by aspect modules,

ORB_implDIT and DelegateDII. The after idiom carries out
extra initialization for DII after the normal initialization
process completes. The around idiom replaces the bound
method call to the initialize method of class ORB_impl
with a new definition. The code snippet 11 shows how the

Aspect
Implementation

Weaving modules

Primary Model

<<aspect>>

ORB_implDII

%ORBimé

-ORBInstance.multiRequestSender: MultiRequestSender
+Init (ORB_impl orb) :execution(initialize(...)):

pointcut

+after (ORB_impl orb) :Init(...) ()

Gaameat [Delegate |
DelegateDIl
—RequestCreate (Delegate d) :execution (Request request (...)): pointcut
+around (Delegate d, ...):RequestCreation(...) (): Request

Figure 10: UML Diagram for The Dynamic Invocation Interface Aspect

after idiom is implemented in AspectJ. This code performs
two simple tasks: 1. It utilizes the Introduction capability
of AspectJ to add an attribute of type MultiRequestSender
to the class ORBInstance to handle multiply sent dynamic
requests by the client side(Line 5). 2. It uses the after
idiom to create a new instance of MultiRequestSender as
the additional initialization performed after the normal ini-
tialization of ORB completes (Line 7-23). This implementa-
tion decreases the coupling of class ORB_impl because, if DII
is not “woven” into the system, MultiRequestSender needs
not to be known to the system and to be loaded. Extra class
creation can be avoided as well. Code snippet 12 uses As-
pectJ to introduce a new method request in class Delegate
to allow the creation of dynamically composed requests (line
4-5). This simple code shows how aspect oriented implemen-
tation can decrease the weight of the class by augmenting
the class with additional interfaces only when it is necessary.
There are a number of methods in class Delegate that are
solely dealing with DII request. Separating them out into
aspect modules has greatly simplified the complexity of the
Delegate class while still preserving its DII capability.

5.3.3 Results and Evaluation

Table 4 presents the measurements, as in the case of portable
interceptors, to examine changes in program structures and
the response time for the aspectization of both DII and DSI.
We used static invocation interface on the client side for
the DSI measurements. Therefore, the client side process
times, interval A and interval B, dramatically decrease as
compared with DII. However, that change is irrelevant to
our AOP implementation. The data show that, as in the
case of portable interceptors, aspectizing the dynamic pro-
gramming interface(DPI) has simplified the control flow and
decreased the class size. The average weight of classes in the
case of DSI dose not change because server side support for
dynamic programming interface is much simpler. No ad-
ditional methods are used to support DSI in the original
implementation. The decrease of the weight of class is more
visible in the case of DII due to aspectization of many dy-
namic request creation methods, as shown by the code snip-
pet. The performance of the ORB with DPI factored out is
again equivalent to the original ORB. We therefore conclude
that aspectizing DPI simplifies the structure of the system
and at least preserve the runtime performance.

5.4 Adding Fault tolerance as An Aspect

11

We have so far presented implementations of support for
portable interceptors, an augmentative aspect, and the dy-
namic programming interface, a primary aspect. Aspect ori-
ented decomposition can also be used to add a new feature
to a legacy middleware implementation in a posteriori fash-
ion without modifying its existing architecture. We follow
the same methodology as in the previous aspectization work
to discuss conceptually how certain fault tolerance features
can be superimposed onto the ORBacus ORB architecture.

5.4.1 Analysis

The requirement for fault tolerance comes from domains
that are running mission critical applications, such as pub-
lic safety systems, medical support applications and avionic
control systems. OMG defines the fault tolerant CORBA
specification to provide standard interfaces and protocols in
order to facilitate the replication of application objects. The
fault tolerance services include factories for replicating ob-
jects, the fault detection and the notification mechanism,
and the recovering mechanism.

Similar to the case of portable interceptors, the support for
fault tolerance is also incorporated into the CORBA archi-
tecture at a much later time. Consequently, the semantics
of the primary ORB objects needs to be augmented in order
to support object redundancy. The fault tolerance is a per-
vasive property and can be regarded as an aspect because,
in order to ensure transparency to application objects, fault
tolerance support crosscuts the primary functionality of the
ORB in the following ways:

a. The ORB must be able to handle additional information
in the object reference. The replicas of CORBA objects
are managed using groups by the fault tolerance services.
Therefore, instead of IOR, fault tolerant CORBA objects
use IGOR to publish their identities. IGOR is an extension
to IOR by adding information about the group the server
object belongs to.

b. The programming interface has additional semantics. It
requires modifications to a number of operations of CORBA: :
Object, such as the deciding whether two server objects are
equivalent. Those modifications mainly involve dealing with
the group information that is added to the object identity.

c. The client side ORB must support transparent re-transmission

mechanism to retry requests at alternative destinations, when
the primary object in the replication group fails to process

Structural Metrics Runtime Interval
CCN [Size [Weight[Coupling | A [B [C [D
Dynamic Invocation Interface

Original 5.08 1559 | 40 40.67 105 | 59 | 37 | 125
Aspectized | 4.76 1490 | 37.67 39.33 108 | 59 | 35 | 124
Dynamic Skeleton Interface

Original 3.64 274 9.33 14 79 8 43 | 126
Aspectized | 3.46 262 9.33 13.5 76 9 41 | 119

Table 4: Metric Matrix for the aspectization of DII and DSI

the request due to a fault. 5.4.3 Evaluation
The sample implementation adds the transparent re-invocation

A desired implementation of fault tolerance should avoid mechanism to a legacy ORB implementation with no sup-
making changes directly to the ORB architecture, because port for fault tolerance without modifying any of the legacy
otherwise, like in the case of interceptors, it bundles features, code. The aspect oriented implementation is much superior
which are not needed in application domains other than the to the traditional “open surgery” implementation as it does
ones that need high availability support. We believe fault not introduce extra complexity to the original architecture,
tolerance support can be composed as aspect programs and in terms of both code size and class coupling. For applica-
should be superimposed onto the ORB, just like that of in- tion domains that do not require fault tolerance support,the
terceptor support discussed in the previous section. The underlying ORB is essentially not changed. We can also
advantage of doing so, in addition to preserving the ORB ar- “weave” the feature into the ORB if it is required to do so.
chitecture, is that we are able to configure the feature in and The configurability and adaptability is greatly enhanced.

out either at release time or at deployment time, depending
on the requirements of the target application domain.

5.5 Lesson Learned

5.4.2 Implementation We have learned the following lessons through our experi-
We provide a partial implementation of fault tolerence func- ence of applying aspect oriented analysis and design in solv-
tionality, which modifies the client side invocation mech- ing middleware architecture problems.
anism to handle transparent re-transmission of requests if 1. AOP does not incur much runtime penalty or code bloat.
the primary server object is unable to process the request. That is because the logic that AOP tries to modularize ei-
We start by inspecting the client side downcall mechanism ther already exists inside or needs to be put into the primary
in ORBacus. The sequence diagram in Figure 13 shows decomposition. Our retrofitting work extracts the tangled
a skimmed version of what happens when a client object code from the legacy middleware implementation and col-
writes a number of type long to a remote object. Call No.1 lects them in separate modules. The static .Weaving‘o‘f As-
through 6 deal with setting up the invocation with a buffer, pectJ keeps the overhead of code transformation at minimal.
OutputStream, and the associated request information, rep-
resented by Delegate. The lower level involving the destina- 2. The AOP implementation has a causal relationship W.ith
tion of the request and request sending process starts from the primary decomposition. That entails the modification
call No.7. The Downcall object represents the communica- of the primary abstraction model leads to corresp.onding
tion details for corresponding server object. changes in aspect modules. As we explained earlier, we
expect the adoption of AOP paradigm to make the pri-
To support transparent re-invocation, we first extend the mary abstraction much more stable and less influenced by
Downcall class to create RetryDowncall, which differs from requirement changes. Moreover, through better design of
a regular downcall by having the connection information of the “weaving” mechanism, aspect implementation can be
an alternative server object in the same group, as illustrated further decoupled from the primary program. We expect
by UML diagram in Figure 15. It also contains the special better architectural techniques, such as AOP design pat-
service context to designate the request as a retransmission, terns, can be used to achieve that.
as defined in [8]. The modification to the downcall mecha-
nism is shown by the code snippet 14. 3. It is still difficult to discover all aspects in middleware
platforms, which could bring challenges to more specifically
The main idea in the code snippet 14 is to repeat sequence defining what the primary design requirements of middle-
No.5 and on for alternative server objects in case of failures. ware are.
We use the introduction(line 4-9) to add new method, which
associates the buffer with a downcall containing an alterna- 4. Runtime adaptation is a very attractive feature in middle-
tive server object in the same group. Line 11-15 defines a ware domain. However, there are few mature runtime weav-
pointcut to the invoke method, which is sequence no.4 in ing aspect languages available. The overhead and the opti-
Figure 13. The around advice(line 18-36) use the proceed mization of runtime aspect weaving need to be researched
mechanism to try the unmodified method call first. Upon further in the context of middleware.

catching a failure exception, the advice repeats sequences
starting from No.5 by setting up a new request and recur-

sively retry all other alternatives. 6. RELATED WORK

12

com.ooc.
COMBA Delegate

com.ooc. Inwocation
DowncallStub Context
T

MyStub com.ooc.COMBA Object
|_| _OutputStream | | _Tmpl
I T T
! 1. write_long ! |

I
1 2. inole(com.ooc.COMA.OutputStream)

3.

Q

8. _OB_in

5(3Iegate |
4. imolefthisout)
5

T
|

|

I

I if (response)

| down.request () ;
| else

| down.oneway () ;
I

I

.etupRques

6. inole(wlf, opt ‘ !
7. <<create=> H
ationContext() 1 ; Downcall
9 Downcall :

0

10. posqalﬁal :

u!

I
I
L |
i |
| | 11. reqyed i
| | 7
I I I I'!'I
I I I
I I I I ’
L] l | | l :
! I I I I
' | | | !
| ! |
|
| ! |
I
I I
I
I I
I
|
I
|
Figure 13: Client Side Invocation Sequence
Aspect | Weaving modules Primary Model
Implementation j
i Ty T
|
[Downcail | | i
‘ i
i <<aspect>> !
R etryDowncall | | FTI P ! [DowncallStub |
! voke: InputStream DowncallStub.invoke(...)): pointcut I {Finvoke (se17:0bject, out :OutputStream) : Inputstream]
! :Invoke(...) () H =
| tupRet ryRequest () : OutputStream
i

i
i
i
i
i

Figure 15: UML Diagram: FT aspect implementation

Related work on the topics discussed in this paper can be
broadly classified into approaches that provide customiza-
tion through static or dynamic policy selection, reflection to
adapt middleware internals to changing runtime conditions,
and configuration based on various forms of aspect defini-
tions. Much of the discussed projects use several of these
techniques. We briefly discuss some of them below.

Astley [19] achieve middleware customization through tech-
niques based on separation of communication styles from
protocols and a framework for protocol composition. Fur-
ther aspects that crosscut the system implementation are
not explicitly addressed. Several projects exploit reflective
programming techniques to allow the middleware platform
to adapt itself to changing runtime conditions. This includes
projects such as openCOM [15], openCORBA [13], and dy-
namicTAO [4]. Recent progress in this area has been sum-
marized in a reflective middleware workshop®

LegORB and Universally Interoperable Core are middle-
ware platforms designed for hand-held devices, which al-
low for interoperability with standard platforms. Both of-
fer static and dynamic configuration and aim to maintain
a small memory footprint by only offering the functional-
ity an application actually needs. Customizable functions
range from the transport protocol to method dispatching
and marshalling. Both platforms do not support the notion
of aspects as code cross cutting concerns. Aspects in the
sense of LegORB and UIC are functional units supporting
application-level requirements.

SReflective middleware workshop April 7th-8th, 2000,
http://www.comp.lancs.ac.uk/computing/rm2000/

13

Similarly, Jonathan constitutes an open middleware frame-
work that can be customized with respect to a large number
of functions. Jonathan aims to embrace several standard
middleware platforms and offer customization according to
application needs. It can be configured to use IIOP or RMI.

The difference between our approach and those listed above
is that we analyze the challenges of middleware architecture
more fundamentally from the requirements domain. As the
result of that analysis, we believe that the aspect oriented
approach is more powerful in dealing with architectural is-
sues like configurability, adaptability and evolution. Aspect
oriented approach shows more promises to solve crosscut-
ting problems than other approaches, such as those based
on reflection and component programming.

Bernard and Putrycz [5] presents an AOP approach of adding
load balancing functionality to ORBacus. Our work differs
from it fundamentally as we aim at solving a much broader
set of architectural problems and developing new middle-
ware architecture methodologies.

This work is inpired by Jacobsen [10], [11] who outlined the
use of non-traditional programming paradigms for middle-
ware system design.

7. CONCLUSION

The architecture of middleware platforms has been evolv-
ing dramatically due to the necessity of a software layer
that decouples applications from the concern of handling
the complexity of distributed computing environment. The
driving force comes from the effort of incorporating more
and more new design requirements from a wide range of ap-

aspect POAISAspect extends InterceptorSupport

//an interception point is defined as

//the upcall creation method of POA

pointcut UpCallCreation(POA_impl poa,

// and other arguments of the creatUpcall method):
args(...) &&

call(com.coc.0B.Upcall

POA._OB_createUpcall (...))&&target(poa);

// The around call replace the original upcall

// creation semantics with a new one

com.ooc.0B.Upcall

around(com.ooc.0BPortableServer.POA_impl poa,

// and other arguments of the creatUpcall method

):

UpCallCreation(poa,oid,upcallReturn,profileInfo,
transportInfo,requestId,op,in,requestSCL)

com.ooc.0B.Upcall upcall = null;

// Create an upcall with portable interceptor

// supoort

com.ooc.0B.PIUpcall piUpcall =

new com.ooc.0B.PIUpcall(
poa._O0B_ORBInstance(),
upcallReturn, profileInfo, transportInfo,
requestld, op, in, requestSCL,
poa._0B_ORBInstance().getPIManager());

upcall = piUpcall;

return upcall;

}
}

Figure 9: Interceptor Support:Upcall Creation

plication domains that desire the support of the middleware
platform. We have identified that it is impossible to obtain
a good architectural decomposition using the conventional
software engineering approach in the case of middleware,
where orthogonality among design requirements is a com-
mon phenomenon. Modularity is broken and customization
is becoming more and more difficult to achieve.

To address those problems, we believe that the aspect ori-
ented engineering approach is promising in compensating
the limitations of the conventional decomposition method.
The method of separating the development concerns of cross-
cutting properties from that of fundamental system func-
tionalities has given us a better way of developing, evolving
and deploying middleware platforms in terms of modular-
ity, customizability and adaptability. In the case study of
CORBA, we showed that certain features in the ORB such
as interceptor support, fault tolerance, dynamic program-
ming model, logging and tracing, can be treated as aspects
and, therefore, can be composed in aspect programs. By do-
ing so, not only is the feature code that scatters around the
ORB architecture becoming much more manageable, we also
acquire the power of being able of configuring those features
in and out depending on the requirements of the application
domain. Consequently, we are able to dramatically expand

14

privileged aspect ORBDII
{
//introduce a new field multirequest sender in
// ORBlInstance. This field is initialized
//by ORB_Impl, which is executed before ORBlInstance
private MultiRequestSender
ORBInstance.multiRequestSender_;

after(ORB_impl orb,
org.omg.CORBA.StringSeqHolder args,
String orbld, String serverld,
String serverInstance, int concModel,
java.util.Properties properties,
int nativeCs, int nativelWcs, int defaultWcs):
execution(private void initialize(
org.omg.CORBA.StringSeqHolder, String,
String, String, int,
java.util.Properties,
int, int, int))
&&target(orb)&&args(
args,orbld,serverld,serverInstance,concModel,
properties,nativeCs,nativelWics,defaultWcs)

orb.orbInstance_.multiRequestSender_=
new com.ooc.0B.MultiRequestSender();

Figure 11: DII:Initialization

the spectrum of middleware application. Maximum degree
of configurability and adaptability should be the nature of
middleware platforms. Aspect oriented software engineering
approach can greatly help in achieving the design goal.

Though conceptually intuitive, we still need to quantita-
tively analyze the benefits of aspect oriented approaches in
the context of middleware architecture. We have performed
the aspect oriented implementation by taking certain fea-
tures out of an existing legacy ORB implementation, im-
plementing them as aspect programs, and weaving those
features back into the ORB. We have presented our pre-
liminary quantitative analysis to inspect the effects on both
the structure and also the performance of middleware as the
result of applying AOP techniques to the middleware archi-
tecture. Our conclusion is that AOP lowers the complexity

privileged aspect DelegateDII

{

org.omg.CORBA.Request
com.ooc.CORBA.Delegate.request (org. omg.CORBA
.Object, String)

return new Request(self, operation) ;

Figure 12: DII:Request Creation

WUt kW N

NN NN NNNDNDNDNFE === e === O
© 00 N O Uk W N RFE,O © WU W~ O

© 0D U W

Ju—
o

priviledged aspect FTDowncallStubAspect
extends InterceptorSupport

{

public OutputStream
DowncallStub.setupRetryRequest
(String op, boolean resp)

//actual code omitted

pointcut Invoke(DowncallStub stub,

// and other arguments of the creatUpcall method):
args(...) &&

execution(public com.ooc.CORBA.InputStream
DowncallStub.invoke (...))&&target(stub);

com.ooc.CORBA.InputStream

around(DowncallStub stub, org.omg.CORBA.Object
self, com.ooc.CORBA.OutputStream out
):

Invoke(stub,self,out)
{
try{
return proceed(self,out);
}catch(FailureException e)
{
// Retrieve the invocation context
InvocationContext ic =(InvocationContext)
out._0B_InvocationContext();
String op = ic.downcall.operation();
String resp = ic.downcall.response();
setupRetryRequest(self,op,resp);
return stub.invoke(self,out);

of the architecture, at least preserves the runtime behaviour,
and dramatically increase its configurability and adaptabil-
ity. In our future work, we will accumulate more experience
in applying the aspect oriented analysis and design princi-
ples on other variances of middleware technologies.
will greatly assist us in designing a fully aspect oriented
middleware platform, which is our long term research goal.

Figure 14: Client Side Fault Tolerance Support

8. REFERENCES

[1] Aspect]. http://www.aspectj.org.
[2] Hyperj. http://www.alphaworks.ibm.com/tech/hyper;j.

[3] Gerald Brose. Raccoon - an infrastructure for

managing access control in corba. DIAS2001, kluwer,
2001.

[4] Fabio Kon Manual Roman Ping Liu Jina Mao

Tomonori Yamane Luiz Claudio Magalhaes Roy H.
Campell. Monitoring, security, and dynamic
configuration with the dynamictao reflective orb,.
IFIP/ACM International Conference on Distributed
Systems Platforms and Open Distributed Processing,
2000.

That

= © 00 N O U kW N

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

15

[5]

Guy Bernard Erick Putrycz. Using aspect oriented
programming to build a portable load balancing
service.

Robert Filman. Achieving ilities.
http://ic.arc.nasa.gov/ filman/text/oif/wcsa-
achieving-ilities.pdf.

Object Management Group. Request for information.
July 1990.

Object Management Group. Fault tolerant corba draft
adopted specification. March 2000.

Object Management Group. The common object
request broker: Architecture and specification.
December 2001.

Hans-Arno Jacobsen. Middleware architecture design
based on aspects, the open implementation metaphor
and modularity. Workshop on Aspect-Oriented
Programming and Separation of Concerns, August
2001. Lancaster, UK.

Hans-Arno Jacobsen. Re-thinking middleware
architecture design. The Sixth Biennial World
Conference on Integrated Design & Process
Technology, June 2002. Pasadena, California.

G. Kiczales. Aspect-oriented programming. ACM
Computing Surveys (CSUR), 28(4es), 1996.

T. Ledoux. A reflective open broker. Lecture Notes in
Computer Science, 1999.

Robert Kelly Louis DiPalma. Applying corba in a
contemporary embedded military combat system.
OMG’s Second Workshop on Real-time And
Embedded Distributed Object Computing, June 2001.

Clarke M. Blair G. Coulson G. Parlavantzas N. An
efficient component model for the construction of
adaptive middleware. IFIP / ACM International
Conference on Distributed Systems Platforms
(Middleware’2001), November 2001.

C.A. Constantinides Atef Bader Tzilla H. Elrad
Mohamed E. Fayad P. Netinant. Designing an
aspect-oriented framework in an object-oriented
environment.

OMG. IDL to Java Language Mapping Specification.

Linda H. Rosenberg. Applying and interpreting object
oriented metrics.

M. Astley D.C. Sturman and G. A. Agha.
Customizable middleware for modular software. ACM
Communications, May 2001.

Erich Gamma Richard Helm Ralph Johnson John
Vlissides. Design Patterns. Addison-Wesley, 1995.

