

ibm.com/redbooks

Patterns: Direct
Connections for Intra- onnections for Intra-
and Inter-enterprise

Mark Endrei
Filippo Diotalevi
Wolfgang Dostal

Karsten Elich
Uday Manginapudi

Wendy Neave
William Patrey

Select an intra- or inter-enterprise
integration approach

Explore J2EE, Web services and
EDI solutions

Learn by example with
sample scenarios

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Patterns: Direct Connections for Intra- and
Inter-enterprise

February 2004

International Technical Support Organization

SG24-6933-00

© Copyright International Business Machines Corporation 2003. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Second Edition (February 2004)

This edition applies to IBM WebSphere Application Server V5.0.2, and IBM WebSphere Studio
Application Developer V5.1, for use with Microsoft Windows 2000.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xi.

Contents

Notices . xi
Trademarks . xii

Preface . xiii
The team that wrote this redbook. xiii
Become a published author . xvi
Comments welcome. xvi

Part 1. Patterns for e-business . 1

Chapter 1. Patterns for e-business . 3

1.1 The Patterns for e-business layered asset model . 4
1.2 How to use the Patterns for e-business . 5

1.2.1 Select a Business, Integration, or Composite pattern, or a Custom
design . 6

1.2.2 Selecting Application patterns. 11
1.2.3 Review Runtime patterns . 12
1.2.4 Review Product mappings . 15
1.2.5 Review guidelines and related links . 15

1.3 Summary . 16

Chapter 2. Fundamental concepts in Process Integration 17

2.1 The need for a unifying technique . 18
2.1.1 Similarities between intra- and inter-enterprise integration 18
2.1.2 Summary. 19

2.2 Process Integration concepts and notations . 19
2.2.1 Collaboration and Interaction . 19
2.2.2 Connectors and Adapters . 21
2.2.3 Classification of interaction between sub-systems 24

2.3 QoS capabilities framework. 26
2.3.1 Operability . 26
2.3.2 Availability . 26
2.3.3 Federation . 27
2.3.4 Performance . 27
2.3.5 Security . 27
2.3.6 Standards compliance. 28
2.3.7 Transactionality . 28

2.4 Application patterns for Application Integration . 28
© Copyright IBM Corp. 2003. All rights reserved. iii

2.5 Application patterns for Extended Enterprise . 29
2.6 Summary . 30

Chapter 3. Application Integration. 33

3.1 General guidelines . 34
3.1.1 Business and IT drivers. 35
3.1.2 Context . 35
3.1.3 Solution . 35
3.1.4 Putting the pattern to use . 36
3.1.5 Application Integration solution requirements 36
3.1.6 What's next . 39

3.2 Application patterns. 39
3.3 Process-focused Application Integration patterns 40

3.3.1 Direct Connection application pattern . 43
3.3.2 Broker application pattern . 48
3.3.3 Serial Process application pattern. 50
3.3.4 Parallel Process application pattern . 51

3.4 Data-focused Application patterns . 53
3.5 Runtime patterns . 54

3.5.1 Runtime patterns for Direct Connection . 54
3.6 Product mappings . 57

3.6.1 Product mappings for Direct Connection: Message variation 57
3.6.2 Product mappings for Direct Connection: Call variation 60

3.7 Previous Application Integration patterns . 66

Chapter 4. Extended Enterprise . 69

4.1 General guidelines . 71
4.1.1 Business and IT drivers. 71
4.1.2 Context . 71
4.1.3 Solution . 73
4.1.4 Putting the pattern to use . 73
4.1.5 What's next . 74

4.2 Application patterns. 74
4.2.1 Exposed Direct Connection application pattern 78
4.2.2 Exposed Broker application pattern . 83
4.2.3 Exposed Serial Process application pattern 85

4.3 Runtime patterns . 86
4.3.1 Runtime patterns for Exposed Direct Connection 86

4.4 Product mappings . 88
4.4.1 Product mappings for Exposed Direct Connection: Message variation

89
iv Patterns: Direct Connections for Intra- and Inter-enterprise

4.4.2 Product mappings for Exposed Direct Connection: Call variation. . . 92
4.5 Previous Extended Enterprise patterns. 94

Chapter 5. Node types and Product descriptions 97

5.1 Node types . 98
5.2 Product descriptions . 101

5.2.1 IBM WebSphere Application Server . 102
5.2.2 IBM WebSphere MQ . 104
5.2.3 IBM CICS . 105
5.2.4 WebSphere Business Integration Adapters 106
5.2.5 WebSphere Data Interchange. 106

Part 2. Scenarios and guidelines. 109

Chapter 6. Business scenarios used in this book 111

6.1 Customer overview . 112
6.1.1 Business profile. 112
6.1.2 Business goals . 112
6.1.3 Existing environment. 112
6.1.4 Non-functional requirements . 114

6.2 Intra-enterprise scenarios . 115
6.2.1 Stage I: Internal ordering on demand . 116
6.2.2 Stage II: Internal ordering on demand with delivery date 119

6.3 Inter-enterprise scenarios . 121
6.3.1 Stage III: External ordering on demand . 122
6.3.2 Stage IV: External on demand ordering with delivery date 124

Chapter 7. Technology options . 127

7.1 Selecting an integration technology . 128
7.2 XML . 129

7.2.1 Defining XML documents . 129
7.2.2 XSLT . 130
7.2.3 XML security . 131
7.2.4 Advantages of XML. 132
7.2.5 Disadvantages of XML . 132

7.3 Web services. 133
7.3.1 Static and dynamic Web services . 135
7.3.2 Web Services Invocation Framework . 135
7.3.3 Web services and the service-oriented architecture 136
7.3.4 Web services security . 136
7.3.5 Advantages of Web services. 138
7.3.6 Disadvantages of Web services . 138
7.3.7 Comparing Web services with CORBA and RMI 138
 Contents v

7.4 J2EE Connector Architecture . 139
7.4.1 CICS resource adapter . 140
7.4.2 IMS resource adapter . 140
7.4.3 Advantages of J2EE Connectors . 140
7.4.4 Disadvantages of J2EE Connectors . 141

7.5 Java Message Service . 142
7.5.1 What messaging is . 143
7.5.2 JMS and IBM WebSphere MQ . 143
7.5.3 Advantages of JMS . 143
7.5.4 Disadvantages of JMS . 144

7.6 Other integration technologies . 144
7.6.1 RMI/IIOP . 144
7.6.2 CORBA . 145

7.7 Where to find more information . 145

Chapter 8. Using RPC style Web services . 147

8.1 Business scenario . 148
8.2 System design overview . 148
8.3 Web services for J2EE . 151
8.4 Design guidelines . 152

8.4.1 Design considerations. 153
8.4.2 Object model . 157

8.5 Development guidelines . 160
8.5.1 Web service enabling the target application 161
8.5.2 Web service-enabling the source application 166
8.5.3 Monitoring SOAP messages . 172

8.6 Quality of Service capabilities . 177
8.6.1 Autonomic . 177
8.6.2 Availability . 178
8.6.3 Performance . 178
8.6.4 Security . 179
8.6.5 Standards compliance. 179
8.6.6 Transactionality . 180

8.7 Best practices . 181

Chapter 9. Using document style Web services. 183

9.1 Business scenario . 184
9.2 Document style Web services . 184
9.3 Design guidelines . 185

9.3.1 Design considerations. 186
9.3.2 Object model . 187

9.4 Development guidelines . 191
9.4.1 Web service enabling the target application 191
vi Patterns: Direct Connections for Intra- and Inter-enterprise

9.4.2 Web service enabling the source application 200
9.5 Integration with .NET-based Web services . 205
9.6 Quality of Service capabilities . 209

9.6.1 Transactionality . 210
9.7 Best practices . 210
9.8 Overview of ebXML . 212

Part 3. Application Integration scenarios . 213

Chapter 10. Using the Web Services Gateway . 215

10.1 Business scenario . 216
10.2 IBM Web Services Gateway . 216
10.3 Design guidelines . 219
10.4 Development guidelines . 220

10.4.1 Installing and configuring the Web Services Gateway 220
10.4.2 Deploying the Web Services Gateway service 224
10.4.3 Exporting the WSDL file . 226
10.4.4 Web service-enabling the source application 228

10.5 Quality of Service capabilities . 233
10.5.1 Autonomic . 233
10.5.2 Security . 235

Chapter 11. Using the Web Services Gateway with J2EE Connectors. . 237

11.1 Business scenario . 238
11.2 Design guidelines . 238
11.3 Development guidelines . 241

11.3.1 Creating a CICS enterprise service. 242
11.3.2 Testing the enterprise service . 251
11.3.3 Deploying generated Java classes to WebSphere Enterprise . . . 255
11.3.4 Configuring a J2C connection factory in WebSphere 256
11.3.5 Configuring the service in Web Services Gateway 257
11.3.6 Web service enabling the source application 259

11.4 Quality of Service capabilities . 261

Chapter 12. Using J2EE Connectors . 263

12.1 Business scenario . 264
12.2 Design guidelines . 264

12.2.1 Components of J2EE Connector Architecture 265
12.2.2 Design considerations. 266

12.3 Development guidelines . 269
12.3.1 Creating a J2EE Connector application using native CCI. 269
12.3.2 Enterprise Services toolkit. 270
12.3.3 Using Enterprise Services toolkit . 271
 Contents vii

12.3.4 Migration to other J2EE Connector resource adapters 271
12.4 Quality of Service capabilities . 272

12.4.1 Autonomic . 272
12.4.2 Availability . 273
12.4.3 Performance . 273
12.4.4 Security . 275
12.4.5 Standards compliance. 276
12.4.6 Transactionality . 277

12.5 Best practices . 278

Chapter 13. Using Java Message Service . 279

13.1 Business scenario . 280
13.2 Design guidelines . 280

13.2.1 Java Message Service . 281
13.2.2 Design considerations. 282

13.3 Development guidelines . 291
13.4 Quality of Service capabilities . 291

13.4.1 Autonomic . 292
13.4.2 Availability . 293
13.4.3 Performance . 293
13.4.4 Security . 294
13.4.5 Standards compliance. 295
13.4.6 Transactionality . 295

13.5 Best practices . 296

Part 4. Extended Enterprise scenarios . 297

Chapter 14. Using inter-enterprise Web services. 299

14.1 Business scenario . 300
14.2 Design guidelines . 300

14.2.1 Design considerations. 302
14.3 Development guidelines . 309
14.4 Quality of Service capabilities . 310

14.4.1 Security . 310

Chapter 15. Using WebSphere Data Interchange 315

15.1 Business scenario . 316
15.2 Design guidelines . 316

15.2.1 Electronic Data Interchange . 317
15.2.2 WebSphere Data Interchange. 321
15.2.3 The iSoft Peer-to-Peer Agent . 322
15.2.4 Integrating iSoft with WebSphere Data Interchange 323

15.3 Development guidelines . 324
viii Patterns: Direct Connections for Intra- and Inter-enterprise

15.3.1 Development environment . 324
15.3.2 Runtime environment . 325

Part 5. Appendixes . 327

Appendix A. Scenarios lab environment. 329
Lab setup . 330
Sample application setup . 331

Appendix B. Additional material . 335
Locating the Web material . 335
Using the Web material . 335

System requirements for downloading the Web material 336
How to use the Web material . 336

Abbreviations and acronyms . 337

Related publications . 339
IBM Redbooks . 339
Other publications . 340
Online resources . 340
How to get IBM Redbooks . 341

Index . 343
 Contents ix

x Patterns: Direct Connections for Intra- and Inter-enterprise

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2003. All rights reserved. xi

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

™
Redbooks (logo) ™
AIX®
alphaWorks®
CICS®
CrossWorlds®
DB2 Connect™
DB2®
developerWorks®
Domino®

e-business on demand™
IBM®
IMS™
Lotus®
MVS™
Notes®
OS/390®
OS/400®
pSeries®
RACF®

Redbooks™
SupportPac™
Tivoli®
VisualAge®
VSE/ESA™
WebSphere®
z/OS®
zSeries®
ibm.com®
MQSeries®

The following terms are trademarks of other companies:

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure
Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
xii Patterns: Direct Connections for Intra- and Inter-enterprise

Preface

The Patterns for e-business are a group of proven, reusable assets that can be
used to increase the speed of developing and deploying Web applications. This
IBM® Redbook focuses on point-to-point application integration using the
Process-focused Application Integration::Direct Connection application pattern
for intra-enterprise, and the Extended Enterprise::Exposed Direct Connection
application pattern for inter-enterprise.

Part 1 guides you through the process of selecting an Application and Runtime
pattern. Next, the platform-specific Product mappings are identified based upon
the selected Runtime pattern.

Part 2 presents guidelines on applying the Patterns approach to a sample
business scenario and on selecting application integration technologies.

Part 3 provides detailed design, development, and runtime guidelines for
intra-enterprise integration solutions. It teaches you by example using IBM
WebSphere Application Server V5.0 with Web services, J2EE Connectors, and
JMS.

Part 4 provides detailed design, development, and runtime guidelines for
inter-enterprise integration solutions. It teaches you by example using IBM
WebSphere Application Server V5.0 with Web services.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.
© Copyright IBM Corp. 2003. All rights reserved. xiii

The IBM redbook team (Left to right: Uday Manginapudi, Karsten Elich, Wendy Neave,
Filippo Diotalevi, William Patrey, Wolfgang Dostal, Mark Endrei)

Mark Endrei is an IT Architect at the International Technical Support
Organization, Raleigh Center. He writes about WebSphere® and Patterns for
e-business. Before joining the ITSO early in 2001, Mark worked in IBM Global
Services Australia as an IT Architect. He holds a bachelor's degree in Computer
Systems Engineering from the Royal Melbourne Institute of Technology, and an
MBA in Technology Management from Deakin University/APESMA.

Filippo Diotalevi is an IT Professional in IBM Global Services, Application
Management Services, in Milan, Italy. He has two years of experience in the
e-business field. He holds a degree in Computer Engineering from University of
Padova, Italy. His areas of expertise include Enterprise Java programming,
VisualAge® and WebSphere.

Wolfgang Dostal is an IT architect in IBM Application Management Services in
Frankfurt, Germany. He holds a Ph.D. degree in Physics from the University of
Mainz, Germany. His areas of expertise include object technology in distributed
environments, Enterprise Application Integration, XML, and J2EE. He has about
10 years of experience in object-oriented technologies. He has also been
teaching since 1990, and at present teaches software engineering, object
technology and Web-based applications at the University for Applied Science
Mainz. He has made extensive contributions to professional journals and
seminars on Web services and related topics.
xiv Patterns: Direct Connections for Intra- and Inter-enterprise

Karsten Elich is an IT Architect in IBM Germany. He has 7 years of experience
in the application design and architecture field. He holds an M.S. degree in
Chemistry and a Ph.D. in Physical Chemistry from Johannes
Gutenberg-University in Mainz. His areas of expertise include designing and
implementing e-business solutions.

Uday Manginapudi is a IT Architect with IBM Business Consulting Services
India. He has more than 13 years of experience in the IT industry. He holds a
Bachelor’s Degree in Engineering. His areas of expertise include e-Business
Integration, particularly EAI.

Wendy Neave is a Senior IT Specialist in IBM Global Services in Australia. She
has 14 years experience in application design and development. Wendy holds a
Bachelor of Education (Environmental Science) and an Associate Diploma in
Computing. She is also a Sun Certified Programmer for Java 2. Her areas of
expertise include object-oriented analysis, design and development, Java, and
WebSphere.

William Patrey is an Advisory IT Specialist in the United States. He has 9 years
of experience in the Information Technology field. He holds a Master's degree in
History from Virginia Tech. His areas of expertise include application
development, performance testing, and networking. He has written extensively
on software testing and performance test tools.

The business interaction patterns framework presented in this redbook, and its
application to the Patterns for e-business, is based on the work of:

Paul Verschueren, IBM UK
Jonathan Adams, IBM UK

Thanks also to the following people for their contributions to this project:

Jeff Barrett, IBM Austin
Russell Butek, IBM Austin
Alison Chandler, IBM ITSO Poughkeepsie
Eric Erpenbach, IBM Rochester
Michele Galic, IBM ITSO Raleigh
Robert Haimowitz, IBM ITSO Raleigh
Martin Keen, IBM ITSO Raleigh
Chris Rayns, IBM ITSO Poughkeepsie
Carla Sadtler, IBM ITSO Raleigh
Geert Van De Putte, IBM ITSO Raleigh
Phil Wakelin, IBM UK
Adrian Warman, IBM UK
 Preface xv

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195
xvi Patterns: Direct Connections for Intra- and Inter-enterprise

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

Part 1 Patterns for
e-business

Part 1 provides an overview of IBM Patterns for e-business. It introduces the
interaction patterns that both Application Integration and Extended Enterprise
patterns are based on. It guides you through the process of selecting Application
and Runtime patterns for intra- and inter-enterprise integration. The
platform-specific product mappings are identified based upon the selected
Runtime pattern.

Included in Part 1 are the following chapters:

� Chapter 1, “Patterns for e-business” on page 3
� Chapter 2, “Fundamental concepts in Process Integration” on page 17
� Chapter 3, “Application Integration” on page 33
� Chapter 4, “Extended Enterprise” on page 69
� Chapter 5, “Node types and Product descriptions” on page 97

Part 1
© Copyright IBM Corp. 2003. All rights reserved. 1

2 Patterns: Direct Connections for Intra- and Inter-enterprise

Chapter 1. Patterns for e-business

This redbook is part of the Patterns for e-business series. In this introductory
chapter we provide an overview of how IT architects can work effectively with the
Patterns for e-business.

The role of the IT architect is to evaluate business problems and build solutions
to solve them. To do this, the architect begins by gathering input on the problem,
an outline of the desired solution, and any special considerations or requirements
that need to be factored into that solution. The architect then takes this input and
designs the solution. This solution can include one or more computer
applications that address the business problems by supplying the necessary
business functions.

To improve the process over time, we need to capture and reuse the experience
of the IT architects in such a way that future engagements can be made simpler
and faster. We do this by capturing the knowledge gained from each engagement
and using it to build a repository of assets. IT architects can then build future
solutions based on these proven assets. This reuse saves time, money, and
effort; and in the process, it helps ensure delivery of a solid, properly architected
solution.

The IBM Patterns for e-business help facilitate this reuse of assets. Their
purpose is to capture and publish e-business artifacts that have been used,
tested, and proven to be successful. The information captured by them is
assumed to fit the majority, or 80/20, situation.

1

© Copyright IBM Corp. 2003. All rights reserved. 3

The IBM Patterns for e-business are further augmented with guidelines and
related links for their better use.

The layers of patterns, along with their associated links and guidelines, allow the
architect to start with a problem and a vision for the solution, and then find a
pattern that fits that vision. Then, by drilling down using the patterns process, the
architect can further define the additional functional pieces that the application
will need to succeed. Finally, he can build the application using coding
techniques outlined in the associated guidelines.

1.1 The Patterns for e-business layered asset model
The Patterns for e-business approach enables architects to implement
successful e-business solutions through the re-use of components and solution
elements from proven successful experiences. The Patterns approach is based
on a set of layered assets that can be exploited by any existing development
methodology. These layered assets are structured in a way that each level of
detail builds on the last. These assets include:

� Business patterns that identify the interaction between users, businesses,
and data.

� Integration patterns that tie multiple Business patterns together when a
solution cannot be provided based on a single Business pattern.

� Composite patterns that represent commonly occurring combinations of
Business patterns and Integration patterns.

� Application patterns that provide a conceptual layout describing how the
application components and data within a Business pattern or Integration
pattern interact.

� Runtime patterns that define the logical middleware structure supporting an
Application pattern. Runtime patterns depict the major middleware nodes,
their roles, and the interfaces between these nodes.

� Product mappings that identify proven and tested software implementations
for each Runtime pattern.

� Best-practice guidelines for design, development, deployment, and
management of e-business applications.

These assets and their relationships to each other are shown in Figure 1-1 on
page 5.
4 Patterns: Direct Connections for Intra- and Inter-enterprise

Figure 1-1 The Patterns for e-business layered asset model

Patterns for e-business Web site
The Patterns Web site provides an easy way of navigating through the layered
Patterns assets to determine the most appropriate assets for a particular
engagement.

For easy reference, see the Patterns for e-business Web site at:

http://www.ibm.com/developerWorks/patterns/

1.2 How to use the Patterns for e-business
As described in the last section, the Patterns for e-business have a layered
structure where each layer builds detail on the last. At the highest layer are
Business patterns. These describe the entities involved in the e-business
solution.

Best-Practice Guidelines

Application Design
Systems Management
Performance
Application Development
Technology Choices

Customer
requirements

Product
mappings

Any M
ethodology

Runtime
patterns

Application
patterns

Composite
patterns

Business
patterns

Integration
patterns
 Chapter 1. Patterns for e-business 5

http://www.ibm.com/developerWorks/patterns/

Composite patterns appear in the hierarchy shown in Figure 1-1 on page 5 above
the Business patterns. However, Composite patterns are made up of a number of
individual Business patterns, and at least one Integration pattern. In this section,
we discuss how to use the layered structure of Patterns for e-business assets.

1.2.1 Select a Business, Integration, or Composite pattern, or a
Custom design

When faced with the challenge of designing a solution for a business problem,
the first step is to get a high-level view of the goals you are trying to achieve. A
proposed business scenario should be described and each element should be
matched to an appropriate IBM Pattern for e-business. You may find, for
example, that the total solution requires multiple Business and Integration
patterns, or that it fits into a Composite pattern or Custom design.

For example, suppose an insurance company wants to reduce the amount of
time and money spent on call centers that handle customer inquiries. By allowing
customers to view their policy information and request changes online, the
company will be able to cut back significantly on the resources spent handling
this by phone. The objective is to allow policy holders to view their policy
information stored in legacy databases.

The Self-Service business pattern fits this scenario perfectly. It is meant to be
used in situations where users need direct access to business applications and
data. Let’s take a look at the available Business patterns.

Business patterns
A Business pattern describes the relationship between the users, the business
organizations or applications, and the data to be accessed.
6 Patterns: Direct Connections for Intra- and Inter-enterprise

There are four primary Business patterns, explained in Table 1-1.

Table 1-1 The four primary Business patterns

It would be very convenient if all problems fit nicely into these four slots, but
reality says that things will often be more complicated. The patterns assume that
most problems, when broken down into their basic components, will fit more than
one of these patterns. When a problem requires multiple Business patterns, the
Patterns for e-business provide additional patterns in the form of Integration
patterns.

Integration patterns
Integration patterns allow us to tie together multiple Business patterns to solve a
business problem. The Integration patterns are outlined in Table 1-2 on page 8.

Business Patterns Description Examples

Self-Service
(User-to-Business)

Applications where users
interact with a business
via the Internet or
intranet

Simple Web site
applications

Information Aggregation
(User-to-Data)

Applications where users
can extract useful
information from large
volumes of data, text,
images, etc.

Business intelligence,
knowledge management,
Web crawlers

Collaboration
(User-to-User)

Applications where the
Internet supports
collaborative work
between users

E-mail, community, chat,
video conferencing, etc.

Extended Enterprise
(Business-to-Business)

Applications that link two
or more business
processes across
separate enterprises

EDI, supply chain
management, etc.
 Chapter 1. Patterns for e-business 7

Table 1-2 Integration patterns

These Business and Integration patterns can be combined to implement
installation-specific business solutions. We call this a Custom design.

Custom design
We can illustrate the use of a Custom design to address a business problem
through an iconic representation as shown in Figure 1-2.

Figure 1-2 Patterns representing a Custom design

If any of the Business or Integration patterns are not used in a Custom design,
we can show the unused patterns as lighter blocks than those that are used. For
example, Figure 1-3 on page 9 shows a Custom design that does not have a
Collaboration business pattern or an Extended Enterprise business pattern for a
business problem.

Integration Patterns Description Examples

Access Integration
Integration of a number
of services through a
common entry point

Portals

Application Integration
Integration of multiple
applications and data
sources without the user
directly invoking them

Message brokers,
workflow managers

Ac
ce

ss
 In

te
gr

at
io

n Self-Service

Collaboration

Information Aggregation

Extended Enterprise Ap
pl

ic
at

io
n

In
te

gr
at

io
n

8 Patterns: Direct Connections for Intra- and Inter-enterprise

Figure 1-3 Custom design with Self-Service, Information Aggregation, Access Integration
and Application Integration

A Custom design may also be a Composite pattern if it recurs many times across
domains with similar business problems. For example, the iconic view of a
Custom design in Figure 1-3 can also describe a Sell-Side Hub composite
pattern.

Composite patterns
Several common uses of Business and Integration patterns have been identified
and formalized into Composite patterns. The identified Composite patterns are
shown in Table 1-3 on page 10.

Ac
ce

ss
 In

te
gr

at
io

n Self-Service

Collaboration

Information Aggregation

Extended Enterprise Ap
pl

ic
at

io
n

In
te

gr
at

io
n

 Chapter 1. Patterns for e-business 9

Table 1-3 Composite patterns

The makeup of these patterns is variable in that there will be basic patterns
present for each type, but the Composite can easily be extended to meet
additional criteria. For more information on Composite patterns, refer to Patterns
for e-business: A Strategy for Reuse by Jonathan Adams, Srinivas Koushik, Guru
Vasudeva, and George Galambos.

Composite Patterns Description Examples

Electronic Commerce User-to-Online-Buying www.macys.com
www.amazon.com

Portal

Typically designed to aggregate
multiple information sources and
applications to provide uniform,
seamless, and personalized
access for its users.

Enterprise Intranet portal
providing self-service functions
such as payroll, benefits, and
travel expenses.

Collaboration providers who
provide services such as e-mail
or instant messaging.

Account Access
Provide customers with
around-the-clock account access
to their account information.

Online brokerage trading apps.
Telephone company account
manager functions.

Bank, credit card and insurance
company online apps.

Trading Exchange
Allows buyers and sellers to trade
goods and services on a public
site.

Buyer's side - interaction
between buyer's procurement
system and commerce
functions of e-Marketplace.

Seller's side - interaction
between the procurement
functions of the e-Marketplace
and its suppliers.

Sell-Side Hub
(Supplier)

The seller owns the e-Marketplace
and uses it as a vehicle to sell
goods and services on the Web.

www.carmax.com (car purchase)

Buy-Side Hub
(Purchaser)

The buyer of the goods owns the
e-Marketplace and uses it as a
vehicle to leverage the buying or
procurement budget in soliciting
the best deals for goods and
services from prospective sellers
across the Web.

www.wre.org
(WorldWide Retail Exchange)
10 Patterns: Direct Connections for Intra- and Inter-enterprise

1.2.2 Selecting Application patterns
Once the Business pattern is identified, the next step is to define the high-level
logical components that make up the solution and how these components
interact. This is known as the Application pattern. A Business pattern will usually
have multiple possible Application patterns. An Application pattern may have
logical components that describe a presentation tier for interacting with users, an
application tier, and a back-end application tier.

Application patterns break the application down into the most basic conceptual
components, identifying the goal of the application. In our example, the
application falls into the Self-Service business pattern and the goal is to build a
simple application that allows users to access back-end information. The
Self-Service::Directly Integrated Single Channel application pattern shown in
Figure 1-4 fulfills this requirement.

Figure 1-4 Self-Service::Directly Integrated Single Channel

The Application pattern shown consists of a presentation tier that handles the
request/response to the user. The application tier represents the component that
handles access to the back-end applications and data. The multiple application
boxes on the right represent the back-end applications that contain the business
data. The type of communication is specified as synchronous (one request/one
response, then next request/response) or asynchronous (multiple requests and
responses intermixed).

Presentation synchronous Web
Application

synch/
asynch Back-End

Application 1

Application node
containing new or
modified components

Application node containing
existing components with
no need for modification
or which cannot be changed

Read/Write data

Back-End
Application 2
 Chapter 1. Patterns for e-business 11

Suppose that the situation is a little more complicated than that. Let's say that the
automobile policies and the homeowner policies are kept in two separate and
dissimilar databases. The user request would actually need data from multiple,
disparate back-end systems. In this case there is a need to break the request
down into multiple requests (decompose the request) to be sent to the two
different back-end databases, then to gather the information sent back from the
requests, and then put this information into the form of a response (recompose).
In this case the Self-Service::Decomposition application pattern shown in
Figure 1-5 would be more appropriate.

Figure 1-5 Self-Service::Decomposition

This Application pattern extends the idea of the application tier that accesses the
back-end data by adding decomposition and recomposition capabilities.

1.2.3 Review Runtime patterns
The Application pattern can be further refined with more explicit functions to be
performed. Each function is associated with a runtime node. In reality these
functions, or nodes, can exist on separate physical machines or can co-exist on
the same machine. In the Runtime pattern this is not relevant. The focus is on the
logical nodes required and their placement in the overall network structure.

As an example, let's assume that our customer has determined that his solution
fits into the Self-Service business pattern and that the Directly Integrated Single
Channel pattern is the most descriptive of the situation. The next step is to
determine the Runtime pattern that is most appropriate for his situation.

Presentation synchronous Decomp/
Recomp

synch/
asynch

Application node
containing new
or modified
components

Application node
containing existing
components with no need
for modification or which
cannot be changed

Read/
 Write data

Transient data
- Work in progress
- Cached committed data
- Staged data (data replication
flow)

Back-End
Application 1

Back-End
Application 2
12 Patterns: Direct Connections for Intra- and Inter-enterprise

He knows that he will have users on the Internet accessing his business data and
he will therefore require a measure of security. Security can be implemented at
various layers of the application, but the first line of defense is almost always one
or more firewalls that define who and what can cross the physical network
boundaries into his company network.

He also needs to determine the functional nodes required to implement the
application and security measures. The Runtime pattern shown in Figure 1-6 is
one of his options.

Figure 1-6 Directly Integrated Single Channel application pattern::Runtime pattern

By overlaying the Application pattern on the Runtime pattern, you can see the
roles that each functional node will fulfill in the application. The presentation and
application tiers will be implemented with a Web application server, which
combines the functions of an HTTP server and an application server. It handles
both static and dynamic Web pages.

Application security is handled by the Web application server through the use of
a common central directory and security services node.

Internal Network
Demilitarized Zone

(DMZ)Outside World

Pr
ot

oc
ol

 F
ire

w
al

l

Existing
Applications

and Data

D
om

ai
n

Fi
re

w
al

lI
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Application

Server

Domain Name
Server

Directory and
Security
Services

Presentation Application Application

Directly Integrated Single Channel application

Application

Existing
Applications

and Data
 Chapter 1. Patterns for e-business 13

A characteristic that makes this Runtime pattern different from others is the
placement of the Web application server between the two firewalls. The Runtime
pattern shown in Figure 1-7 is a variation on this. It splits the Web application
server into two functional nodes by separating the HTTP server function from the
application server. The HTTP server (Web server redirector) serves static Web
pages and redirects other requests to the application server. It moves the
application server function behind the second firewall, adding further security.

Figure 1-7 Directly Integrated Single Channel application pattern::Runtime pattern:
Variation 1

These are just two examples of the possible Runtime patterns available. Each
Application pattern will have one or more Runtime patterns defined. These can
be modified to suit the customer’s needs. For example, the customer may want to
add a load-balancing function and multiple application servers.

Internal Network
Demilitarized Zone

(DMZ)Outside World

Pr
ot

oc
ol

 F
ire

w
al

l

Do
m

ai
n

Fi
re

w
al

lI
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Server

Redirector

Domain Name
Server

Presentation Application Application

Directly Integrated Single Channel application

Application

Existing
Applications

and Data

Application
Server

Directory and
Security
Services

Existing
Applications

and Data
14 Patterns: Direct Connections for Intra- and Inter-enterprise

1.2.4 Review Product mappings
The last step in defining the network structure for the application is to correlate
real products with one or more runtime nodes. The Patterns Web site shows
each Runtime pattern with products that have been tested in that capacity. The
Product mappings are oriented toward a particular platform, though more likely
the customer will have a variety of platforms involved in the network. In this case,
it is simply a matter of mix and match.

For example, the runtime variation in Figure 1-7 on page 14 could be
implemented using the product set depicted in Figure 1-8.

Figure 1-8 Directly Integrated Single Channel application pattern: Windows 2000 Product mapping

1.2.5 Review guidelines and related links
The Application patterns, Runtime patterns, and Product mappings are intended
to guide you in defining the application requirements and the network layout. The
actual application development has not been addressed yet. The Patterns Web
site provides guidelines for each Application pattern, including techniques for
developing, implementing, and managing the application based on the following:

� Design guidelines instruct you on tips and techniques for designing the
applications.

Internal networkDemilitarized zone

O
ut

si
de

 w
or

ld

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

l

Web Server
Redirector

Windows 2000 + SP3
IBM WebSphere Application
Server V5.0 HTTP Plug-in
IBM HTTP Server 1.3.26

Directory and
Security
Services

LDAP

 Application
 Server

Windows 2000 + SP3
IBM SecureWay Directory V3.2.1
IBM HTTP Server 1.3.19.1
IBM GSKit 5.0.3
IBM DB2 UDB EE V7.2 + FP5

Database

Existing
Applications

and Data

Windows 2000 + SP3
IBM DB2 UDB ESE V8.1

JMS Option:
Windows 2000 + SP3
IBM WebSphere Application
Server V5.0
IBM WebSphere MQ 5.3
Message-driven bean application

Web Services Option:
Windows 2000 + SP3
IBM WebSphere Application
Server V5.0
IBM HTTP Server 1.3.26
IBM DB2 UDB ESE 8.1
Web service EJB application

JCA Option:
z/OS Release 1.3
IBM CICS Transaction Gateway
V5.0
IBM CICS Transaction Server
V2.2
CICS C-application

Windows 2000 + SP3
IBM WebSphere Application
Server V5.0

JMS Option add:
IBM WebSphere MQ 5.3
 Chapter 1. Patterns for e-business 15

� Development guidelines take you through the process of building the
application, from the requirements phase all the way through the testing and
rollout phases.

� System management guidelines address the day-to-day operational
concerns, including security, backup and recovery, application management,
and so forth.

� Performance guidelines give information on how to improve the application
and system performance.

1.3 Summary
The IBM Patterns for e-business are a collected set of proven architectures. This
repository of assets can be used by companies to facilitate the development of
Web-based applications. They help an organization understand and analyze
complex business problems and break them down into smaller, more
manageable functions that can then be implemented.
16 Patterns: Direct Connections for Intra- and Inter-enterprise

Chapter 2. Fundamental concepts in
Process Integration

Process Integration enables companies to connect people, process, and
applications across and beyond their enterprise. These solutions make it
possible to leverage existing IT investments while providing the flexibility to adapt
quickly to changing business conditions and emerging technologies.

This chapter introduces fundamental concepts in integrating people, process,
and applications. It proposes a set of notations and a new technique for
decomposing complex integration scenarios into simpler portions that can be
solved by applying the fundamental concepts of integration. It also discusses
Quality of Service (QoS) capabilities that must be considered in integration
scenarios. As such, the concepts introduced in this chapter apply to those
Architectural patterns documented by IBM Patterns for e-business that leverage
various integration techniques. In particular, these concepts are directly
applicable to the following areas of IBM Patterns for e-business:

� Application Integration pattern

� Extended Enterprise business pattern

2

© Copyright IBM Corp. 2003. All rights reserved. 17

2.1 The need for a unifying technique
There are many existing techniques and disciplines for integration. These are
currently fragmented into stovepipes. Therefore, there are problems identifying
the best techniques to use and problems in using different techniques together.
In particular, terminology is a problem. Each of these disciplines often uses
overloaded or ambiguous terminology that inhibits cross-discipline dialog. Use of
similar terms in different domains may also mask incompatibilities that only
become apparent at lower levels of design. EAI and B2B provide a good
example: they have traditionally been seen as very different, whereas a simple
diagram shows that they are solving some very similar problems.

Table 2-1 provides an example of terminology overload for “synchronous verses
asynchronous.

Table 2-1 Synchronous verses asynchronous terminology overload

These inconsistencies significantly complicate the Process Integration efforts by
impeding communication between different groups of skill sets needed to
implement the end-to-end integration solution.

2.1.1 Similarities between intra- and inter-enterprise integration
As shown in Figure 2-1 and Figure 2-2, intra-enterprise integration and
inter-enterprise integration are both concerned with integrating source and target
applications.

Figure 2-1 Intra-enterprise integration

Domain Meaning

Networking Used to differentiate protocols that can detect
transmission errors via acknowledgement
messages

Application programming Used to indicate whether the caller waits (blocks)
until the operation completes

Messaging Used to differentiate services that can store and
forward messages (avoiding the need for all linked
services to be available)

Source
Application

Target
Application
18 Patterns: Direct Connections for Intra- and Inter-enterprise

Figure 2-2 Inter-enterprise integration

Hence, the lessons learnt from traditional Enterprise Application Integration (EAI)
solutions can be applied to business-to-business (also known as Extended
Enterprise or inter-enterprise) integration. It is important to note, however, that
there would be differences in Quality of Service (QoS) concerns and commercial
considerations that are of particular significance to inter-enterprise integration.

For example, core concerns for inter-enterprise integration include security,
interoperability, and governance (defining the responsibilities of each party).
Nevertheless, we should expect that inter-enterprise solutions can leverage the
majority of the intra-enterprise concepts.

2.1.2 Summary
As integration technologies have evolved, many similarities between the
intra-enterprise and inter-enterprise integration approaches have become
apparent. It should be possible to describe a set of underlying concepts that
apply to both the areas.

2.2 Process Integration concepts and notations
In this section we introduce basic concepts and notations for capturing different
types of interactions encountered in Process Integration.

2.2.1 Collaboration and Interaction
Integration between people, process, and applications can be thought of as
collaboration and interaction between participating entities.

Collaboration
In the most general sense, a collaboration denotes N-to-N activities between
sub-systems within a distributed system. As shown in Figure 2-3, complex
collaborations between sub-systems can be broken down into more basic
interactions. An interaction focuses on 1-to-1 or 1-to-N activities originating from
a single sub-system.

S ource
Ap plica tion

Target
Applica tion

P a rtn e r A P artne r B
 Chapter 2. Fundamental concepts in Process Integration 19

In this way, complex collaborations involving many sub-systems can be
decomposed into simpler interactions that are easier to analyze. Data analysts
use a similar approach when analyzing complex data with many-to-many
relationships. Normalization is used to reduce many-to-many relationships
between data to 1-to-many relationships.

Figure 2-3 Collaboration topologies

Note that we do not show a link from A-to-C on the right of Figure 2-3. This is
because, in breaking the interaction down, we found that A only initiates
interactions with B, D, and E. The C-to-A interaction will be modeled in another
1-to-N interaction.

Interaction
As we just saw, an interaction is a collaboration originating from a single
component. Figure 2-4 shows an interaction between a source application and a
target application. The initiating operation is indicated by a small solid circle.

Figure 2-4 Definition of interaction

Complex interactions may be decomposed into several simpler interactions to
enhance the level of detail. An example is shown in the Figure 2-5, where a
query for a quote is decomposed in a request step, an acknowledgement step,
and a final reply step.

D

B

A

E

C

N-to-N

A D

B

E

1-to-N

Source
Application

Target
Application
20 Patterns: Direct Connections for Intra- and Inter-enterprise

Figure 2-5 Decomposition of complex interactions

An ellipse spanning one or more basic interactions denotes a shared context
involved in a complex interaction between two or more sub-systems. Examples
of shared contexts are session, security, transaction, process control, and so
forth.

Complex interactions with multiple target applications also can be decomposed
into multiple 1-to-1 interactions, as long as there is one initiating operation within
a source application. The interaction patterns approach can then be applied to
these 1-to-1 interactions.

2.2.2 Connectors and Adapters
The terms connector and adapter are often used interchangeably. This section
defines their use in a Patterns for e-business context.

Connectors
Connectors provide the connectivity between source and target applications. A
connector is always present to facilitate interaction between two sub-systems.

Depending on the required level of detail, a connector can be:

� A primitive (or unmodelled) connector, represented by a simple line between
sub-systems

� A component (or modelled) connector, represented by a rectangle on a line
between sub-systems

For lower-level modelling, a primitive connector can always be decomposed into
a modelled connector and two adjacent primitive connectors, as shown in
Figure 2-6. This way, connector models can be recursively decomposed until the
correct level of detail is reached.

Source
Application

Source
Application

Target
Application

Req
Ack

Quote
Source

Application
 Chapter 2. Fundamental concepts in Process Integration 21

Figure 2-6 Decomposition of connectors

It is useful to distinguish two connector subtypes, as shown in Figure 2-7:

� An adapter connector is concerned with enabling logical connectivity by
bridging the gap between the context schema and protocols used by the
Source application (S type) and Target application (T type).

� A path connector is concerned with providing physical connectivity between
Source and Target applications. It may be very complex (for example, the
Internet) or very simple (an area of shared storage).

These connector subtypes are orthogonal, meaning a connector may be both an
adapter connector and a path connector. The relationship between connectors
and adapters is shown in Figure 2-7.

Figure 2-7 Relationship between connectors and adapters

<Connector>Source
Application

<Connector>

<Connector>

Target
Application

Target
Application

Modeled
Connector

Source
Application

T typeS type

S type T type

Source
Application

Target
Application

Connector

Source
Application

Target
Application

Firewall Firewall

Adapter
Connector

Path
Connector

T type

Dept LAN Org WAN Internet DMZ LAN
22 Patterns: Direct Connections for Intra- and Inter-enterprise

Adapters
Adapters provide the logical connectivity to an application. Without adapters,
each application would need to implement the specific interface of the target
application.

It is useful to distinguish three types of adapters:

� Control adapters are not concerned with content. They are only concerned
with the activities involved in flow operations:

– Transforming the protocol used between the segments

– Segmenting, batching, and sorting data blocks

– Correctly interacting with the path connector to execute the transport
operation (This includes respecting the protocol rules.)

� View adapters are concerned with transforming content but only in terms of its
technical representation. Examples include:

– Element demarcation schemes, such as delimited, fixed-length, and XML

– Element sequencing schemes, such as keys and collation sequences

– Element encoding schemes, such as character set, number format, and
date format

� Model adapters transform the semantic content and normally require
business input to define correct operational rules. Some examples are:

– Splitting out subsets of data

– Joining external data (augmentation/enrichment)

– Summarization

– Translation of identifiers (key management)

Coupling adapter connectors
Coupling adapter connectors can be used to implement a common integration
protocol such as messaging, RMI/IIOP, SOAP/HTTP, and so on. As shown in
Figure 2-8, the adapter functionality between the source application and the
target application is decomposed into two halves. Each half adapts to and from a
common intermediate protocol.
 Chapter 2. Fundamental concepts in Process Integration 23

Figure 2-8 Coupling adapters

If there are multiple point-to-point connections between a group of sub-systems,
this approach can significantly reduce the number of different adapters required.
Each sub-system only needs one adapter (instead of needing a different adapter
to connect to each sub-system).

Connectors and synchronicity
In order to describe the time dependencies between the initiating operation and
the resulting collaborative activities, two cases may be distinguished:

� Synchronous interaction

The initiating operation cannot complete until the interaction has been
completed. In this case, the source application is synchronously coupled with
the target application.

� Asynchronous interaction

The initiating operation can complete before the interaction completes. The
operation is then regarded as asynchronous, and the source application is
synchronously decoupled from the target application.

2.2.3 Classification of interaction between sub-systems
The interactions involved in Process Integration can be broadly classified as
parallel and/or serial.

Parallel interaction
An interaction is denoted as parallel if it includes a set of concurrent 1-to-1
interactions between a source application and multiple target applications, as
shown in Figure 2-9.

S type X type T type

Source
Application

Target
Application

"X" type
Adapter

Connector

"X" type
Adapter

Connector
24 Patterns: Direct Connections for Intra- and Inter-enterprise

Figure 2-9 Parallel interaction

Serial interaction
An interaction is denoted as serial if it includes a series of 1-to-1 interactions
between a source application and multiple target applications that are subject to
time sequenced dependencies, as shown in Figure 2-10.

Figure 2-10 Serial interaction

Classification of Interactions
Distributing parallel and serial interactions along two dimensions of a matrix
provides the four combinations shown in Figure 2-11.

Figure 2-11 Classification of interactions

Source
Application

Target
ApplicationTarget

ApplicationTarget
Application

Source
Application

Target
ApplicationTarget

ApplicationTarget
Application

Focus: Controlling a Single
Series of Operations
in Multiple Targets

Focus: Adds Starting,
Splitting & Joining Multiple

Series of Operations
in Multiple Targets

Focus: Adapting and
Transporting Messages

on a Single Path
to a Single Target

Focus: Adds Switching,
Splitting & Joining

Messages on Multiple Paths
to Multiple Target

Parallel Interaction

Se
ria

l I
nt

er
ac

tio
n

Ye
s

No Yes

N
o

 Chapter 2. Fundamental concepts in Process Integration 25

This classification framework is used later in this chapter to classify Application
patterns for both Application Integration patterns (intra-enterprise) and Extended
Enterprise business patterns (inter-enterprise).

2.3 QoS capabilities framework
This section documents the most frequently observed Quality of Service (QoS)
concerns that must be considered in implementing integration solutions. These
QoS manifest themselves with differing degrees of importance and specificity in
different integration scenarios.

The following QoS concerns are defined in this section:

� Operability
� Availability
� Federation
� Performance
� Security
� Standards compliance
� Transactionality

2.3.1 Operability
This QoS concern focuses on the systems management requirements of the
deployed solution. It focuses on issues such as monitoring, logging, traces,
recovery, and manageability of the solution during operations in a production
environment.

2.3.2 Availability
Availability is a measure of the time that a service is functioning normally as well
as a measure of the time the recovery process requires after the service fails. In
other words, it is the downtime that defines service availability. This downtime
includes both planned and unplanned downtime.

High availability generally requires that a topology provide some degree of
redundancy in order to eliminate single points of failure. This allows the downtime
caused by a component failure to be minimized (ideally zero). It can also allow a
service to continue functioning normally during the downtime of a component for
planned maintenance or backup procedures, for example.
26 Patterns: Direct Connections for Intra- and Inter-enterprise

2.3.3 Federation
Federation is fundamentally about enabling services to interoperate across trust
boundaries. It lets access control functions span across multiple domains,
crossing application, product, platform, site, business unit, and organization
boundaries.

Federation requires that each partner domain is trusted to authenticate the
identity of its own users. Mechanisms are needed for passing resource and user
authentication and authorization information between domains.

2.3.4 Performance
The performance of a service is measured in terms of throughput and latency.
Throughput represents the number of requests served in a given time period.
Latency is the round-trip time between sending a request and receiving the
response. Higher throughput and lower latency values represent good
performance of a service.

Scalable topologies are able to service higher loads by adding the appropriate
processing power. This be achieved using techniques such a using a faster
machine, using a special purpose machine, or creating a cluster of machines.

Other performance improvement techniques include caching, batching and
connection pooling.

2.3.5 Security
Permission to access the participating applications may be associated with the
requesting application itself, or this application may carry the credentials of a
user initiating the actions. Consequently, access control can be applied as far as
the requesting application (a transit of trust) or only from an integration hub (a
trusted source) that authenticated the original request.

Securing messages transported and ensuring that integration is achieved only
with authorized applications under the correct user credentials is a must. The
integration solution needs to provide:

� Data protection through encryption

� Authentication of users and subscribing applications. In cases where
non-repudiation of the end-user is required, authentication of the end-user

� Authorization of the user for participation in an integration activity
 Chapter 2. Fundamental concepts in Process Integration 27

2.3.6 Standards compliance
Standards compliance is concerned with identifying and applying the appropriate
standards to a scenario. Standards compliance is an important factor for
controlling development and integration costs. Even private standards are
beneficial, but widely accepted public standards have the added advantage of
enabling interoperability in the broadest contexts.

2.3.7 Transactionality
A transaction can be viewed as an activity between two or more parties that must
be completed in its entirety with the mutually agreed outcome. Transactionality
enables multiple application operations to be coordinated to provide an atomic
deterministic end result.

Resource managers are used to control access to the resources involved in a
transaction. A transaction manager is responsible for coordination and
transaction control. Transactional considerations include:

� ACID versus compensating transactions
� Flat versus nested transactions
� System versus client commit control
� Local versus distributed transactions

2.4 Application patterns for Application Integration
Using the interaction classification framework introduced in this chapter in
Figure 2-11 as a guide, we observe the following four Application patterns and
their variations for Process-focused Application Integration (also known as
intra-enterprise integration):

� Direct Connection Application pattern
and its Message/Call Connection variations

Allows a single interaction from the source application to be adapted and
transported to one target application

� Broker Application pattern
and its Router variation

Allows a single interaction from the source application to be switched, split,
and joined to multiple target applications concurrently

� Serial Process Application pattern
and its Serial Workflow variation

Allows a single interaction from the source application to execute a series of
interactions with multiple target applications
28 Patterns: Direct Connections for Intra- and Inter-enterprise

� Parallel Process Application pattern
and its Parallel Workflow variation

Allows a single interaction from the source application to concurrently execute
multiple series of interactions with multiple target applications

These four Application patterns for Application Integration are summarized in
Figure 2-12. One dimension shows support for concurrent interactions to multiple
target applications in parallel. The other dimension shows support for
non-concurrent interactions to multiple targets in series.

Figure 2-12 Classification of Process-focused Application Integration patterns

2.5 Application patterns for Extended Enterprise
Using the interaction classification framework introduced in this chapter in
Figure 2-11 as a guide, we observe the following three Application patterns and
their variations for the Extended Enterprise business pattern (also known as
inter-enterprise integration):

� Exposed Direct Connection application pattern
and its Exposed Message/Call Connection variations

Allows a single interaction from the source application to be adapted and
transported to one partner target application

Serial Process

Variation: Serial Workflow

Parallel Process

Variation: Parallel Workflow

Direct Connection

Variations: Message/Call
Connection

Broker

Variation: Router

Parallel Interaction

Se
ria

l I
nt

er
ac

tio
n

Ye
s

No Yes

N
o

 Chapter 2. Fundamental concepts in Process Integration 29

� Exposed Broker application pattern
and its Exposed Router variation

Allows a single interaction from the source application to be switched, split,
and joined to multiple partner target applications concurrently.

� Exposed Serial Process application pattern
and its Exposed Serial Workflow variation

Allows a single interaction from the source application to execute a series of
interactions with multiple partner target applications.

Each of the Extended Enterprise pattern names are prefixed with Exposed to
highlight that these patterns are concerned with exposing applications outside of
the enterprise boundaries.

These three Application patterns for Extended Enterprise are summarized in
Figure 2-13. One dimension shows support for concurrent interactions to multiple
target applications in parallel. The other dimension shows support for
non-concurrent interactions to multiple targets in series. Here the top right-hand
corner has been left blank to indicate that Parallel Process implementations are
currently not widely implemented in Extended Enterprise scenarios. As the
process composition technologies mature, we expect to see more widespread
use of the Exposed Parallel Process application pattern and its Exposed Parallel
Workflow variation.

Figure 2-13 Classification of Extended Enterprise patterns

2.6 Summary
This chapter introduces fundamental concepts in Process Integration that bridge
the gap between various disciplines. It presents a set of notations and

Exposed Serial Process

Variation: Exposed
Serial Workflow

Exposed Direct Connection

Variations: Exposed
Message/Call Connection

Exposed Broker

Variation: Exposed Router

Parallel Interaction

Se
ria

l I
nt

er
ac

tio
n

Ye
s

No Yes

N
o

30 Patterns: Direct Connections for Intra- and Inter-enterprise

techniques that can be iteratively applied to a complex Process Integration
scenario, where each iteration refines and further details the integration solution.
It also introduces the key set of QoS concerns that must be addressed in
Process Integration efforts. Finally, this chapter presents an interaction
classification framework that is used to capture the commonly occurring
Application patterns in the field of Application Integration and Extended
Enterprise.

Please note, this redbook only focuses on the following Application patterns:

� The Process-focused Application Integration::Direct Connection application
pattern, which is introduced in Chapter 3, “Application Integration” on
page 33.

� The Extended Enterprise::Exposed Direct Connection application pattern,
which is introduced in Chapter 4, “Extended Enterprise” on page 69.
 Chapter 2. Fundamental concepts in Process Integration 31

32 Patterns: Direct Connections for Intra- and Inter-enterprise

Chapter 3. Application Integration

The Application Integration pattern (also known as Enterprise Application
Integration or EAI) serves to integrate multiple Business patterns or to integrate
applications and data within an individual Business pattern. It is applicable when
integrating applications and data within the bounds of an organization.

The requirements that gave rise to this pattern call for the seamless execution of
multiple applications and access to their respective data in order to automate a
complex, new business function. Reliable integration of applications—be they
legacy stovepipe applications, packaged software applications, or custom
applications—requires the use of proven, repeatable patterns. At its highest level,
application integration can be divided into two essentially different approaches:

� Process-focused integration: The integration of the functional flow of
processing between the applications.

� Data-focused integration: The integration of the information used by
applications.

Neither approach is necessarily better than the other. Rather, specific integration
requirements dictate which approach best solves a given business problem. For
example, the integration of an e-commerce application with an Enterprise
Resource Planning (ERP) system for a newly created sales order would most
definitely be a Process-focused integration activity. However, in the same
solution, the master data synchronization of the product catalog between the
ERP system and the e-commerce system would be a Data-focused integration
activity.

3

© Copyright IBM Corp. 2003. All rights reserved. 33

Critical to selecting the right Application Integration pattern is an understanding
of the integration requirements of the business problem being automated. Some
examples of key questions to ask in determining an appropriate EAI design are
listed in 3.1.5, “Application Integration solution requirements” on page 36.

What's next
Enterprise Application Integration is a complicated undertaking. It requires, first,
a thorough understanding of the individual applications being integrated, and
also the possible methods that can be used to interconnect them.

For a better understanding of the issues and considerations surrounding an
Application Integration solution, review the guidelines in the next section, which
provides additional information on choosing this Integration pattern. Business
and IT drivers, the e-business context appropriate for this solution type, and
additional solution details are discussed here.

If you have established a sound understanding of the issues relating to your EAI
deployment, the next step is to select an Application pattern. The Application
Integration pattern can be implemented using any one of the four
Process-focused application patterns and the Data-focused application patterns
(see 3.2, “Application patterns” on page 39). These various designs provide
solution flexibility to address the specific needs of the business process being
automated.

3.1 General guidelines
To help you determine if the Application Integration pattern is appropriate for the
design of your intra-enterprise application integration scenario, this section
details the business and IT scenario into which a solution using the Application
Integration pattern will fit.

It also discusses how the solution requirements can help determine which of the
two Application Integration categories (Process-focused or Data-focused) you
should use in designing your e-business solution.

Note: Certain types of integration between applications can be accomplished
at the user interface level as well, as covered in the Access Integration pattern.
34 Patterns: Direct Connections for Intra- and Inter-enterprise

3.1.1 Business and IT drivers
Businesses developing a solution needing the following characteristics should
consider using the Application Integration pattern:

� The business processes need to be integrated with existing business systems
and information.

� The business activity needs to aggregate, organize, and present information
from various sources within the organization.

3.1.2 Context
Application Integration patterns can be observed in solutions that call for close
integration with systems and databases that exist in the organization. It serves as
a back-end integration pattern, and is critical for the successful implementation of
certain Business patterns. For example, solutions that use the Self-Service
business pattern or Extended Enterprise business pattern often rely on these
same application integration techniques. Similarly, many Custom designs and
Composite patterns use Application Integration application patterns.

In our sample business scenario, described in Chapter 6, “Business scenarios
used in this book” on page 111, ITSO Electronics wants to integrate their retail
and wholesale departments. Currently, both departments have proven IT
infrastructures but have no interconnectivity. The Process-focused Application
Integration patterns address this problem. These patterns can be applied in a
case where the business process needs to be integrated between existing
business systems within the organization. The Process-focused Application
Integration patterns can be used to integrate the retail ordering and wholesale
inventory systems in ITSO Electronics, eliminating ordering lag and providing an
up-to-date inventory.

3.1.3 Solution
The Application Integration pattern typically consists of the following:

� Business applications and data that need to communicate, interact, and
integrate with other business applications and data within the organization

� A network which:

– Is based on TCP/IP and other Internet technologies, or on proprietary
protocols

– Can be a dedicated LAN or WAN connection

� Other business applications and data which can be:

– Custom developed systems (old and new)
 Chapter 3. Application Integration 35

– Enterprise Resource Planning systems and other packaged applications,
such as SAP, BAAN and PeopleSoft

– Databases

It is typically based on the patterns described in Chapter 2, “Fundamental
concepts in Process Integration” on page 17.

3.1.4 Putting the pattern to use
This is probably one of the most common patterns and it can be observed in any
solution where an application needs to integrate with other applications, legacy
systems, and databases. Examples include:

� An electronics retailer/wholesaler, ITSO Electronics from our sample
scenario, needs to integrate their retail ordering process with their inventory
management system.

� A telecommunications company needs to integrate their online sales systems
and their core provisioning systems to improve efficiency and customer
service.

3.1.5 Application Integration solution requirements
Choosing the right Application Integration pattern can only be done in the context
of specific enterprise requirements. These requirements encompass not only the
specific application integration to be deployed, but also the enterprise's IT
infrastructure and technology preferences. This section details considerations to
be made and questions to ask in determining which Application Integration
pattern best fulfills your enterprise needs.

Request for information versus request for processing
Is the integrated solution for informational access only or is it intended to
integrate requests for processing? The Process-focused Application Integration
patterns are concerned with integration of the functional flow of processing
between applications. The Data-focused Application Integration patterns are
concerned with integration of the information used by applications.

Foreground versus background integration
Is there a user awaiting the outcome of the operation or is this operation running
behind the scenes? An example of a foreground (or real-time) process is a user
retrieving a price quote for the purchase of product, whereas a background (or
batch) process would be the synchronization of pricing information from the
central office out to all of the local stores.
36 Patterns: Direct Connections for Intra- and Inter-enterprise

Scope of integration
Does the integration project involve only a single Business pattern, multiple
Business patterns, or the creation of an entire e-infrastructure for multiple
e-business solutions?

Operation latency (applications or data queries)
How long will it take the operation to complete in the application? Operations that
can not complete in less than a couple of seconds dictate the need for
asynchronous methods of integration. A query on product inventory may be a
quick operation, whereas the computation of the production plan for the
manufacturing of that inventory could take minutes to hours to complete.

Geographic proximity
How close do the applications being integrated reside to one another? Similar to
the idea of operation latency, an often overlooked element of the EAI design is
the proximity of the participating applications in relation to each other. Integration
of applications residing in the same data center has a much smaller integration
latency than integration of applications spread around the world.

Process re-engineering
Is there a need to re-engineer business processes or extend an existing business
process? Most legacy business processes are locked in the applications
themselves. Business Process Management (BPM) is performed by the existing
applications. Sometimes the EAI effort merely is trying to better integrate
functional operations of a disconnected, narrow (or “stovepipe”) business
process. Other endeavors are more ambitious, incorporating the desire to
improve business processes through integration.

There are varying degrees of process extensions for application-based BPM:

� Extending reach of the business process with integration to other
applications.

� Joining together two separate application-based business processes into one
unified process.

� Separating BPM from application logic by implementing the process in a
Process Manager. This option extends the domain of the process by allowing
it to encompass any participating application under any specific sequencing
and process flow control.

Application portfolio
What is contained in the mix of applications? The portfolio might include
pre-packaged software, legacy applications, or newly developed applications.
One of the most important elements of an EAI project is to survey the application
 Chapter 3. Application Integration 37

landscape. Some environments are heavily based on pre-packaged software;
others are completely homegrown custom applications. Other environments may
be a mixture of pre-packaged applications working along with homegrown ones.

Your survey of applications will detail several key points about the enterprise
environment:

� Can the application interfaces be extended as part of the integration activity?
Homegrown applications may have standardized interfaces or be extensible
to implement standards. Interfaces into pre-packaged applications typically
can only be standardized through implementation of sophisticated adapters.

� Is there a central cornerstone application in the enterprise environment or a
portfolio of peer applications? Is the business processing focused around one
key application (perhaps an ERP system) with all other applications being
subservient to that application?

� How many applications are being integrated? For instance, a typical
Self-Service application may be integrating the Web application server with
one back-end system. At the other end of the spectrum would be a project
creating a centralized customer information system that may require feeds
from 100 or more different applications. Integration of two applications has
different pattern requirements than integration of 100 applications.

Invasive versus non-invasive
What is the level of independence between the application implementation and
the EAI interface? How likely is it that changes to the application will require
changes to the interface or changes to the integration processing? The degree of
invasiveness not only affects the application adapter, it can also affect the
integration hub processing and even require changes to the partner application.
The further across the application integration topology a change ripples, the
more expensive this change will be. The degree of invasiveness is often
described in terms of coupling (loose coupling versus tight coupling) or a black
box versus white box approach.

Ideally, the less invasive the integration, the more successful the integration will
be long-term. This is the primary reason for the use of messaging-based
integration to isolate as much as possible of the integration processing from any
application-specific dependencies. EAI best practices should be employed to
ensure that the integration is as non-invasive as possible.

However, EAI projects will vary in the level of independence achievable based on
completeness of the participating applications’ functionality and interfaces. For
environments with heavy application-specific processing required, it is best to
implement these using a sophisticated integration broker component supported
by easy to use application development tools. This ensures that future
extensions to the integration can be implemented quickly and easily.
38 Patterns: Direct Connections for Intra- and Inter-enterprise

Enterprise architecture
To what degree is the overall enterprise process and data model defined? The
enterprise architecture is an instantiation of the application functions, application
data model, application interfaces, and application flow of control. Beyond
capturing an accurate description of the current enterprise environment, a good
Enterprise Architecture (EA) takes into account new business processing
requirements.

The completeness of the EA often will dictate the level of invasiveness in the EAI
integration. A well conceived EA enables a more extensible enterprise
application integration design.

The different types of Enterprise Architectures dictate different Application
Integration patterns. For instance, Self-Service is divided into Web up and
enterprise out scenarios. Enterprise out scenarios have heavier legacy content
than Web up scenarios. Key characteristics of the EA that affect the EAI
approach include the:

� Number of applications

� Degree of centralization of the data repositories

� Completeness of the application interfaces

� Conformity of the participating applications to the EA data and interface
model

3.1.6 What's next
If you have determined that the Application Integration pattern is appropriate for
use in your solution, the next step is to select an Application pattern.

If the Application Integration pattern is not appropriate for your development
efforts, review the Business patterns to determine which pattern best addresses
your e-business needs.

3.2 Application patterns
The various designs in the Application patterns that allow for solution flexibility in
Application Integration are categorized as either Process-focused or
Data-focused. These two categories enable different types of integration
functionality.

The focus of this redbook is the Process-focused, Direct Connection application
pattern. A brief overview of the other Application Integration patterns is provided.
 Chapter 3. Application Integration 39

For complete details on the other Application Integration patterns, see the IBM
Patterns for e-business Web site:

http://www.ibm.com/developerWorks/patterns

The diagram conventions shown in Figure 3-1 are used in the Application
patterns that follow.

Figure 3-1 Application pattern diagram conventions

3.3 Process-focused Application Integration patterns
Process-focused Application Integration patterns are observed where multiple
automated business processes are combined to yield a new business offering or
to provide a consolidated view of some business entity with many
representations in the corporate business systems. An often quoted example is
the consolidated view of the state of all relationships of the business with a
particular customer.

This mode of integration is highly flexible. In its more sophisticated form it
enables “late binding” of the targets of integration and is particularly useful in
tying together different platforms and technologies. However, it represents a
more difficult design and development task compared to data-focused integration
and often requires complex middleware.

The Process-focused Application Integration patterns are presented here in
order of increasing flexibility and sophistication. As the Application patterns build

Transient data
Work in progress
Cached
committed data
Staged data
(data replication flow)

Application node
containing existing
code with no need
for modification for
this project or that
cannot be changed.

Read/write data

Read only data

Application node
containing new or
modified code
for this project.

A set of applications
whose characteristics
are unspecified. Only
the means with which
to interact with them
is specified.

A small solid circle indicates the initiating node.

A single arrow indicates that a response is not needed.

Double arrows indicate that a response is needed.
40 Patterns: Direct Connections for Intra- and Inter-enterprise

http://www.ibm.com/developerWorks/patterns

on each other, their capabilities and reliance on middleware increase, and they
require less application development effort. From the following Application
patterns, select the one that best fits your requirements:

� Direct Connection application pattern

– Message/Call Connection variations

� Broker application pattern

– Router variation

� Serial Process application pattern

� Parallel Process application pattern

Business and IT drivers
Table 3-1 and Table 3-2 summarize the business and IT drivers for the
Process-focused Application Integration patterns and their variations.

Table 3-1 Business drivers

Business drivers

D
ir

ec
t

C
o

n
n

ec
ti

o
n

M
es

sa
g

e
va

ri
at

io
n

D
ir

ec
t

C
o

n
n

ec
ti

o
n

C
al

l v
ar

ia
ti

o
n

B
ro

ke
r

R
o

u
te

r
va

ri
at

io
n

B
ro

ke
r

S
er

ia
l/P

ar
al

le
l P

ro
ce

ss

Improve the organizational efficiency � � � � �

Reduce the latency of business events � � � � �

Support a structured exchange within the
organization

� � � � �

Support real-time one-way “message”
flows

� � � �

Support real-time request/reply
“message” flows

� � � �

Support dynamic routing of “messages”
to one of many target applications

� � �

Support dynamic distribution of
“messages” to multiple target applications

� �

Support more flexible, time-sequenced
business and human process flows

�

 Chapter 3. Application Integration 41

Table 3-2 IT drivers

QoS concerns
This section highlights Quality of Service (QoS) capabilities that are of particular
concern in the Process-focused Application Integration domain.

In 2.3, “QoS capabilities framework” on page 26, we described a QoS
capabilities framework for Process Integration based on the following general
concerns:

� Autonomic
� Availability
� Federation
� Performance
� Security
� Standards compliance
� Transactionality

The following QoS concerns are of particular importance when working in the
Process-focused Application Integration domain.

IT drivers

D
ir

ec
t

C
o

n
n

ec
ti

o
n

M
es

sa
g

e
va

ri
at

io
n

D
ir

ec
t

C
o

n
n

ec
ti

o
n

C
al

l v
ar

ia
ti

o
n

B
ro

ke
r

R
o

u
te

r
va

ri
at

io
n

B
ro

ke
r

S
er

ia
l/P

ar
al

le
l P

ro
ce

ss

Leverage existing skills � � � � �

Leverage the legacy investment � � � � �

Enable back-end application integration � � � � �

Minimize application complexity � � � � �

Minimize enterprise complexity � � �

Exploit parallelism � �

Important: This profile is intended as a very rough first guide to QoS
concerns which differentiate this domain, suitable for high-level architectural
design. It is not a substitute for thorough analysis at a later design stage.
42 Patterns: Direct Connections for Intra- and Inter-enterprise

Autonomic
The complexity of IT infrastructure is increasing, so autonomic computing
capabilities are needed to ensure that Application Integration solutions can be
managed effectively. For example, clustering solutions may be a consideration for
availability management and reducing operational costs.

Performance
High volume workloads are often experienced in the intra-enterprise integration
domain, so there is generally a need to carefully assess the expected workload
and to plan for future growth in workload.

Standards compliance
Rather than using different approaches for each application integration exercise
that an organization performs, standards need to be identified and applied in
order to control development and integration costs.

Private standards are also acceptable when beneficial. Adopting WebSphere
MQ, for example, as intra-enterprise message-oriented middeware provides
assured, once-only delivery messaging that can be widely used across the
organization.

Transactionality
Transaction services are often important in intra-enterprise application
integration scenarios in order to preserve data integrity and to avoid data loss.
Consider using transaction management products that work with XA-compliant
resource managers to provide a commit and rollback facility, ensuring that either
all resource updates are completed or all updates are rolled back.

3.3.1 Direct Connection application pattern
The Direct Connection application pattern represents the simplest interaction
type and is based on a 1-to-1 topology. It allows a pair of applications within the
organization to directly communicate with each other. Interactions between a
source and a target application can be arbitrarily complex. Generally, complexity
can be addressed by breaking down interactions into more elementary
interactions.

More complex point to point connections will have modeled connection rules
such as business rules associated with them, as shown in Figure 3-2.
Connection rules are generally used to control the mode of operation of a
connector depending on external factors. Examples of connection rules are:

� Business data mapping rules (for adapter connectors)
� Autonomic rules (such as priority in a shared environment)
� Security rules
 Chapter 3. Application Integration 43

� Capacity and availability rules

Figure 3-2 Direct Connection application pattern

The Direct Connection application pattern has two variations:

� Message Connection variation

� Call Connection variation

All applications of the Direct Connection application pattern will be one variation
or the other. The variation required depends on whether the initiating source
application needs an immediate response from the target application in order to
continue with execution.

Both variations may be used either with synchronous or asynchronous
communication protocols. However, there are preferences for a specific protocol
type depending on the variation. For example, the Call Connection variation has
a more natural fit with synchronous protocols while the Message Connection
variation favors asynchronous protocols.

We examine these two variations in more detail later in this section.

Business and IT drivers
The business and IT drivers for choosing the Direct Connection application
pattern are to:

� Improve the organizational efficiency
� Reduce the latency of business events
� Support a structured exchange within the organization

Note: The Connection Rules component is not needed when there are no
modeled rules associated with the connection.

Connection
Rules

Secure Zone

Source
Application

Target
Application

Connection
Rules
44 Patterns: Direct Connections for Intra- and Inter-enterprise

� Support real-time one-way message flows
� Support real-time request/reply message flows
� Leverage existing skills
� Leverage the legacy investment
� Enable back-end application integration
� Minimize application complexity

The primary goal is to allow one application to gain direct and real-time access to
another in order to reduce the latency of business events.

Solution
This Application pattern, as shown in Figure 3-2 on page 44, is divided into a
number of logical components:

� The Source Application represents one or more applications that are
interested in initiating an interaction with the target application.

� The Connection is the line between the source application and the target
application representing a point-to-point connection between the two
applications.

� The Connection Rules represent any business rules associated with the
connection, such as data mapping rules and security rules.

� The Target Application represents a new application, a modified existing
application, or an unmodified existing application. This application is
responsible for implementing the necessary business services.

Guidelines for use
Direct integration between applications can be inflexible, in that any changes to
one application may have knock-on effects on other applications. Changes to the
target application may also require changes to the source application. Such
changes can become both expensive and time consuming, especially when the
target application is being accessed by a number of different source applications.

Different IT departments may also be responsible for developing and maintaining
the source and target applications. Under such a scenario, development might be
difficult to coordinate, especially if the interfaces between the applications being
integrated are not properly defined and documented. Because of this, it is
important to clearly define such interfaces in advance.

Benefits
The Direct Connection application pattern offers the following benefits:

� It works with applications that have simple integration requirements with only
a few back-end applications.
 Chapter 3. Application Integration 45

� It increases the organizational efficiency and reduces the latency of business
events by providing real-time access to business data and business logic, and
avoiding manual synchronization of data between applications.

� Direct access to back-end applications reduces the duplication of business
logic across multiple tiers. As a result, changes to business logic can be made
in one tier rather than in multiple applications.

� It can enable re-use of investments already made with the organization.

Limitations
Although this is a reasonable starting Application pattern for integrating
applications in a one to one relationship with one another, this pattern will result
in a many to many “spaghetti” configuration with point to point integration
mappings for each application pair. Also, the expansion of this implementation
into a multi-point configuration will require additional application logic to handle
the coordination.

This pattern cannot be used for intelligent routing of requests, decomposition and
re-composition of requests, and for invoking complex business process workflow
as a result of a request from another application. Under such circumstances, you
should consider a more advanced Application pattern, such as Broker or
Serial/Parallel Process.

Putting the Application pattern to use
ITSO Electronics, an electronics retailer/wholesaler, wants to integrate their retail
and wholesale departments. Currently, both organizations have proven IT
infrastructures but have no interconnectivity. The first process ITSO Electronics
wants to focus on is the inventory and order replenishment process. Currently,
the items sold are tallied at the end of the month by the retail ordering process
and delivered to the wholesale organization by internal mail. This creates a lag in
the inventory replenishment process and causes many out of stock situations. A
primary business goal is to minimize the loss of sales due to out of stock
situations. To meet these requirements ITSO Electronics chooses the Direct
Connection application pattern.

Message Connection variation
The Message Connection variation, shown in Figure 3-3, applies to solutions
where the business process does not require a response from the target
application within the scope of the interaction.
46 Patterns: Direct Connections for Intra- and Inter-enterprise

Figure 3-3 Message Connection variation

Business and IT drivers
The business and IT driver for choosing the Message Connection variation of the
Direct Connection application pattern is to:

� Support real-time one-way message flows

The main driver for selecting this variation is when the business process has no
interest in the result of the operation. This variation also has the most natural fit
when message-oriented middleware is used, such as IBM WebSphere MQ.

Putting the Application pattern to use
In our scenario the retail department of the ITSO Electronics organization needs
to notify the wholesale department to update their inventory records when a part
needs to be ordered. The retail department does not require any
acknowledgement of this request. To meet these requirements ITSO Electronics
chooses the Message Connection variation of the Direct Connection application
pattern.

Call Connection variation
The Call Connection variation, shown in Figure 3-4, applies to solutions where
the business process depends on the target application to process a request and
return a response within the scope of the interaction.

Note: We chose not to show the connection rules box in Figure 3-3 because
we want to focus on the connection itself.

Secure Zone

Source
Application

Target
Application
 Chapter 3. Application Integration 47

Figure 3-4 Call Connection variation

Business and IT drivers
The business and IT driver for choosing the Call Connection variation of the
Direct Connection application pattern is to:

� Support real-time request/reply message flows

The main driver for selecting this variation is when the business process does
require a result message from the interaction.

Putting the Application pattern to use
In our scenario the retail department of the ITSO Electronics organization needs
to be advised by the wholesale department of the expected delivery date of a
part on order that is out of stock with the retail department. To meet these
requirements ITSO Electronics chooses the Call Connection variation of the
Direct Connection application pattern.

3.3.2 Broker application pattern
The Broker application pattern (also known as Aggregator/Broker), shown in
Figure 3-5, is based on a 1-to-N topology that separates distribution rules from
the applications. It allows a single interaction from the source application to be
distributed to multiple target applications concurrently.

Note: We chose not to show the connection rules box in Figure 3-4 because
we want to focus on the connection itself.

Secure Zone

Source
Application

Target
Application
48 Patterns: Direct Connections for Intra- and Inter-enterprise

Figure 3-5 Broker application pattern

The Broker application pattern applies to solutions where the source application
initiating the operation starts an interaction that is distributed to multiple target
applications that are within the organization. It separates the application logic
from the distribution logic based on broker rules. The decomposition/
recomposition of the interaction is managed by the broker runtime component
using these broker rules.

The Broker application pattern was previously known as the Aggregator
application pattern for read intent and the Broker application pattern for update
intent.

Look for complete details on the revised Broker application pattern in a future
redbook. Until then, refer to the Application Integration::Aggregator or Broker
application pattern discussion on the IBM Patterns for e-business Web site:

http://www.ibm.com/developerWorks/patterns

Router variation
The Router variation of the Broker application pattern, shown in Figure 3-6,
applies to solutions where the source application initiates an interaction that is
forwarded to only one of multiple target applications. The selection of the target
application is controlled by the distribution rules that govern the functioning of the
connector component.

Secure Zone

Source
Application

Broker
Rules

Target
ApplicationTarget

ApplicationTarget
Application
 Chapter 3. Application Integration 49

http://www.ibm.com/developerWorks/patterns

Figure 3-6 Router variation

The Router variation of the Broker application pattern was previously known as
the Router variation of the Aggregator application pattern.

3.3.3 Serial Process application pattern
The Serial Process application pattern, shown in Figure 3-7, is based on a 1-to-N
topology where serial process rules are separated from the applications. It allows
a single interaction from the source application to execute a sequence of target
applications.

Figure 3-7 Serial Process application pattern

The Serial Process application pattern separates the process logic from the
application logic. The process logic is governed by serial process rules that
define execution rules for each target application, together with control flow and
data flow rules. It may also include any necessary adapter rules.

Secure Zone

Source
Application

Router
Rules

Target
ApplicationTarget

ApplicationTarget
Application

Secure Zone

Source
Application

Serial Process
Rules

Target
ApplicationTarget

ApplicationTarget
Application
50 Patterns: Direct Connections for Intra- and Inter-enterprise

Look for complete details on the Serial Process application pattern in a future
redbook. Until then, refer to the Application Integration::Managed Process
application pattern discussion on the IBM Patterns for e-business Web site:

http://www.ibm.com/developerWorks/patterns

Serial Workflow variation
The Serial Workflow variation of the Serial Process application pattern, shown in
Figure 3-8, allows for routable activities (operations requiring human interaction,
for example) to be routed to a suitable resource. In addition to the serial process
rules, the serial workflow flow rules are supplemented with resource definitions
and task-resource relationships. In this context:

� Tasks are activities or pieces of work.

� Resources execute tasks. People, departments, applications, and so forth
can all be resources capable of executing particular tasks.

� The task-resource relationship defines which resources are capable of
executing which tasks.

Figure 3-8 Serial Workflow variation

3.3.4 Parallel Process application pattern
The Parallel Process application pattern, shown in Figure 3-9, is a combination of
the Serial Process application pattern and the Broker application pattern. The
interaction initiated by the source application may control concurrent (parallel)
activities on multiple target applications. Each activity may consist of a sequence
of operations executed in succession on a target application.

Secure Zone

Source
Application

Serial
Workflow

Rules

Target
ApplicationTarget

ApplicationTarget
Application
 Chapter 3. Application Integration 51

http://www.ibm.com/developerWorks/patterns

Figure 3-9 Parallel Process application pattern

Similar to the Serial Process application pattern, the Parallel Process application
pattern separates process logic from application logic. The parallel process rules
must additionally allow for definitions of start and join conditions for activities
executing in parallel. A runtime component is required that provides for the start,
join, and management of these parallel activities as a unit.

Look for complete details on the Parallel Process application pattern in a future
redbook. Until then, refer to the Application Integration::Managed Process
application pattern discussion on the IBM Patterns for e-business Web site:

http://www.ibm.com/developerWorks/patterns

Parallel Work Flow variation
Similar to the Serial Work Flow variation, the Parallel Work Flow variation of the
Parallel Process application pattern, shown in Figure 3-10, represents an
extension of the Parallel Process application pattern to account for routable
activities.

Source
Application

Parallel Process
Rules

Target
ApplicationTarget

ApplicationTarget
ApplicationTarget

Application

Secure Zone
52 Patterns: Direct Connections for Intra- and Inter-enterprise

http://www.ibm.com/developerWorks/patterns

Figure 3-10 Parallel Workflow variation

3.4 Data-focused Application patterns
When applications need to share information rather than coordinate processing,
data-focused application integration is more appropriate than a process-focused
approach. Note, however, that when the frequency of data update is extremely
high (for example, when integrating an order entry system with a back-end ERP
system), process integration is the best solution. When this is not the case,
however, integration of (application) data repositories is handled outside of any
specific application request.

In delineating Data-focused Application Integration patterns, two key
environmental questions should be asked:

� Is the enterprise data topology centralized or decentralized?

– Centralized: This integration effort will bring about centralized access to all
or a subset of the enterprise data model.

– Decentralized: Applications will retain their isolated repositories but now
with cohesion based on data integration.

� What is the database affinity type?

– Homogeneous: all repositories are of the same type.

– Multi-vender Relational: all repositories are relational with ODBC/JDBC
support for interoperability but are from different vendors.

Source
Application

Parallel Workflow
Rules

Target
ApplicationTarget

ApplicationTarget
ApplicationTarget

Application

Secure Zone
 Chapter 3. Application Integration 53

– Heterogeneous Structured: repositories are not all relational but all have a
structured layout.

– Structured/Non-Structured: the need to integrate non-structured (for
example, free-form text) with structured data sources.

Refer to the IBM Patterns for e-business Web site for further details:

http://www.ibm.com/developerWorks/patterns

3.5 Runtime patterns
The next step is to choose Runtime patterns that most closely match the
requirements of the application. A Runtime pattern uses nodes to group
functional and operational components. The nodes are interconnected to solve a
business problem. Each Application pattern leads to one or more underpinning
Runtime patterns.

We can overlay the Application pattern onto the Runtime pattern to identify
where business logic is deployed on nodes. The Runtime patterns illustrated give
some typical examples of possible solutions, but should not be considered
exhaustive.

To understand the Runtime pattern, you will need to review the node definitions
provided in 5.1, “Node types” on page 98.

3.5.1 Runtime patterns for Direct Connection
When using the Direct Connection runtime pattern, shown in Figure 3-11, the
source application uses a connector to access the target application.

The connector itself may be explicitly or implicitly modeled. If the connector is
explicitly modeled, the modeler can use decomposition and abstraction
techniques to expand the connector to the appropriate level of detail.

The term Connector may be qualified by both the connector variation and by the
interaction variation. Some examples are:

� Adapter Connector
� Path Connector
� Message Connector

Note: We cover Runtime patterns for Direct Connection in this section. Look
for details on the Broker runtime pattern or the Serial/Parallel Process runtime
patterns in a future redbook.
54 Patterns: Direct Connections for Intra- and Inter-enterprise

http://www.ibm.com/developerWorks/patterns

� Call Connector
� Call Adapter Connector

The source and target applications both rely on services provided by their
respective hosting servers. These are modeled using the Application
Server/Services component.

The Rules Directory and Domain QoS Providers may or may not exist. If they do
exist, it is a modeling decision as to whether they need to be shown in the
Runtime pattern. For example, analysis may determine that connection rules are
not an important part of the solution, so the Rules Directory may be left off the
Runtime pattern.

Figure 3-11 Direct Connection runtime pattern

The basic Direct Connection runtime pattern allows integration between a source
and target application that use different protocols using a single adapter
connector. Direct Connection using a single adapter connector is shown in
Figure 3-12.

Direct Connection

Source
Application

Target
Application

Connection
Rules

Internal network

Connector

Rules
Directory

Domain QoS
Providers

App Server/
Services

App Server/
Services
 Chapter 3. Application Integration 55

Figure 3-12 Direct Connection using single adapter

Direct Connection can also be implemented using coupling adapter connectors,
as shown in Figure 3-13, to improve reuse potential in multiple point to point
scenarios. It supports conversion of the request and response into a common
protocol between the adapters.

Figure 3-13 Direct Connection using coupling adapters

You may notice that we don't have separate Runtime patterns for the message
and call variations of the Direct Connection application pattern. It is still important
to identify that your business scenario requires a message or call application

Direct Connection

Source
Application

Target
Application

Connection
Rules

Internal network

Adapter
Connector

App Server/
Services

App Server/
Services

Internal network

Adapter
Connector

App Server/
Services

Adapter
Connector

App Server/
Services

Direct Connection

Source
Application

Target
Application

Connection
Rules
56 Patterns: Direct Connections for Intra- and Inter-enterprise

pattern, because you can use this knowledge as a consideration when selecting
a Product mapping. In the next section we highlight Product mappings that have
a more natural fit to the Application pattern message variation or to the
Application pattern call variation.

3.6 Product mappings
The next step after choosing a Runtime pattern is to determine the actual
products and platforms to be used. It is suggested that you make the final
platform recommendation based on the following considerations:

� Existing systems and platform investments
� Customer and developer skills available
� Customer choice

The platform selected should fit into the customer's environment and ensure
quality of service, such as availability and performance, so that the solution can
grow along with the e-business.

This section introduces the major products used in the application and provides
an overview of the products as they apply to the Direct Connection runtime
patterns.

Our sample application, based on the Direct Connection application patterns,
has been implemented using IBM WebSphere Application Server V5.0.2 on the
Microsoft Windows 2000 platform.

Refer to 5.2, “Product descriptions” on page 101 for descriptions of the products
used in these Product mappings.

3.6.1 Product mappings for Direct Connection: Message variation
This section presents Product mappings for the Message Connection variation of
the Direct Connection pattern using:

� Web services
� Web Services Gateway
� Java Message Service

Note: Although we developed these product mappings from our sample
scenarios on the Windows 2000 operating system, there are a number of
other options because IBM WebSphere products run on a wide range of
platforms (for example, Windows 2000, Linux, AIX®, OS/400®, z/OS®, and
so forth).
 Chapter 3. Application Integration 57

Web services
Figure 3-14 shows a Product mapping based on IBM WebSphere Application
Server V5.0.2 and the Message Connection variation of the Direct Connection
pattern that uses a one-way Web service invocation.

Figure 3-14 Direct Connection::Message Connection: Web services Product mapping

We use coupling adapter connectors to model Web services application
integration. This emphasizes the use of adapter connectors to convert the
request into the common SOAP/HTTP protocol.

In this case, the source application uses the JAX-RPC API to send a one-way
request via the WebSphere V5.0.2 SOAP provider. The target application uses
JAX-RPC API to receive the request from the source via its WebSphere V5.0.2
SOAP provider.

We used this combination of runtime nodes and products to implement the
sample scenario described in Chapter 8, “Using RPC style Web services” on
page 147 and Chapter 9, “Using document style Web services” on page 183.

As shown in Table 3-3, this Product mapping for the Message Connection
variation of the Direct Connection pattern can use either of the SOAP messaging
styles: RPC style or document style. Table 3-3 also shows that the Web service
transmission style is generally one-way for the Message Connection variation;
however, request-response may be needed when transport reliability is an issue.

Internal network

SOAP
/HTTP

Message
Connector

App Server/
Services

Message
Connector

App Server/
Services

WebSphere
Application Server

V5.0.2

JAX-RPC SOAP Provider JAX-RPC

WebSphere
Application Server

V5.0.2

SOAP Provider
58 Patterns: Direct Connections for Intra- and Inter-enterprise

Table 3-3 Direct Connection variation versus Web service type

Web Services Gateway
Figure 3-15 shows another Product mapping based on IBM WebSphere
Application Server V5.0.2 and the Message Connection variation of the Direct
Connection application pattern that uses a one-way Web service invocation. This
time we introduce the Web Services Gateway packaged with IBM WebSphere
Application Server Network Deployment V5.0.2.

Figure 3-15 Direct Connection::Message Connection: Web Services Gateway Product
mapping

This product mapping uses connection rules provided by the Web Services
Gateway to allow greater control over the point to point connection between the
source and target applications. The gateway provides access control and a
common access point for internal Web services. It can also protect client
applications from changes in the Web services they access.

RPC style Document style

One-way Request-
response

One-way Request-
response

Message variation � �

Call variation � �

Note: When integrating between J2EE application servers, RMI/IIOP is
generally the preferred approach. The intention of this product mapping is to
demonstrate that WebSphere V5.0.2 can be used to implement either a Web
service requester or a Web service provider.

Internal network

Call
Connector

App Server/
Services

App Server/
Services

SOAP
/HTTP

SOAP
/HTTP

WebSphere
Application Server

V5.0.2
JAX-RPC

WebSphere V5.0.2
Network Deployment

Web Services
Gateway

WebSphere
Application Server

V5.0.2
JAX-RPC
 Chapter 3. Application Integration 59

We used this combination of runtime nodes and products to implement the
sample scenario described in Chapter 10, “Using the Web Services Gateway” on
page 215.

Java Message Service
Figure 3-16 shows a Product mapping based on the Message Connection
variation of the Direct Connection application pattern that uses JMS to send a
message from the source application and to receive the sent message at the
target application.

Figure 3-16 Direct Connection::Message Connection: JMS Product mapping

This product mapping uses WebSphere MQ as the transport mechanism for JMS
messages. The product mapping uses a WebSphere MQ queue manager on
each server to transport the messages. The source application uses JMS to
place messages on a local queue. WebSphere MQ is then responsible for
ensured delivery of this message to the proper destination, in our case, the
WebSphere MQ queue manager on the target application server.

We used this combination of runtime nodes and products to implement the
sample scenario described in Chapter 13, “Using Java Message Service” on
page 279.

3.6.2 Product mappings for Direct Connection: Call variation
This section presents Product mappings for the Call Connection variation of the
Direct Connection pattern using:

� Web services

� Web services to .NET

� Web Services Gateway

� Web Services Gateway with protocol change

Internal network

Message
Connector

App Server/
Services

App Server/
Services

WebSphere
Application Server

V5.0
JMS send

WebSphere MQ
V5.3

WebSphere
Application Server

V5.0
JMS receive
60 Patterns: Direct Connections for Intra- and Inter-enterprise

� J2EE Connector

� WebSphere Business Integration Adapters

Web services
Figure 3-17 shows a Product mapping based on IBM WebSphere Application
Server V5.0.2 and the Call Connection variation of the Direct Connection pattern
that uses a request-response Web service invocation.

Figure 3-17 Direct Connection::Call Connection: Web services Product mapping

We use coupling adapter connectors to model Web services application
integration. This emphasizes the use of adapter connectors to convert the
request and response into the common SOAP/HTTP protocol.

In this case, the source application uses the JAX-RPC API to initiate a
request-response operation via the WebSphere V5.0.2 SOAP provider. The
target application uses JAX-RPC API to receive the request from the source via
its WebSphere V5.0.2 SOAP provider.

We used this combination of runtime nodes and products to implement the
sample scenario described in Chapter 8, “Using RPC style Web services” on
page 147 and Chapter 9, “Using document style Web services” on page 183.

As shown in Table 3-3 on page 59, this Product mapping for the Call Connection
variation of the Direct Connection pattern can use either of the SOAP messaging
styles: RPC style or document style. Table 3-3 on page 59 also shows that the
Web service transmission style is generally request-response for the Call
Connection variation.

Internal network

SOAP
/HTTP

Call
Connector

App Server/
Services

Call
Connector

App Server/
Services

WebSphere
Application Server

V5.0.2

JAX-RPC SOAP Provider JAX-RPC

WebSphere
Application Server

V5.0.2

SOAP Provider
 Chapter 3. Application Integration 61

Web services to .NET
Figure 3-18 shows a Product mapping providing connectivity between IBM
WebSphere Application Server V5.0.2 and Microsoft .NET using the Call
Connection variation of the Direct Connection pattern. The source and target
applications communicate using a request-response Web service invocation.

Figure 3-18 Direct Connection::Call Connection: Web services to .NET Product mapping

We chose not to model the connection using coupling adapter connectors in this
case. This product mapping focuses on the two platforms and the SOAP/HTTP
connection between them.

We used this combination of runtime nodes and products to implement the
sample scenario described in 9.5, “Integration with .NET-based Web services” on
page 205.

Web Services Gateway
Figure 3-19 shows another Product mapping based on IBM WebSphere
Application Server V5.0.2 and the Call Connection variation of the Direct
Connection application pattern that uses a request-response Web service
invocation. This time we introduce the Web Services Gateway packaged with
IBM WebSphere Application Server Network Deployment V5.0.2.

Note: When integrating between J2EE application servers, RMI/IIOP is
generally the preferred approach. The intention of this product mapping is to
demonstrate that WebSphere V5.0.2 can be used to implement either a Web
service requester or a Web service provider.

Internal network

App Server/
Services

App Server/
Services

SOAP
/HTTP

WebSphere
Application Server

V5.0.2
JAX-RPC

.NET
Web Service
62 Patterns: Direct Connections for Intra- and Inter-enterprise

Figure 3-19 Direct Connection::Call Connection: Web Services Gateway Product
mapping 1

This product mapping uses connection rules provided by the Web Services
Gateway to allow greater control over the point to point connection between the
source and target applications. The gateway provides access control and a
common access point for internal Web services. It can also protect client
applications from changes in the Web services they access.

We used this combination of runtime nodes and products to implement the
sample scenario described in Chapter 10, “Using the Web Services Gateway” on
page 215.

Web Services Gateway with protocol change
Figure 3-20 shows a Product mapping based on IBM WebSphere Application
Server V5.0.2 and the Call Connection variation of the Direct Connection
application pattern that uses a request-response Web service invocation. In this
product mapping the Web Services Gateway provides a protocol change
between the source and target applications.

Internal network

Call
Connector

App Server/
Services

App Server/
Services

SOAP
/HTTP

SOAP
/HTTP

WebSphere
Application Server

V5.0.2
JAX-RPC

WebSphere V5.0.2
Network Deployment

Web Services
Gateway

WebSphere
Application Server

V5.0.2
JAX-RPC
 Chapter 3. Application Integration 63

Figure 3-20 Direct Connection::Call Connection: Web Services Gateway Product
mapping 2

In addition to the connection rules capabilities described in “Web Services
Gateway” on page 62, the gateway provides adapter connector capabilities. This
product mapping allows a Web service client application to invoke a CICS®
target application using SOAP/HTTP. The gateway converts the SOAP/HTTP call
to the CICS Transaction Gateway TCP protocol using the Web Services
Invocation Framework and the CICS ECI J2EE Connector.

In addition to J2EE Connectors, the Web Services Gateway can be used to
connect Web service client applications with target applications that are
accessed via JMS or RMI/IIOP.

We used this combination of runtime nodes and products to implement the
sample scenario described in Chapter 11, “Using the Web Services Gateway
with J2EE Connectors” on page 237.

J2EE Connector
Figure 3-21 shows a Product mapping based on the Call Connection variation of
the Direct Connection application pattern where the source application uses a
J2EE Connector to call the target application.

Internal network

Call
Connector

App Server/
Services

App Server/
Services

CICS
TG TCP

SOAP
/HTTP

WebSphere
Application Server

V5.0.2
JAX-RPC

CICS Transaction
Gateway V5.0

CICS Transaction
Server V2.2

WebSphere V5.0.2
Network Deployment
Web Services G/W

WSIF/J2C
64 Patterns: Direct Connections for Intra- and Inter-enterprise

Figure 3-21 Direct Connection::Call Connection: J2EE Connector Product mapping

This product mapping uses the CICS Transaction Gateway TCP protocol to
communicate with the CICS Transaction Gateway on the zSeries® enterprise
system. The source J2EE application uses the CICS ECI J2EE Connector to
access the existing CICS enterprise application, via the CICS Transaction
Gateway.

We used this combination of runtime nodes and products to implement the
sample scenario described in Chapter 12, “Using J2EE Connectors” on
page 263.

WebSphere Business Integration Adapters
Figure 3-22 shows a Product mapping based on IBM WebSphere Application
Server Enterprise V5.0.2 and the Call Connection variation of the Direct
Connection application pattern. In this product mapping the WebSphere
Business Integration Adapter provides adapter connector capabilities between
the source and target applications. This product mapping allows a WebSphere
Enterprise application to invoke a target application using the Web Services
Invocation Framework, JMS and IBM WebSphere MQ V5.3.1.

Internal network

Call
Connector

App Server/
Services

App Server/
Services

WebSphere
Application Server

V5.0
J2C

CICS
TG TCP

z/OS Release 1.3

CICS Transaction
Gateway V5.0

CICS Transaction
Server V2.2
 Chapter 3. Application Integration 65

Figure 3-22 Direct Connection::Call Connection: WebSphere Business Integration
Adapter Product mapping

The product mapping uses the WebSphere Business Integration Adapter JDBC
adapter to access a DB2® V8.1 database. You can use a similar approach to
integrate a WebSphere Enterprise application with a range of target applications,
such as CICS, IMS™, PeopeSoft, SAP, and Siebel. For further details see Using
Web Services for Business Integration, SG24-6583 (to be released late in 2003).

3.7 Previous Application Integration patterns
Table 3-4 provides an overview of the relationship between the previous
Process-focused Application Integration patterns and the revised
Process-focused Application Integration patterns presented in this chapter. The
differences between the old and new definitions are summarized as follows:

� Direct Connection is retained for application coordinated requests.

� Transactional is now a quality of service. Transactionality may apply to all of
these patterns, so it is applied as a quality of service rather than being a
separate pattern.

� Aggregator/Broker are combined into Broker for broker coordinated requests.

� Manage Process is split into Serial Process and Parallel Process for process
managed coordinated requests.

� The read-only versus read/write classification used with old patterns is not
used with the new patterns, since:

– For Transactional and Managed Process, read-only is not applicable
– For Direct Connection, the same pattern applies in both cases
– For Aggregator/Broker, the observed patterns are identical

Internal network

Call
Connector

App Server/
Services

App Server/
Services

JDBC MQ

WebSphere
Enterprise V5.0.2

WSIF/JMS

WebSphere
Business Integration

Adapter V2.3.1
JDBC Adapter

DB2 ESE V8.1
66 Patterns: Direct Connections for Intra- and Inter-enterprise

Table 3-4 Relationship to old Process-focused Application Integration patterns

Old Pattern New Pattern

Information
Request (R/O)

Processing
Request (R/W)

Application
Coordinated

Direct Connection Direct Connection Same

Transactional
Coordinated

Not applicable Transactional Now a Quality of
Service

Broker
Coordinated

Aggregator Broker Broker

Process
Managed
Coordinated

Not applicable Managed Process Split into:

� Serial Process

� Parallel Process
 Chapter 3. Application Integration 67

68 Patterns: Direct Connections for Intra- and Inter-enterprise

Chapter 4. Extended Enterprise

The Extended Enterprise business pattern, which is also known as the
Business-to-Business or B2B pattern, addresses the interactions and
collaborations between business processes in separate enterprises. This pattern
can be observed in solutions that implement programmatic interfaces to connect
inter-enterprise applications. In other words, it does not cover applications that
are directly invoked via a user interface by business partners across
organizational boundaries.

In Table 4-1 you can see some cross-industry examples of the Extended
Enterprise pattern.

Table 4-1 Cross-industry examples

4

Service Examples

Buy Side � Direct Procurement (SCM)
� Indirect Procurement (MRO)
� Supply chain execution

Sell Side � B2B e-commerce (Distributors)

Trading Partner Modernization � EDI Modernization

Exchange Participation � Private e-exchanges
� Public e-exchanges
© Copyright IBM Corp. 2003. All rights reserved. 69

In Table 4-2 we list some industry-specific example applications that can be
implemented though the Extended Enterprise pattern.

Table 4-2 Industry-specific examples

What's next
If you are not yet sure that your business problem can be solved by the
functionality enabled through an Extended Enterprise solution design, the
guidelines in the next section provide additional information on choosing this
Business pattern. Business and IT drivers, the e-business context appropriate for
this solution type, and additional solution details are discussed here.

If you have determined that the Extended Enterprise business pattern can
provide an appropriate solution design for your business needs, the next step is
to select an Application pattern. The Extended Enterprise business pattern can
be implemented using any one of three Application patterns (see 4.2,
“Application patterns” on page 74), providing solution flexibility so that the
selected Business pattern can address the specific needs of the business
process being automated.

Industry Example applications

Manufacturing � Supply chain planning
� Supply chain execution
� Vendor-Managed Inventory

Travel � Checking flight or room availability
� Making or modifying reservations

Retail � Checking supplier inventory
� Placing replenishment orders
� Paying suppliers automatically

Financial � Transferring payments
� Checking account balances
� Obtaining credit information
� Loan Origination
� Processing securities

Telecommunication � OSS Integration
� Cross organization order management
� Managed service provider interconnect

Note: There are broad similarities between the Application Integration
patterns and the Extended Enterprise patterns. The differentiation is mainly in
the way Quality of Services aspects affect the Runtime patterns.
70 Patterns: Direct Connections for Intra- and Inter-enterprise

4.1 General guidelines
To help you determine if the Extended Enterprise business pattern is appropriate
for the design of your inter-enterprise application integration scenario, this
section details the business and IT scenario into which an Extended Enterprise
solution fits.

4.1.1 Business and IT drivers
Businesses developing a solution needing the following characteristics should
consider using the Extended Enterprise business pattern:

� The business processes need to be integrated with existing business systems
and information.

� The business processes need to integrate with processes and information
that exist at partner organizations.

4.1.2 Context
The general problem addressed by this pattern is illustrated in Figure 4-1 on
page 72. Interactions between partners form a public process, or potentially,
multiple distinct public processes. Each of these must be integrated into the
private business process flows implemented by each partner. Such integration
might be as simple as passing data to a particular application, or as sophisticated
as initiating or resuming a multi-step workflow involving several applications and
user interactions. For example, Partner A (source application) and Partner B
(target application) agree upon sharing specific business processes and a
process flow. Partner A invokes a public process flow that in turn may invoke a
specific private internal process flow within Partner B's organization. Partner A is
not concerned with the details of Partner B's private process flow. Instead,
Partner A cares only about the results it expects in response to the invoked public
process.
 Chapter 4. Extended Enterprise 71

Figure 4-1 Extended Enterprise context

The “golden rule” of business-to-business integration is the less you know about
the business partner's private processes and the implementation details of their
applications the better off you are. This loose coupling enables organizations to
evolve their applications without affecting business partner's applications.

Obviously, specific functionality supported by these applications depends on the
particular details of the trading partner agreements and service level agreements
between the organizations involved. Yet a survey of such applications in multiple
industries reveals certain common approaches that have been successful. These
commonalities of success are harvested as the various Application patterns that
can be used to implement this Business pattern.

In our sample business scenario, described in Chapter 6., “Business scenarios
used in this book” on page 111, ITSO Electronics wants to integrate their
wholesale organization with diverse external resellers. The Extended Enterprise
pattern will improve organizational efficiency and reduce the latency of business
events by integrating the external resellers with the inventory replenishment
system and reducing the likelihood of unfilled orders. The Extended Enterprise
pattern also applies a structured exchange with business partners and supports
real-time access to and from applications. This will allow the resellers to receive
the benefits of an updated inventory and receive real-time response of any out of
stock items.

The Extended Enterprise pattern also benefits ITSO Electronics by minimizing
application complexity and allowing them to integrate their applications with
resellers that have unique infrastructure designs. ITSO Electronics will be able to
leverage their current skills and legacy investments, eliminating the need for
extensive retraining and infrastructure investments.

Nonshared
business

processes

Nonshared
business

processes

Nonshared
business

processes

Nonshared

Process
flow

Nonshared
business

processes

Nonshared
business

processes

Nonshared
business

processes

Partner A

Nonshared

Process
flow

Nonshared
business

processes

Nonshared
business

processes

Shared
business

processes

Shared

Process
flow

Partner B
72 Patterns: Direct Connections for Intra- and Inter-enterprise

4.1.3 Solution
The Extended Enterprise pattern might consist of all or some of the following
elements:

� Business Entities, which typically:

– Are programs, applications, or databases that exist within an organization

– Access and connect to other business entities across the network

� A network which:

– Is based on TCP/IP and other Internet technologies

– Can be a dedicated Wide Area Network (WAN) connection

� Business rules that:

– Manage the integration between the business entities

– Describe Trading Partner Agreements

– Use Workflow rules to determine the sequence of steps and the data flow
that needs to be used to facilitate the integration. These rules:

• Describe the sequence of steps that a message needs to go through
before being transferred to the other business entity

• Specify how and where the message should be delivered

– Use Transformation rules to specify format and protocol transformations
that need to be applied to messages that flow between the business
entities

� A set of interactions that includes the execution of a jointly-agreed business
process

� Patterns based on the those described in Chapter 2., “Fundamental concepts
in Process Integration” on page 17.

4.1.4 Putting the pattern to use
This pattern can be observed in solutions such as:

� An electronics retailer/wholesaler, ITSO Electronics from our sample
scenario, enabling external resellers to place orders to the ITSO inventory
management system.

� Extended Value Chain functions within e-Marketplaces that support
cross-enterprise processes such as demand planning and collaborative
design.
 Chapter 4. Extended Enterprise 73

4.1.5 What's next
If you have determined that the Extended Enterprise business pattern can
provide an appropriate solution design for the application you are developing,
next select an Application pattern.

If the Extended Enterprise business pattern is not appropriate for your
development efforts, review the Business patterns to determine which pattern
best addresses your e-business needs.

4.2 Application patterns
The Extended Enterprise application patterns are presented here in order of
increasing flexibility and sophistication. As the Application patterns build on each
other, their capabilities and reliance on middleware increase, and they require
less application development effort. From the following Application patterns,
select the one that best fits your requirements:

� Exposed Direct Connection application pattern

– Message/Call Connection variations

� Exposed Broker application pattern

– Router variation

� Exposed Serial Process application pattern

In this redbook we focus on the Exposed Direct Connection application pattern. A
brief overview of the other Extended Enterprise patterns is provided. For full
details on the other Extended Enterprise patterns, see the IBM Patterns for
e-business Web site:

http://www.ibm.com/developerWorks/patterns

The diagram conventions shown in Figure 4-2 on page 75 are used to describe
these successful approaches in the following Application patterns.

Note: The Exposed Parallel Process application pattern is a further possibility,
but it is not currently being observed in the Extended Enterprise domain. It is
expected to appear at some later stage. In the Process-focused Application
Integration domain, see 3.3.4, “Parallel Process application pattern” on
page 51.
74 Patterns: Direct Connections for Intra- and Inter-enterprise

http://www.ibm.com/developerWorks/patterns

Figure 4-2 Application pattern diagram conventions

Business and IT drivers
Table 4-3 and Table 4-4 summarize the business and IT drivers for the Extended
Enterprise application patterns and their variations.

Table 4-3 Business drivers

Business drivers

E
xp

o
se

d
 D

ir
ec

t
C

o
n

n
ec

ti
o

n
M

es
sa

g
e

va
ri

at
io

n

E
xp

o
se

d
 D

ir
ec

t
C

o
n

n
ec

ti
o

n
C

al
l v

ar
ia

ti
o

n

E
xp

o
se

d
 B

ro
ke

r
R

o
u

te
r

va
ri

at
io

n

E
xp

o
se

d
 B

ro
ke

r

E
xp

o
se

d
 S

er
ia

l P
ro

ce
ss

Improve the organizational efficiency � � � � �

Reduce the latency of business events � � � � �

Support a structured exchange with
business partners

� � � � �

Support real-time one-way message
flows to partner processes

� � � �

Transient data
Work in progress
Cached
committed data
Staged data
(data replication flow)

Application node
containing existing
code with no need
for modification for
this project or that
cannot be changed.

Read/write data

Read only data

Application node
containing new or
modified code
for this project.

A set of applications
whose characteristics
are unspecified. Only
the means with which
to interact with them
is specified.

A small solid circle indicates the initiating node.

A single arrow indicates that a response is not needed.

Double arrows indicate that a response is needed.
 Chapter 4. Extended Enterprise 75

Table 4-4 IT drivers

Support real-time request/reply message
flows to partner processes

� � � �

Support dynamic routing of messages to
one of many target partners’ processes

� � �

Support dynamic distribution of
messages to multiple target partners’
processes

� �

Support shared public process flows with
partners

�

IT Drivers
E

xp
o

se
d

 D
ir

ec
t

C
o

n
n

ec
ti

o
n

M
es

sa
g

e
va

ri
at

io
n

E
xp

o
se

d
 D

ir
ec

t
C

o
n

n
ec

ti
o

n
C

al
l v

ar
ia

ti
o

n

E
xp

o
se

d
 B

ro
ke

r
R

o
u

te
r

va
ri

at
io

n

E
xp

o
se

d
 B

ro
ke

r

E
xp

o
se

d
 S

er
ia

l P
ro

ce
ss

Leverage existing skills � � � � �

Leverage the legacy investment � � � � �

Enable back-end application integration � � � � �

Minimize application complexity � � � � �

Minimize enterprise complexity � � �

Business drivers

E
xp

o
se

d
 D

ir
ec

t
C

o
n

n
ec

ti
o

n
M

es
sa

g
e

va
ri

at
io

n

E
xp

o
se

d
 D

ir
ec

t
C

o
n

n
ec

ti
o

n
C

al
l v

ar
ia

ti
o

n

E
xp

o
se

d
 B

ro
ke

r
R

o
u

te
r

va
ri

at
io

n

E
xp

o
se

d
 B

ro
ke

r

E
xp

o
se

d
 S

er
ia

l P
ro

ce
ss
76 Patterns: Direct Connections for Intra- and Inter-enterprise

QoS concerns
This section highlights Quality of Service capabilities that are of particular
concern in the Extended Enterprise domain.

In 2.3, “QoS capabilities framework” on page 26, we describe a QoS capabilities
framework for Process Integration based on the following general concerns:

� Autonomic
� Availability
� Federation
� Performance
� Security
� Standards compliance
� Transactionality

The following QoS concerns are of particular importance when working in the
Extended Enterprise domain.

Availability
High availability can be a particularly significant issue in the inter-enterprise
integration domain. It is important that careful availability management be used
to provide acceptable levels of customer service or, in some cases, to meet
contractual obligations regarding the availability of the application service being
provided.

Federation
To avoid overlap and inconsistencies in the implementation and management of
an inter-enterprise application integration scenario, it is crucial to clearly define
and agree to the responsibilities of each partner. In particular, agreed
mechanisms are needed for passing resource and user authentication and
authorization information between domains.

Performance
With inter-enterprise application integration, components of the end-to-end
solution are outside the enterprise boundaries and cannot be directly influenced.
As a client to an external application, it is difficult to control variables such as
response time, workload, and availability.

To minimize such dependencies, loosely coupled and reliable communications
should be considered.

Important: This profile is intended as a very rough preliminary guide to QoS
concerns which differentiate this domain, suitable for high-level architectural
design. They are not a substitute for thorough analysis at a later design stage.
 Chapter 4. Extended Enterprise 77

Security
This topic includes a range of complex issues. To discuss each of them explicitly
is far beyond the scope of this book. For the purpose of this discussion, we
assume that the communication channel is secured by using firewalls as well as
proper authentication, authorization, and so forth.

In addition, we have to secure the exchange of the data itself. In the case of an
intra-enterprise scenario, it may be sufficient to use a trustworthy network. For
inter-enterprise communication, this is not longer valid. There is a need to protect
(encrypt) the data and be sure about the sender's identity (signature).

Standards compliance
To enable interoperability between enterprises, standards compliance is a key
capability in the inter-enterprise integration domain. Widely accepted public
standards normally are required in order to have agreement between partners.
There is also usually a need for compatibility with standard firewalls when
communicating between trusted private networks and untrusted networks, such
as the Internet.

4.2.1 Exposed Direct Connection application pattern
The Exposed Direct Connection application pattern represents the simplest
interaction type based on a 1-to-1 topology. It allows a pair of applications to
directly communicate with each other across organization boundaries.
Interactions between a source and a target application can be arbitrarily
complex. Generally, complexity can be addressed by breaking down interactions
into more elementary interactions.

More complex point-to-point connections will have modeled connection rules
such as business rules associated with them, as shown in Figure 4-3.
Connection rules are generally used to control the mode of operation of a
connector depending on external factors. Examples of connection rules are:

� Business data mapping rules (for adapter connectors)
� Autonomic rules (such as priority in a shared environment)
� Security rules
� Capacity and availability rules
78 Patterns: Direct Connections for Intra- and Inter-enterprise

Figure 4-3 Exposed Direct Connection application pattern

The Exposed Direct Connection application pattern has two variations:

� Message Connection variation

� Call Connection variation

All applications of the Direct Connection application pattern will be one variation
or the other. The variation required depends on whether the initiating source
application needs an immediate response from the target application in order to
proceed with execution.

Both variations may be used either with synchronous or asynchronous
communication protocols. However, there are preferences for a specific protocol
type depending on the variation. For example, the Call Connection variation has
a more natural fit with synchronous protocols while the Message Connection
variation favors asynchronous protocols.

We examine these two variations in more detail later in this section.

Business and IT drivers
The business and IT drivers for choosing the Exposed Direct Connection
application pattern are to:

� Improve the organizational efficiency
� Reduce the latency of business events
� Support a structured exchange with business partners
� Support real-time one-way message flows to partner processes

Partner A
Secure Zone

Demilitarized
Zone

Partner BInter-
enterprise

Zone

Source
Application

Connection
Rules

Target
Application

Note: The Connection Rules component is not needed when there are no
modeled rules associated with the connection.
 Chapter 4. Extended Enterprise 79

� Support real-time request/reply message flows to partner processes
� Leverage existing skills
� Leverage the legacy investment
� Enable back-end application integration
� Minimize application complexity

The primary goal is to allow an application to gain direct and real-time access to
another application that is outside the organization in order to reduce the latency
of business events.

Solution
This Application pattern, as shown in Figure 4-3 on page 79, is divided into a
number of logical components:

� The Source Application represents one or more applications that are
interested in initiating an interaction with the target application in another
organization.

� The Connection is the line between the source application and the target
application representing a point-to-point connection between the two
applications.

� The Connection Rules represent any business rules associated with the
connection, such as data mapping rules and security rules.

� The Target Application represents a new application, a modified existing
application, or an unmodified existing application. This application is
responsible for implementing the necessary business services.

Since this application is directly exposed across organizational boundaries, it
must implement or exploit the necessary security features such as
authentication, authorization, confidentiality, integrity, and logging for
non-repudiation purposes.

Guidelines for use
Direct integration between applications can be inflexible, in that any changes to
one application may have knock-on effects on other applications. This is
especially dangerous when integrating across organizational boundaries. Any
changes to the exposed target application may require changes to many partner
applications. Such changes can be both expensive and time consuming.

Such knock-on effects can be minimized using document-based adapters that
wrapper the applications in the exposed connection. Document-based adapters
are small programs that convert the mutually agreed upon messages into API
calls to existing or new backend applications. This layering technique isolates the
exposed applications from partner applications and increases flexibility. Any
80 Patterns: Direct Connections for Intra- and Inter-enterprise

changes to these exposed applications would only impact the adapter, provided
there is no need to change the mutually agreed upon messages.

Message definition should be generalized to further promote flexibility. In other
words, messages should not be tightly coupled with backend application APIs.
Rather the message should capture all the necessary information required for
that logical interaction across business boundaries. Such generalization will help
cope with changes to the backend application API without having to change the
agreed upon message format.

Benefits
The use of this pattern allows the complete integration of applications belonging
to different companies, assuring a real-time and service-oriented access to
external data and processes. Source and target applications are clearly
decoupled, as are business logic and communication details. Therefore, it is
possible to develop different parts of the whole system in an independent way.

Limitations
This pattern implements a direct connection between the source and target
application. Hence, it cannot be used for intelligent routing of requests,
decomposition and re-composition of requests, and for invoking complex
business process workflow as a result of a request from a partner application.
Under such circumstances, you should consider a more advanced Application
pattern, such as Exposed Broker or Exposed Serial Process.

Putting the Application pattern to use
With the successful integration of their internal retail and wholesale systems,
ITSO Electronics has now decided to integrate with their external business
partners. The goal is to integrate the external resellers with the internal
wholesale system. As with the internal retail system, orders placed by the
external resellers will need to update the wholesale inventory system. To meet
these requirements ITSO Electronics chooses the Exposed Direct Connection
application pattern.

Message Connection variation
The Message Connection variation (also known as Document Exchange), shown
in Figure 4-4, applies to solutions where the business process does not require a
response from the exposed target application within the scope of the interaction.
 Chapter 4. Extended Enterprise 81

Figure 4-4 Message Connection variation

The Message Connection variation of the Exposed Direct Connection application
pattern was previously known as the Document Exchange application pattern.

Business and IT drivers
The business and IT driver for choosing the Message Connection variation of the
Direct Connection application pattern is to:

� Support real-time one-way message flows

The main driver for selecting this variation is when the business process has no
interest in the result of the operation. This variation also has the most natural fit
when message-oriented middleware is used, such as IBM WebSphere MQ.

Putting the Application pattern to use
In our scenario, external business partners of the ITSO Electronics organization
need to notify the ITSO wholesale department to update their inventory records
when a part needs to be ordered. The external business partners do not require
any acknowledgement of the request. ITSO Electronics chooses the Message
Connection variation of the Exposed Direct Connection application pattern to
meet this requirement.

Call Connection variation
The Call Connection variation (also known as Exposed Application), shown in
Figure 4-5, applies to solutions where the business process depends on the
exposed target application to process a request and return an response within
the scope of the interaction.

Note: We chose not to show the connection rules box in Figure 4-4 because
we want to focus on the connection itself.

Partner A
Secure Zone

Inter-
enterprise

Zone

Partner BDemilitarized
Zone

Source
Application

Target
Application
82 Patterns: Direct Connections for Intra- and Inter-enterprise

Figure 4-5 Call Connection variation

The Call Connection variation of the Exposed Direct Connection application
pattern was previously known as the Application Integration::Exposed
Application application pattern.

Business and IT drivers
The business and IT driver for choosing the Call Connection variation of the
Direct Connection application pattern is to:

� Support real-time request/reply message flows

The main driver for selecting this variation is when the business process requires
a result message in the interaction.

Putting the Application pattern to use
The final stage of the scenario is addressing any out of stock situations with the
external resellers. As with the internal retail system, the external resellers require
an immediate notice on any out of stock situations and a delivery date indicating
when the order can be filled. To meet these requirements, ITSO Electronics
chooses the Call Connection variation of the Exposed Direct Connection
application pattern.

4.2.2 Exposed Broker application pattern
The Exposed Broker application pattern (also known as Exposed Business
Services), shown in Figure 4-6, is based on a 1-to-N topology that separates
distribution rules from the applications. It allows a single interaction from a

Note: We chose not to show the connection rules box in Figure 4-5 because
we want to focus on the connection itself.

Partner A
Secure Zone

Inter-
enterprise

Zone

Partner BDemilitarized
Zone

Source
Application

Source
Application

Target
Application
 Chapter 4. Extended Enterprise 83

partner’s source application to be distributed to multiple target applications
concurrently.

Figure 4-6 Exposed Broker application pattern

The Exposed Broker application pattern applies to solutions where the partner’s
source application initiating the operation starts an interaction that is distributed
to multiple target applications across organization boundaries. It separates the
application logic from the distribution logic based on distribution rules. The
decomposition/recomposition of the interaction is managed by the connector
component using these distribution rules.

The Exposed Broker application pattern was previously known as the Exposed
Business Services application pattern.

Look for full details on the Exposed Broker application pattern in a future
redbook. Until then, refer to the Extended Enterprise::Exposed Business
Services application pattern discussion on the IBM Patterns for e-business Web
site:

http://www.ibm.com/developerWorks/patterns

Router variation
The Router variation of the Exposed Broker application pattern, shown in
Figure 4-7, applies to solutions where the partner’s source application initiates an
interaction that is forwarded to, at most, one of multiple target applications. The
selection of the target application is controlled by the distribution rules that
govern functioning of the connector component.

Partner A
Secure Zone

Inter-
enterprise

Zone

Demilitarized
Zone

Source
Application

Broker
Rules

Partners B

Target
Application

Target
Application

Target
Application

Partners C

Partners D
84 Patterns: Direct Connections for Intra- and Inter-enterprise

http://www.ibm.com/developerWorks/patterns

Figure 4-7 Router variation

4.2.3 Exposed Serial Process application pattern
The Exposed Serial Process application pattern (also known as Managed Public
Processes), shown in Figure 4-8, is based on a 1-to-N topology where serial
process rules are separated from the applications. It allows a single interaction
from the partner’s source application to execute a sequence of target
applications.

Figure 4-8 Exposed Serial Process application pattern

The Exposed Serial Process application pattern separates the process logic from
the application logic. The process logic is governed by serial process rules that

Inter-
enterprise

Zone

Demilitarized
Zone

Partner A
Secure Zone

Source
Application

Partners B

Target
Application

Target
Application

Target
Application

Partners C

Partners D

Router
Rules

Inter-
enterprise

Zone

Partners BDemilitarized
Zone

Partner A
Secure Zone

Source
Application

Target
Application

Serial
Process

Rules
Target

Application

Target
Application

Partners C

Partners D
 Chapter 4. Extended Enterprise 85

define execution rules for each target application, together with control flow and
data flow rules. It may also include any necessary adapter rules.

The Exposed Serial Process application pattern was previously known as the
Managed Public Processes application pattern.

Look for full details on the Exposed Serial Process application pattern in a future
redbook. Until then, refer to the Extended Enterprise::Managed Public Processes
application pattern discussion on the IBM Patterns for e-business Web site:

http://www.ibm.com/developerWorks/patterns

4.3 Runtime patterns
The next step is to choose Runtime patterns that most closely match the
requirements of the application. A Runtime pattern uses nodes to group
functional and operational components. The nodes are interconnected to solve a
business problem. Each Application pattern leads to one or more underpinning
Runtime patterns.

We can overlay the Application pattern onto the Runtime pattern to identify
where business logic is deployed on nodes. The Runtime patterns illustrated give
some typical examples of possible solutions, but should not be considered
exhaustive.

To understand the Runtime pattern, you will need to review the node definitions
provided in 5.1, “Node types” on page 98.

4.3.1 Runtime patterns for Exposed Direct Connection
When using the Exposed Direct Connection runtime pattern, shown in
Figure 4-9, the source application uses a connector to access the target
application.

Note: It is expected that the Extended Enterprise::Managed Public and
Private Processes application pattern will be reclassified as a composite
pattern, based on the public Extended Enterprise::Exposed Serial Process
application pattern and the private Application Integration::Serial/Parallel
Process application pattern.

Note: We cover Runtime patterns for Exposed Direct Connection in this
section. Look for details on the Exposed Broker runtime pattern or the
Exposed Serial Process runtime pattern in a future redbook.
86 Patterns: Direct Connections for Intra- and Inter-enterprise

http://www.ibm.com/developerWorks/patterns

The connector itself may be explicitly or implicitly modeled. If the connector is
explicitly modeled, the modeler can use decomposition and abstraction
techniques to expand the connector to the appropriate level of detail.

The term Connector may be qualified by both the connector variation and by the
interaction variation. Some examples are:

� Adapter Connector
� Path Connector
� Message Connector
� Call Connector
� Call Adapter Connector

The target application relies on services provided by its hosting server. These are
modeled using the Application Server/Services component.

The Rules Directory and Domain QoS Providers may or may not exist. If they do
exist, it is a modeling decision as to whether they need to be shown in the
Runtime pattern. For example, analysis may determine that connection rules are
not an important part of the solution, so the Rules Directory may be left off the
Runtime pattern.

Figure 4-9 Exposed Direct Connection runtime pattern

Partner A
Secure Zone

Demilitarized
Zone

Partner BInter-
enterprise

Zone

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

l

Network
Infra-

structure
Partner

Infrastructure

Exposed Direct Connection

Source
Application

Target
Application

Connection
Rules

Connector

Rules
Directory

Domain QoS
Providers

App Server/
Services
 Chapter 4. Extended Enterprise 87

Figure 4-9 shows a standard pattern of Path Connectors (firewalls and network
infrastructure), but other variations do exist with fewer or more firewalls.

The secure zone Connector is primarily concerned with logical connection of the
Path Connector to the Application Services, and will therefore often be modeled
as an Adapter Connector.

Less secure applications and connectors may be placed within the Demilitarized
Zone, depending on local security policies; they are usually placed as shown in
Figure 4-9.

This Runtime pattern allows two different organizations to talk to each other with
a mutually agreed message format and protocol. Each partner can use their own
internal messaging format, using a connector adapter to convert from the internal
format to the external format.

You may notice that we don't have separate Runtime patterns for the message
and call variations of the Exposed Direct Connection application pattern. It is still
important to identify that your business scenario requires a message or call
application pattern because you can use this knowledge as a consideration when
selecting a Product mapping. In the next section we highlight Product mappings
that have a more natural fit to the Application pattern message variation or to the
Application pattern call variation.

4.4 Product mappings
The next step after choosing a Runtime pattern is to determine the actual
products and platforms to be used. It is suggested that you make the final
platform recommendation based on the following considerations:

� Existing systems and platform investments
� Customer and developer skills available
� Customer preference

The platform selected should fit into the customer's environment and ensure
quality of service, such as availability and performance, so that the solution can
grow along with the e-business.

This section introduces the major products used in the application and provides
an overview of the products as they apply to the Exposed Direct Connection
Runtime patterns.

The product mappings shown use the standard pattern of path connectors
(firewalls, demilitarized zone, and network infrastructure), although variations
exists with fewer or more firewalls.
88 Patterns: Direct Connections for Intra- and Inter-enterprise

Our sample application, based on the Exposed Direct Connection application
patterns, has been implemented using IBM WebSphere Application Server
V5.0.2 on the Microsoft Windows 2000 platform.

Refer to 5.2, “Product descriptions” on page 101 for descriptions of the products
used in these Product mappings.

4.4.1 Product mappings for Exposed Direct Connection: Message
variation

This section presents Product mappings for the Message Connection variation of
the Exposed Direct Connection pattern using:

� Web services

� Web Services Gateway

� WebSphere Data Interchange

Web services
Figure 4-10 shows a Product mapping based on IBM WebSphere Application
Server V5.0.2 and the Message Connection variation of the Exposed Direct
Connection pattern that uses a one-way Web service invocation.

Figure 4-10 Exposed Direct Connection::Message Connection: Web services Product mapping

Note: Although we developed these product mappings from our sample
scenarios on the Windows 2000 operating system, there are a number of
other options because IBM WebSphere products run on a wide range of
platforms (for example, Windows 2000, Linux, AIX, OS/400, z/OS, and
others).

Partner A
Secure Zone

Demilitarized
Zone

Partner BInter-
enterprise

Zone

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

l

Network
Infra-

structure
Partner

Infrastructure

SOAP
/HTTP

Message
Connector

App Server/
Services

WebSphere
Application Server

V5.0.2

JAX-RPC SOAP Provider Internet
 Chapter 4. Extended Enterprise 89

We use a message adapter connector in Partner A to model Web services
application integration. This emphasizes the use of an adapter connector to
convert the request into the common SOAP/HTTP protocol.

In this case, the source application uses the JAX-RPC API to send a one-way
request via the WebSphere V5.0.2 SOAP provider. Partner B receives the
request from the source via its unspecified infrastructure.

We used this combination of runtime nodes and products to implement the
sample scenario described in Chapter 14, “Using inter-enterprise Web services”
on page 299.

Web Services Gateway
Figure 4-11 shows another Product mapping based on IBM WebSphere
Application Server V5.0.2 and the Message Connection variation of the Exposed
Direct Connection application pattern that uses a one-way Web service
invocation. This time we introduce the Web Services Gateway packaged with
IBM WebSphere Application Server Network Deployment V5.0.2.

Figure 4-11 Exposed Direct Connection::Message Connection: Web Services Gateway Product mapping

This product mapping uses connection rules provided by the Web Services
Gateway to allow greater control over the point-to-point connection between the
source application and a business partner’s target application. The gateway
provides access control and a common access point for external Web services. It
can also protect client applications from changes in the Web services they
access.

Partner A
Secure Zone

Demilitarized
Zone

Partner BInter-
enterprise

Zone

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

l

Network
Infra-

structure
Partner

Infrastructure
Message

Connector
App Server/

Services

SOAP
/HTTP

SOAP
/HTTP

WebSphere
Application Server

V5.0.2
JAX-RPC

WebSphere V5.0.2
Network Deployment

Web Services
Gateway

Internet
90 Patterns: Direct Connections for Intra- and Inter-enterprise

We used this combination of runtime nodes and products to implement the
sample scenario described in Chapter 14, “Using inter-enterprise Web services”
on page 299.

WebSphere Data Interchange
Figure 4-12 shows a Product mapping based on WebSphere Data Interchange
for Multiplatforms and the Message Connection variation of the Exposed Direct
Connection application pattern. This product mapping uses IBM WebSphere MQ
V5.3.1 as the transport mechanism between WebSphere Application Server,
WebSphere Data Interchange, and iSoft Peer-to-Peer Agent.

Figure 4-12 Exposed Direct Connection::Message Connection: WebSphere Data Interchange Product
mapping

WebSphere Data Interchange V3.2 with CSD1 is used to adapt each type of
message or document to partner requirements. The product mapping uses iSoft
Peer-to-Peer Agent V3.1.2 to adapt MQ messages and documents to the AS2
EDI protocol for secure and reliable transport of messages and documents with
business partners via the Internet.

We discuss this combination of runtime nodes and products in Chapter 15,
“Using WebSphere Data Interchange” on page 315. Further details can be found
in the following Redpapers:

� WebSphere Data Interchange Installation and Configuration, REDP3600

� Implementation of iSoft and Integration with an EAI solution, REDP3625

Partner A
Secure Zone

Demilitarized
Zone

Partner BInter-
enterprise

Zone

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

l

Network
Infra-

structure
Partner

Infrastructure
Message

Connector
App Server/

Services

AS2
/HTTP

MQ

WebSphere
Application Server

V5.0.2
JMS

WebSphere Data
Interchange V3.2
iSoft P2P Agent

V3.1.2

Internet
 Chapter 4. Extended Enterprise 91

4.4.2 Product mappings for Exposed Direct Connection: Call
variation

This section presents Product mappings for the Call Connection variation of the
Exposed Direct Connection pattern using:

� Web services

� Web Services Gateway

� Web Services Gateway with protocol change

Web services
Figure 4-13 shows a Product mapping based on IBM WebSphere Application
Server V5.0.2 and the Call Connection variation of the Exposed Direct
Connection pattern that uses a request-response Web service invocation.

Figure 4-13 Exposed Direct Connection::Call Connection: Web services Product mapping

We use a call adapter connector in Partner A to model Web services application
integration. This emphasizes the use of an adapter connector to convert the
request and response into the common SOAP/HTTP protocol.

In this case, the source application uses the JAX-RPC API to initiate a
request-response operation via the WebSphere V5.0.2 SOAP provider. Partner B
receives the request from the source via its unspecified infrastructure.

We used this combination of runtime nodes and products to implement the
sample scenario described in Chapter 14, “Using inter-enterprise Web services”
on page 299. See also 9.5, “Integration with .NET-based Web services” on
page 205 for discussion on integrating with .NET partner infrastructure.

Partner A
Secure Zone

Demilitarized
Zone

Partner BInter-
enterprise

Zone

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

l

Network
Infra-

structure
Partner

Infrastructure

SOAP
/HTTP

Call
Connector

App Server/
Services

WebSphere
Application Server

V5.0.2

JAX-RPC SOAP Provider Internet
92 Patterns: Direct Connections for Intra- and Inter-enterprise

Web Services Gateway
Figure 4-14 shows another Product mapping based on IBM WebSphere
Application Server V5.0.2 and the Call Connection variation of the Exposed
Direct Connection application pattern that uses a request-response Web service
invocation. This time we introduce the Web Services Gateway packaged with
IBM WebSphere Application Server Network Deployment V5.0.2.

Figure 4-14 Exposed Direct Connection::Call Connection: Web Services Gateway Product mapping 1

This product mapping uses connection rules provided by the Web Services
Gateway to allow greater control over the point-to-point connection between the
source application and a business partner’s target application. The gateway
provides access control and a common access point for external Web services. It
can also protect client applications from changes in the Web services they
access.

We used this combination of runtime nodes and products to implement the
sample scenario described in Chapter 14, “Using inter-enterprise Web services”
on page 299.

Web Services Gateway with protocol change
Figure 4-15 shows a Product mapping based on IBM WebSphere Application
Server V5.0.2 and the Call Connection variation of the Exposed Direct
Connection application pattern that uses a request-response Web service
invocation. In this product mapping the Web Services Gateway provides a
protocol change between Partner B and the target application in Partner A.

Partner A
Secure Zone

Demilitarized
Zone

Partner BInter-
enterprise

Zone

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

l

Network
Infra-

structure
Partner

Infrastructure
Call

Connector
App Server/

Services

SOAP
/HTTP

SOAP
/HTTP

WebSphere
Application Server

V5.0.2
JAX-RPC

WebSphere V5.0.2
Network Deployment

Web Services
Gateway

Internet
 Chapter 4. Extended Enterprise 93

Figure 4-15 Exposed Direct Connection::Call Connection: Web Services Gateway Product mapping 2

In addition to the connection rules capabilities described in “Web Services
Gateway” on page 93, the gateway provides adapter connector capabilities. This
product mapping allows a Web service client application in Partner B to invoke a
CICS target application in Partner A using SOAP/HTTP. The gateway converts
the SOAP/HTTP call to the CICS Transaction Gateway TCP protocol using the
Web Services Invocation Framework and the CICS ECI J2EE Connector.

In addition to J2EE Connectors, the Web Services Gateway can be used to
connect Web service client applications with target applications that are
accessed via JMS or RMI/IIOP.

This combination of runtime nodes and products is based on the sample
scenarios described in Chapter 14, “Using inter-enterprise Web services” on
page 299 and Chapter 11, “Using the Web Services Gateway with J2EE
Connectors” on page 237.

4.5 Previous Extended Enterprise patterns
Table 4-5 provides an overview of the relationship between the previous
Extended Enterprise patterns and the revised Extended Enterprise patterns
presented in this chapter. The definition changes are summarized as follows:

� The revised Extended Enterprise patterns use the same names as the
revised Process-focused Application Integration patterns, with the added
prefix of “Exposed”. This provides consistency between the intra-enterprise
and inter-enterprise pattern names.

Partner A
Secure Zone

Demilitarized
Zone

Partner BInter-
enterprise

Zone

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

l

Network
Infra-

structure
Partner

Infrastructure
Call

Connector
App Server/

Services

SOAP
/HTTP

CICS
TG TCP

CICS Transaction
Gateway V5.0

CICS Transaction
Server V2.2

WebSphere V5.0.2
Network Deployment
Web Services G/W

WSIF/J2C

Internet
94 Patterns: Direct Connections for Intra- and Inter-enterprise

� The Managed Public and Private Process pattern will be reclassified as a
composite pattern, based on the public Extended Enterprise::Exposed Serial
Process application pattern and the private Application
Integration::Serial/Parallel Process application pattern.

Table 4-5 Relationship to old Extended Enterprise patterns

Old Pattern New Pattern

Document Exchange Exposed Direct Connection

� Exposed Message Connection variation

Exposed Application Exposed Direct Connection

� Exposed Call Connection variation

Exposed Business service Exposed Broker

� Exposed Router variation

Managed Public Process Exposed Serial Process

Managed Public & Private Process Composite pattern based on Process-focused
Application Integration and Extended
Enterprise
 Chapter 4. Extended Enterprise 95

96 Patterns: Direct Connections for Intra- and Inter-enterprise

Chapter 5. Node types and Product
descriptions

This chapter provides definitions of the nodes used in the intra-enterprise and
inter-enterprise Runtime patterns that are described in 3.5, “Runtime patterns”
on page 54 and 4.3, “Runtime patterns” on page 86.

It also provides Product definitions for the products used in the intra-enterprise
and inter-enterprise Product mappings that are described in 3.6, “Product
mappings” on page 57 and 4.4, “Product mappings” on page 88.

5

© Copyright IBM Corp. 2003. All rights reserved. 97

5.1 Node types
A Runtime pattern consists of several nodes representing specific functions.
Most Runtime patterns consist of a core set of common nodes, with the addition
of one or more nodes unique to that pattern. To understand the Runtime pattern,
you will need to review the following node definitions.

Application server/Services
The application server node provides the infrastructure for application logic and
can be part of a Web application server. It is capable of running both
presentation and business logic but generally does not serve HTTP requests.
When used with a Web server redirector, the application server node can run
both presentation and business logic. In other situations, it can be used for
business logic only. The application server node supports hosting of Web
services applications.

Applications may also rely on services provided by their hosting server to interact
with other applications. Examples of services provided by the Application
Server/Services node include:

� A TCP/IP pipe established using the hosting operating system
� A servlet or EJB invoked by WebSphere Application Server
� The JMS or J2EE Connector APIs provided by WebSphere

Connector
Connectors provide the connectivity between two components. A connector is
always present to facilitate interaction between two components.

Depending on the required level of detail, a connector can be:

� A primitive (or unmodeled) connector, represented by a simple line between
components.

� A component (or modeled) connector, represented by a rectangle on a line
between components.

A connector may be an adapter connector, a path connector, or both.

See also:

� “Adapter connector” on page 98
� “Path connector” on page 99

Adapter connector
Adapter connectors are concerned with enabling logical connectivity by bridging
the gap between the context schema and protocols used by the source and
98 Patterns: Direct Connections for Intra- and Inter-enterprise

target components. An adapter connector is one that supports the transformation
of data and protocols.

Path connector
Path connectors are concerned with providing physical connectivity between
components. A path connector may be very complex (for example, the Internet),
or very simple (an area of shared storage).

Rules directory
The rules directory contains the rules generally used to control the mode of
operation of an interaction, depending on external factors. Examples of such
rules are:

� Business data mapping rules (for adapter connectors)
� Autonomic rules (such as priority in a shared environment)
� Security rules
� Capacity and availability rules

The rules directory may or may not exist. If it does exist, it could still be left off the
Runtime pattern, for example, when analysis determines that interaction rules
are not an important part of the solution.

Domain QoS providers
The integration pattern for a domain is composed of a topology pattern and
domain QoS providers. Intra-enterprise integration and inter-enterprise
integration are both examples of domains. This combination of topology pattern
and QoS providers is used to describe observed patterns in the domain.

Integration pattern = topology pattern + QoS providers

The QoS capabilities framework can be used to address the particular QoS
concerns for the domain:

� Autonomic
� Availability
� Federation
� Performance
� Security
� Standards compliance
� Transactionality

The domain QoS providers may or may not exist. If they do exist, they can still be
left off the Runtime pattern, for example, when analysis determines that domain
QoS providers are not an important part of the solution.
 Chapter 5. Node types and Product descriptions 99

Protocol firewall node
A firewall is a hardware/software system that manages the flow of information
between the Internet and an organization's private network. Firewalls can prevent
unauthorized Internet users from accessing private networks connected to the
Internet, especially intranets, and can block some virus attacks (as long as those
viruses are coming from the Internet). A firewall can separate two or more parts
of a local network to control data exchange between departments. Components
of firewalls include filters or screens, each of which controls transmission of
certain classes of traffic. Firewalls provide the first line of defense for protecting
private information, but comprehensive security systems combine firewalls with
encryption and other complementary services, such as content filtering and
intrusion detection.

Firewalls control access from a less trusted network to a more trusted network.
Traditional implementations of firewall services include:

� Screening routers (the protocol firewall)
� Application gateways (the domain firewall)

A pair of firewall nodes provides increasing levels of protection at the expense of
increasing computing resource requirements. The protocol firewall is typically
implemented as an IP router.

Domain firewall node
The domain firewall is typically implemented as a dedicated server node.

A domain firewall is usually used to separate a secure zone, such as the internal
network, from a demilitarized zone. This provides added security protection from
the un-secure zone, such as the Internet.

Partner infrastructure
Partner infrastructure includes the partner's installed applications, data,
computing, and network infrastructure. Partner infrastructure has unspecified
internal characteristics; only the means with which to interact with it is specified.

Inter-enterprise network infrastructure
Inter-enterprise network infrastructure includes the network infrastructure
allowing connectivity between enterprises. Inter-enterprise network infrastructure
has unspecified internal characteristics; only the means with which to interact
with it is specified.
100 Patterns: Direct Connections for Intra- and Inter-enterprise

Local Area Network
The Local Area Network (LAN) node is a communications network that serves
users within a confined geographical area. It is made up of servers, workstations,
a network operating system and a communications link.

Wide Area Network
The Wide Area Network (WAN) node is a communications network that covers a
wide geographic area, such as a state or country.

5.2 Product descriptions
The next step after choosing a Runtime pattern is to determine the actual
products and platforms to be used. It is suggested that you make the final
platform recommendation based on the following considerations:

� Existing systems and platform investments
� Customer and developer skills available
� Customer preference

The platform selected should fit into the customer's environment and ensure
quality of service, such as scalability and reliability, so that the solution can grow
along with the e-business.

Our sample application, based on the Application Integration pattern and
Extended Enterprise business pattern, has been implemented using IBM
WebSphere Application Server V5.0 in a Microsoft Windows 2000 environment.

The following alternatives are detailed for implementation of the point-to-point
connection between applications:

� For the Application Integration pattern:

– Web services using the Web services support provided with IBM
WebSphere Application Server base V5.0.2

– Web services using the Web Services Gateway provided with IBM
WebSphere Application Server Network Deployment V5.0.2

– J2EE Connectors using IBM CICS

– Java Message Service (JMS) using IBM WebSphere MQ

– WebSphere Business Integration Adapters JDBC adapter

� For the Extended Enterprise application pattern:

– Web services using the Web services support provided with IBM
WebSphere Application Server base V5.0.2
 Chapter 5. Node types and Product descriptions 101

– Web services using the Web Services Gateway provided with IBM
WebSphere Application Server Network Deployment V5.0.2

– Electronic Data Interchange using WebSphere Data Interchange

This section introduces the major products used in the application and provides
an overview of the products as they apply to these two Runtime patterns.

5.2.1 IBM WebSphere Application Server
IBM WebSphere Application Server V5.0 represents a continuation of the
evolution to a single, integrated, cost-effective, Web services-enabled, J2EE
server foundation for applications that offers customers:

� One deployment model
� One administration point
� One programming model
� One integrated application development environment

With IBM WebSphere Application Server V5.0, IBM enables customers to
expand their business opportunities and productivity through a world class
infrastructure ready for e-business on demand™.

IBM WebSphere Application Server V5.0 comes in a number editions, each
offering a unique combination of features geared toward different customer
needs.

IBM WebSphere Application Server Express V5.0
IBM WebSphere Application Server Express V5.0 provides a combination of
development tools and application servers in a single integrated package geared
toward developing Web page-centric applications. It provides a simplified
programming model that allows you to create new Web applications and to
convert existing static applications to dynamic applications.

It provides a cost-effective starting point for businesses that want to have a
presence on the Web. As your business needs grow, the WebSphere family
provides a smooth migration path to higher-end WebSphere Application Server
and WebSphere Studio configurations.

Note: You only need a subset of the products detailed in this chapter,
depending on the application connectivity needed. Refer to the product
mapping diagrams to determine which products are needed for specific
patterns.
102 Patterns: Direct Connections for Intra- and Inter-enterprise

More information about IBM WebSphere Application Server Express V5.0 can be
found at:

http://www.ibm.com/software/webservers/appserv/express

IBM WebSphere Application Server base V5.0
IBM WebSphere Application Server base V5.0 provides a robust application
deployment environment for single-server light production situations.

It contains a base application server that supports the full J2EE 1.3 environment.
It allows a full range of enterprise integration and offers enhanced security,
performance, availability, connectivity, and scalability options. Administration is
done through a Web-based interface or through a scripting tool.

More information about IBM WebSphere Application Server base V5.0 can be
found at:

http://www.ibm.com/software/webservers/appserv/was/

IBM WebSphere Application Server Network Deployment V5.0
IBM WebSphere Application Server Network Deployment V5.0 is designed to
add non-programming enhancements to the features provided in the base
edition. These enhancements add scalability features, allowing you to run
applications on multiple servers and on multiple physical nodes.

In addition to the features included with the base edition of WebSphere
Application Server, you get:

� The Deployment Manager, which allows you to centrally manage a number of
different application server instances and clustering for workload
management and failover.

� The Network Dispatcher and Caching Proxy Server. These features provide
the edge-of-network functions required to set up a classic DMZ in front of the
application server.

� A private UDDI registry for easier deployment of internal Web services
applications and a Web Services Gateway.

More information about IBM WebSphere Application Server Network Deployment
V5.0 can be found at:

http://www.ibm.com/software/webservers/appserv/was/network/

IBM WebSphere Application Server Enterprise V5.0
IBM WebSphere Application Server Enterprise V5.0 provides all the features in
IBM WebSphere Application Server Network Deployment V5.0, plus
programming model extensions for sophisticated application designs.
 Chapter 5. Node types and Product descriptions 103

http://www.ibm.com/software/webservers/appserv/express
http://www.ibm.com/software/webservers/appserv/was/
http://www.ibm.com/software/webservers/appserv/was/network/

It offers additional capabilities such as advanced application adapters,
application workflow composition and choreography, extended messaging,
dynamic rules-based application adaptability, internationalization, and
asynchronous processing.

WebSphere MQ is bundled with the package (except on z/OS).

More information about IBM WebSphere Application Server Enterprise V5.0 can
be found at:

http://www.ibm.com/software/webservers/appserv/enterprise/

5.2.2 IBM WebSphere MQ
IBM WebSphere MQ provides assured once-only delivery of messages across
more than 35 industry platforms using a variety of communications protocols.

The transportation of message data through a network is made possible through
the use of a network of WebSphere MQ queue managers. Each queue manager
hosts local queues that are containers used to store messages. Through remote
queue definitions and message channels, data can be transported to its
destination queue manager.

To use the services of a WebSphere MQ transport layer, an application must
make a connection to a WebSphere MQ queue manager, the services of which
will enable it to receive (get) messages from local queues, or send (put)
messages to any queue on any queue manager. The application’s connection
may be made directly (where the queue manager runs locally to the application)
or as a client to a queue manager that is accessible over a network.

Dynamic workload distribution is another important feature of WebSphere MQ.
This feature shares the workload among a group of queue managers that are
part of the same cluster. This allows WebSphere MQ to automatically balance
the workload across available resources, and provide hot standby capabilities if a
system component fails. This is a critical feature for companies that need to
maintain round-the-clock availability.

WebSphere MQ supports a variety of application programming interfaces
(including MQI, AMI, and JMS), which provide support for several programming
languages as well as point-to-point and publish/subscribe communication
models. In addition to support for application programming, WebSphere MQ
provides a number of connectors and gateways to a variety of other products,
such as Microsoft Exchange, Lotus® Domino®, SAP/R3, CICS, and IMS, to
name just a few.
104 Patterns: Direct Connections for Intra- and Inter-enterprise

http://www.ibm.com/software/webservers/appserv/enterprise/

More information can be found at the IBM WebSphere MQ Web site:

http://www.ibm.com/software/ts/mqseries

5.2.3 IBM CICS
IBM Customer Information Control System (CICS) is a family of application
servers and connectors that provides industrial-strength, online transaction
management and connectivity for mission-critical applications. Existing CICS
installations process more than $1 trillion in transactions each day.

Our J2EE Connector scenario makes use of the following IBM CICS
components:

� IBM CICS Transaction Server
� CICS Transaction Gateway (CICS TG)

More information can be found at the IBM CICS Web site:

http://www.ibm.com/software/ts/cics

IBM CICS Transaction Server
The IBM CICS Transaction Server is an online transaction processing (OLTP)
environment for hosting business applications. It provides transaction
management services, operating system services, database services, security
services, and a variety of client access services. It allows resource managers to
join transactions, and provides them with notification of transaction events, such
as commit or rollback.

It supports numerous application development environments and models,
including COBOL, PL/I, Java, EJB, and object-oriented (OO) development, in any
combination. CICS Transaction Server runs on z/OS, OS/390®, and
VSE/ESA™.

CICS Transaction Gateway
The CICS Transaction Gateway (CICS TG) has a long heritage as a Java
connector for CICS, originally being provided as the CICS Gateway for Java for
use with the CICS Client. Since then, CICS TG has advanced along with the
Java world and now provides three principal interfaces for communication with
CICS:

� Base classes
� Common Connector Framework API
� J2EE Common Client Interface

CICS TG is a well-proven and established product, available on multiple
platforms, including AIX, Windows, z/OS, Solaris, HP-UX, and Linux on zSeries.
 Chapter 5. Node types and Product descriptions 105

http://www.ibm.com/software/ts/cics
http://www.ibm.com/software/ts/mqseries

5.2.4 WebSphere Business Integration Adapters
IBM WebSphere Business Integration Adapters V2.2 are part of the WebSphere
Business Integration family of products and offerings. They can be thought of as
the “spokes” in a hub-and-spoke architecture radiating out to packaged
applications, legacy systems, mainframe and e-business systems. They enable
the exchange of data and transactions between systems. Their capability to
transform data can be used to access databases and integrate disparate data
formats.

There are more than 60 systems and versions of systems that are currently
supported by WebSphere Business Integration Adapters. They are categorized
into four strategic areas:

� Technology adapters provide various ways to access data, technologies, and
protocols that enhance an integration infrastructure.

� Application adapters extract data and transaction information from both
leading and industry-specific packaged applications.

� Mainframe adapters provide access to application data in z/OS systems and
to OS/400.

� e-business adapters for securely connecting over the firewall to customer
desktops, trading partner internal applications, and online marketplaces and
exchanges.

More information about IBM WebSphere Business Integration Adapters can be
found at:

http://www.ibm.com/websphere/integration/wbiadapters

5.2.5 WebSphere Data Interchange
WebSphere Data Interchange for Multiplatforms V3.2 provides advanced
translation, validation, and batched information exchange capabilities for
Electronic Data Interchange (EDI) standards and for XML. WebSphere Data
Interchange V3.2 electronically translates EDI format data, such as invoices,
purchase orders, and billing forms, for exchange with trading partners.

WebSphere Data Interchange V3.2 supports industry implementations of the
ANSI X12, EDIFACT, VICS, UCS and Rail standards. Translation can take place
between any combination of EDI, XML, or structured Application Data Format.

WebSphere Data Interchange V3.2 provides advanced data validation and
standards compliance functions that allow the functional acknowledgments,
defined by some standards, to be generated in response to inconsistencies in the
data content. WebSphere Data Interchange V3.2 can be configured to both
106 Patterns: Direct Connections for Intra- and Inter-enterprise

http://www.ibm.com/websphere/integration/wbiadapters

construct and de-construct envelopes of EDI format data that contain batches of
related EDI items such as invoices or purchase orders.

WebSphere Data Interchange V3.2 is available on the Windows 2000, AIX, and
z/OS platforms.

WebSphere Data Interchange V3.2 supports integration with WebSphere MQ,
enabling inter-operation with a wide range of enterprise applications, business
process engines (such as the IBM CrossWorlds® InterChange Server),
information brokers (such as WebSphere MQ Integrator), and ERP systems
(such as SAP R3).

WebSphere Data Interchange V3.2 provides for communication with trading
partners via both value added networks (VANs) or Internet B2B gateways.It
provides an easy-to-use, configurable interface that enables connection to
leading VAN and Internet gateways. The WebSphere Business Connection
offerings that provide AS1 and AS2 support, and the IBM e-business hosting
Expedite VAN gateway, are two examples of supported gateways from IBM.

More information about IBM WebSphere Data Interchange can be found at:

http://www.ibm.com/software/integration/wdi/
 Chapter 5. Node types and Product descriptions 107

http://www.ibm.com/software/integration/wdi/

108 Patterns: Direct Connections for Intra- and Inter-enterprise

Part 2 Scenarios and
guidelines

Part 2 presents guidelines for applying the Patterns approach to a sample
business scenario and for selecting application integration technologies.

Included in Part 2 are the following chapters:

� Chapter 6, “Business scenarios used in this book” on page 111
� Chapter 7, “Technology options” on page 127

Part 2
© Copyright IBM Corp. 2003. All rights reserved. 109

110 Patterns: Direct Connections for Intra- and Inter-enterprise

Chapter 6. Business scenarios used in
this book

To demonstrate the use of the Patterns for e-business presented in this redbook,
we came up with the business scenarios outlined in this chapter for our imaginary
customer, ITSO Electronics. Of course, simple business scenarios like these
don’t exist in reality, but they help us to explain how the Patterns for e-business
approach can be applied.

6

© Copyright IBM Corp. 2003. All rights reserved. 111

6.1 Customer overview
This section provides some background information on our imaginary client,
ITSO Electronics, including:

� Business profile and goals
� Existing environment
� Non-functional requirements, or Quality of Service requirements

6.1.1 Business profile
ITSO Electronics is a retail electronics store that specializes in both consumer
and business goods. Founded 30 years ago, the company has grown from a
small local storefront to a large regional department store featuring televisions,
computer equipment, stereo equipment, and household electronics. The
company has a large wholesale business as well, supplying computer
equipment, fax machines, copiers, and other business electronics to merchants
throughout the region.

6.1.2 Business goals
By integrating their retail ordering and wholesale inventory processes, ITSO
Electronics plans to:

� Reduce costs by reducing the staff workload associated with placing stock
replenishment orders with the wholesale department. This should be
achieved by integrating the ordering system with the wholesale inventory
system.

� Increase customer satisfaction by reducing latency between the retail
ordering process and the wholesale inventory process, thereby decreasing
the likelihood of an item being out-of-stock.

After the internal processes have been integrated, ITSO Electronics plans to
enable their external resellers to place stock replenishment orders with the
wholesale department.

6.1.3 Existing environment
This section describes the existing environment at ITSO Electronics.

Business perspective
From the business perspective, the existing environment includes:

� The wholesale ordering process shown in Figure 6-1. This process uses the
wholesale department’s inventory business process, which is accessed
112 Patterns: Direct Connections for Intra- and Inter-enterprise

through manual channels in the form of paper-based forms and manual
processes.

� The internal retail department and a number of external reseller business
partners, who use the wholesale department to place their stock
replenishment orders.

Figure 6-1 ITSO Electronics wholesale ordering process flow

IT perspective
The existing IT environment, shown in Figure 6-2, includes:

� An existing wholesale inventory system. This important legacy system
implements the core business processes of the wholesale department.

� An existing retail ordering system. This system is used by retail staff and has
recently been upgraded to a Self-Service browser-based J2EE application.

� External reseller’s with their own, heterogeneous IT infrastructures.

� Limited existing application integration infrastructure.

Retail
Department

Wholesale
Department

 2. Month end totalling
of Ordered items

 3. Stock
Status sent

by mail

4. Stock
Replenishment

1. Retail Orders
 Chapter 6. Business scenarios used in this book 113

Figure 6-2 ITSO Electronics current IT infrastructure

6.1.4 Non-functional requirements
ITSO Electronics requires that all solutions provide a standard Quality of Service
(QoS) set. The following specific criteria must be met:

� Autonomic

– Solutions provide suitable system management tools, procedures, and
logs.

� Availability

– Solutions meet both the defined unplanned and planned downtime
requirements.

– Meaningful messages are provided to system users during downtime.

� Federation

– The responsibilities of the stakeholders are clearly defined and agreed to
by all parties.

� Performance

– Solutions meet the defined throughput and response times.

– Solutions scale to provide for future growth.

� Security

– Sensitive systems and data is protected from unauthorized access.

Retail
Ordering
System

Organization boundary

Wholesale
Inventory
System

Reseller
Partner

Infrastructure

Reseller
Partner

Infrastructure

Reseller
Partner

Infrastructure
114 Patterns: Direct Connections for Intra- and Inter-enterprise

– Non-repudiation of the end user for all commercial transactions is
provided.

� Standards compliance

– Appropriate standards are identified and applied.

– Compatibility with existing internal systems and partners is considered.

It is beyond the scope of this redbook to define such requirements in real,
measurable terms for our sample scenarios. Of course you would do so in a
real-world implementation to ensure that the delivered solution meets the
demands of the organization.

6.2 Intra-enterprise scenarios
In the first phase of implementation, ITSO Electronics wants to integrate their
retail and wholesale departments. Currently, both organizations have proven IT
infrastructures but have no interconnectivity. The first process ITSO Electronics
wants to focus on is the inventory and order replenishment process. Currently,
the items sold are tallied at the end of the month by the retail ordering process
and delivered to the wholesale organization by internal mail. This creates a lag in
the inventory replenishment process and causes many out of stock situations. A
primary business goal is to minimize the loss of sales due to items being out of
stock.

Selecting a Business/Integration pattern
In 3.1.1, “Business and IT drivers” on page 35, the following drivers are listed for
selecting the Application Integration pattern:

� The business processes need to be integrated with existing business systems
and information.

� The business activity needs to aggregate, organize and present information
from various sources within the organization.

Both drivers apply to ITSO Electronics. The business processes of the retail
department and the wholesale department need to be integrated by integrating
the existing retail business system with the existing wholesale business system.
The pattern would integrate the retail order information with the wholesale
inventory information, eliminating the lag and providing an up-to-date inventory.

The Application Integration pattern can be applied in our intra-enterprise
scenarios, as shown in Figure 6-3.
 Chapter 6. Business scenarios used in this book 115

Figure 6-3 ITSO Electronics: Stage I and II architecture overview diagram

6.2.1 Stage I: Internal ordering on demand
In the first stage of the internal implementation, ITSO Electronics wants to
integrate the retail system and the wholesale system. The primary goal is to
integrate the internal retail ordering system with the internal wholesale system to
update inventory as replenishment orders are placed. The wholesale group will
then be able to monitor inventory levels and deliver replacement parts as
needed. There is no business requirement for confirmation when the inventory is
updated, but there is a requirement for an audit trail.

For Stage I of our business scenario, we can identify two actors:

� The retail system
� The wholesale system

We can also identify a use case:

� Update inventory

Actors
Table 6-1 provides details on the retail system actor and Table 6-2 provides
details on the wholesale system actor.

Application
Integration

Retail
Ordering
System

Organization boundary

Wholesale
Inventory
System

Reseller
Partner

Infrastructure

Reseller
Partner

Infrastructure

Reseller
Partner

Infrastructure
116 Patterns: Direct Connections for Intra- and Inter-enterprise

Table 6-1 Retail system actor details

Table 6-2 Wholesale system actor details

Use case 001: Update inventory
Table 6-3 provides details on the update inventory use case.

Table 6-3 Use case 001: Update inventory

Actor name Retail system

Brief description The retail system implements the retail ordering
business process

Status Primary

Relationships 001 Update Inventory, 002 Get Delivery Date

Associations to use cases

Actor name Wholesale system

Brief description The wholesale system implements the wholesale
inventory management business process

Status Primary

Relationships

Associations to use cases

Use case name 001 Update Inventory.

Subject area Wholesale ordering.

Business event An item sold by the retail division needs to be replaced from
the wholesale inventory.

Actors Retail system, Inventory system.

Use case overview The retail system places a replenishment order for a sold
part with the inventory system.

Preconditions The retail system supplies a part number for the item to be
ordered.

Termination outcome 1 The wholesale inventory system logs the order to the audit
trail and schedules delivery of the required part.

Notes
 Chapter 6. Business scenarios used in this book 117

The Stage I use case model is shown in Figure 6-4.

Figure 6-4 Stage I use case model

Selecting an Application pattern
In Table 3-1 on page 41 and Table 3-2 on page 42, the following drivers are listed
for selecting the Message variation of the Process-focused Application
Integration::Direct Connection application pattern:

� Improve the organizational efficiency
� Reduce the latency of business events
� Support a structured exchange within the organization
� Support real-time one-way message flows
� Leverage existing skills
� Leverage the legacy investment
� Enable back-end application integration
� Minimize application complexity

These drivers are a good match for the Stage I scenario. If we were undertaking
large-scale integration between numerous applications, the Broker or
Serial/Parallel Process application pattern would probably be a better choice. In
this example, we are only concerned with point-to-point integration between two
applications, so the Direct Connection application pattern is a reasonable choice.

The Message variation of the Process-focused Application Integration::Direct
Connection application pattern can be applied in our Stage I scenario. See the
following Application Integration scenarios for our sample implementations:

� Chapter 8, “Using RPC style Web services” on page 147

� Chapter 9, “Using document style Web services” on page 183

� Chapter 10, “Using the Web Services Gateway” on page 215

� Chapter 13, “Using Java Message Service” on page 279

Updat e Invent ory

Wholesale Syst em

Ret ail Syst em
118 Patterns: Direct Connections for Intra- and Inter-enterprise

6.2.2 Stage II: Internal ordering on demand with delivery date
In the second stage of the internal implementation, ITSO Electronics wants to
further integrate their internal retail and wholesale systems. They now require a
real-time notification for out of stock situations with a delivery date when the
order can be filled. To improve customer service, the retail department wants to
be able to quickly provide their customers with an expected delivery date for
items that are not in stock with the retail department.

For Stage II of our business scenario we identify an additional use case:

� Get delivery date

Use case 002: Get delivery date
Table 6-3 provides details on the Get delivery date use case.

Table 6-4 Use case 002: Get delivery date

The Stage II use case model is shown in Figure 6-5.

Use case name 002 Get delivery date.

Subject area Wholesale ordering.

Business event A delivery date for an item out of stock with the retail
division needs to be obtained from the wholesale system.

Actors Retail system, Inventory system.

Use case overview The retail system requests a delivery date for an out of
stock part from the inventory system.

Preconditions The retail system supplies a part number for the out of stock
item.

Termination outcome 1 The wholesale inventory system logs the request to the
audit trail and returns the expected delivery date of the
required part to the retail system.

Notes
 Chapter 6. Business scenarios used in this book 119

Figure 6-5 Stage II use case model

Selecting an Application pattern
In Table 3-1 on page 41 and Table 3-2 on page 42, the following drivers are listed
for selecting the Call variation of the Process-focused Application
Integration::Direct Connection application pattern:

� Improve the organizational efficiency
� Reduce the latency of business events
� Support a structured exchange within the organization
� Support real-time request/reply message flows
� Leverage existing skills
� Leverage the legacy investment
� Enable back-end application integration
� Minimize application complexity

All drivers apply to the Stage II scenario. In this scenario, the business process
requires that a delivery date be returned in real time, so support for real-time
calls between applications is a key driver.

The Call variation of the Process-focused Application Integration::Direct
Connection application pattern can be applied in our Stage II scenario. See the
following Application Integration scenarios for our sample implementations:

� Chapter 8, “Using RPC style Web services” on page 147

� Chapter 9, “Using document style Web services” on page 183

� Chapter 10, “Using the Web Services Gateway” on page 215

� Chapter 11, “Using the Web Services Gateway with J2EE Connectors” on
page 237

� Chapter 12, “Using J2EE Connectors” on page 263

Updat e Invent ory

Wholesale Syst emGet Delivery Dat e

Ret ail Syst em
120 Patterns: Direct Connections for Intra- and Inter-enterprise

6.3 Inter-enterprise scenarios
In the second phase of the implementation, ITSO Electronics wishes to enable
their external resellers to place orders to the wholesale group. Currently, the
resellers fill out an order form and mail it to the wholesale organization.
Difficulties arise when orders cannot be filled because of latency in the manual
process and outdated inventory.

Selecting a Business/Integration pattern
In 4.1.1, “Business and IT drivers” on page 71, the following drivers are listed for
selecting the Extended Enterprise business pattern:

� The business processes need to be integrated with existing business systems
and information.

� The business processes need to integrate with processes and information
that exist at partner organizations.

Both drivers apply to ITSO Electronics. The business processes of the reseller
partners and the wholesale department need to be integrated by integrating the
existing partner systems with the existing wholesale business system. The
pattern would integrate the wholesale inventory information with processes and
information that exist at partner organizations.

The Extended Enterprise business pattern can be applied in our inter-enterprise
scenarios, as shown in Figure 6-6.

Figure 6-6 ITSO Electronics: Stage III and IV architecture overview diagram

Application
Integration

Retail
Ordering
System

Organization boundary

Wholesale
Inventory
System

Reseller
Partner

Infrastructure

Reseller
Partner

Infrastructure

Reseller
Partner

Infrastructure

Extended
Enterprise
 Chapter 6. Business scenarios used in this book 121

6.3.1 Stage III: External ordering on demand
With the success of the internal retail and wholesale systems, ITSO Electronics
has now decided to integrate their external reseller business partners. The goal
of the third stage of implementation is to integrate the external partner systems
with the internal wholesale system. As with the internal retail system, orders
placed by the external partner systems will need to update the wholesale
inventory system.

For Stage III of our business scenario, we can identify an additional actor:

� The partner system or systems

We also need to provide the Partner System actor with access to the Update
Inventory use case.

Actors
Table 6-5 provides details on the partner system actor.

Table 6-5 Retail system actor details

The Stage III use case model is shown in Figure 6-7.

Actor name Partner system

Brief description The partner system implements the partner ordering
business process

Status Primary

Relationships 001 Update Inventory, 002 Get Delivery Date

Associations to use
cases

Notes
122 Patterns: Direct Connections for Intra- and Inter-enterprise

Figure 6-7 Stage III use case model

Selecting an Application pattern
In Table 4-3 on page 75 and Table 4-4 on page 76, the following drivers are listed
for selecting the Message variation of the Extended Enterprise::Exposed Direct
Connection application pattern:

� Improve the organizational efficiency
� Reduce the latency of business events
� Support a structured exchange with business partners
� Support real-time one-way message flows to partner processes
� Leverage existing skills
� Leverage the legacy investment
� Enable back-end application integration
� Minimize application complexity

These drivers are a good match for the Stage III scenario. If we were undertaking
large-scale integration between numerous business partners, the Exposed
Broker or Exposed Serial Process application pattern might be a better choice. In
this example, we are only concerned with point-to-point integration between
ITSO Electronics and its partners, so the Exposed Direct Connection application
pattern is a reasonable choice.

The Message variation of the Extended Enterprise::Exposed Direct Connection
application pattern can be applied in our Stage III scenario. See the following
Extended Enterprise scenarios for our sample implementations:

� Chapter 14, “Using inter-enterprise Web services” on page 299

� Chapter 15, “Using WebSphere Data Interchange” on page 315

Updat e Invent ory

Wholesale Syst em

Part ner Syst em

Get Delivery Dat e

Ret ail Syst em
 Chapter 6. Business scenarios used in this book 123

6.3.2 Stage IV: External on demand ordering with delivery date
The final stage of the scenario addresses out of stock situations with external
resellers. As with the internal retail system, the external resellers require an
immediate notice on any out of stock situations and a delivery date when the
order can be filled.

For the Stage IV scenario, we need to provide the Partner System actor with
access to the Get Delivery Date use case.

The Stage IV use case model is shown in Figure 6-8.

Figure 6-8 Stage IV use case model

Selecting an Application pattern
In Table 4-3 on page 75 and Table 4-4 on page 76, the following drivers are listed
for selecting the Call variation of the Extended Enterprise::Exposed Direct
Connection application pattern:

� Improve the organizational efficiency
� Reduce the latency of business events
� Support a structured exchange with business partners
� Support real-time request/reply message flows to partner processes
� Leverage existing skills
� Leverage the legacy investment
� Enable back-end application integration
� Minimize application complexity

All drivers apply to the Stage IV scenario. In this scenario, the business process
requires that a delivery date be returned to the partner application in real time, so
support for real-time calls between applications is a key driver.

Updat e Invent ory

Wholesale Syst em

Part ner Syst em

Get Delivery Dat e

Ret ail Syst em
124 Patterns: Direct Connections for Intra- and Inter-enterprise

The Call variation of the Extended Enterprise::Exposed Direct Connection
application pattern can be applied in our Stage IV scenario. See the following
Extended Enterprise scenarios for our sample implementations:

� Chapter 14, “Using inter-enterprise Web services” on page 299
 Chapter 6. Business scenarios used in this book 125

126 Patterns: Direct Connections for Intra- and Inter-enterprise

Chapter 7. Technology options

We take a look at the application integration technology options you should
consider in this chapter. The recommendations are guided by the demands of
reuse, flexibility, and interoperability, and subsequently are based on the open
industry standards outlined by Java 2 Platform, Enterprise Edition (J2EE). Many
of the choices continue to evolve and expand as the J2EE specification matures
to include a broader view of the enterprise architecture. These recommendations
are based on the J2EE1.3 specification and parts of the J2EE1.4 specification.

Our discussion of technology options is focused on the connection between
applications, as shown in Figure 7-1 on page 128. The topics covered are:

� How to select the appropriate integration technology

� XML as a technology for data exchange

� Web services

� J2EE Connector Architecture

� Asynchronous messaging with JMS

� Other integration technologies

7

© Copyright IBM Corp. 2003. All rights reserved. 127

Figure 7-1 Technology options focus

7.1 Selecting an integration technology
With the continuous progress of enterprise computing, more and more
enterprises are finding the need to quickly adopt new technologies and integrate
with existing applications. Furthermore, due to costs and human resource
limitations, it is often not feasible for enterprises to completely discard their
existing infrastructure.

Enterprise application integration (EAI) and Extended Enterprise (EE) allow
disparate applications to communicate with each other. Both domains are very
similar; their differences are limited mainly to the required Quality of Services
capabilities. Some points to consider while deciding on the integration technology
between applications are the following:

� The current infrastructure

Do you already have a messaging system on the enterprise tier? Then it
makes sense to go for JMS. Or, if you have a legacy system such as CICS or
IMS, J2EE Connectors might be the better choice.

� Time to market

Web service enabling an application is relatively fast with the Web services
development tools available.

� Future expansion plans

If you plan to expand your enterprise systems in the future, you need to keep
in mind the integration with your current infrastructure and your planned
infrastructure. Web services may provide the most cost-effective migration
path in such a case.

� Reliability

JMS with WebSphere MQ, for example, can be used to provide assured
transfer of data, even when the enterprise application is unavailable.

Source
Application

Target
Application

ConnectorApp Server
Services

App Server
Services

Focus
128 Patterns: Direct Connections for Intra- and Inter-enterprise

� Transaction support

Web services currently do not offer support for transactions. If your
application needs transactional management, it might be worthwhile
considering technologies that do, such as JMS or J2EE Connectors.

7.2 XML
Extensible Markup Language (XML) allows you to specify your own markup
language with tags defined in a Document Type Definition (DTD) or XML
Schema. XML can be used as a means to specify the content of messages
between servers, whether the two servers are within an enterprise or represent a
business-to-business connection. The critical factor here is the agreement
between parties on the message schema, which is specified as an XML DTD or
Schema. An XML parser is used to extract specific content from the message
stream. Your design will need to consider whether to use an event-based
approach, for which the SAX API is appropriate, or to navigate the tree structure
of the document using the DOM API.

The IBM XML4J XML parser was made available through the Apache open
source organization under the Xerces name. For open source XML frameworks,
see:

http://xml.apache.org/

7.2.1 Defining XML documents
XML documents are defined using DTDs or XML Schemas.

DTDs are a basic XML definition language, inherited from the SGML
specification. The DTD specifies what markup tags can be used in the document
and what their structures are.

DTDs have two major problems:

� Poor data typing: In DTDs, elements can only be specified as EMPTY, ANY,
element content, or mixed element-and-text content, and there is no standard
way to specify null values for elements.

Data typing like date formats, numbers, or other common data types cannot
be specified in the DTD, so an XML document may comply with the DTD but
still have data type errors that can only be detected by the application.

� Not defined in XML: DTD uses its own language to define XML syntax that is
not compliant with the XML specification. This makes it difficult to manipulate
a DTD.
 Chapter 7. Technology options 129

http://xml.apache.org/

To solve these problems, the World Wide Web Consortium (W3C) specified a
new standard to define XML documents called XML Schema. XML Schema
provides the following advantages over DTDs:

� Strong typing for elements and attributes
� Standardized way to represent null values for elements
� Key mechanism that is directly analogous to relational database foreign keys
� Defined as XML documents, making them programmatically accessible

Even though XML Schema is a more powerful technology to define XML
documents, it is also a lot harder to work with, so DTDs are still widely used to
define XML documents. Additionally, simple, non-hard-typified documents can be
easily defined using DTDs with similar results to using XML Schema.

Whether to use one or the other will depend on the complexity of the messages
and the validation requirements of the application. Actually, in many cases both a
DTD and an XML Schema are provided, so they can be used by the application
depending on its requirements.

7.2.2 XSLT
Extensible Stylesheet Language Transformations (XSLT) is a W3C specification
for transforming XML documents into other XML documents. The XSLT is built on
top of the Extensible Stylesheet Language (XSL), a stylesheet language for XML
(such as CSS2 for HTML). Unlike CSS2, XSL is also a transformation language.

A transformation expressed in the XSLT language defines a set of rules for
transforming a source tree to a result tree, and it is expressed in the form of a
stylesheet.

An XSLT processor is used for transforming a source document to a result
document. There are currently a number of XSLT processors available on the
market. DataPower has introduced an XSL just-in-time (JIT) compiler, which
speeds up the time taken for the XSL transformation.

The XSLT processor has a performance overhead, so online processing of larger
documents can be slow.

Note: Remember that the validation process of an XML document using XML
Schemas is an expensive process. Validation should be performed only when it
is necessary.
130 Patterns: Direct Connections for Intra- and Inter-enterprise

7.2.3 XML security
XML security is an important issue, particularly where XML is being used by
organizations to interchange data across the Internet. Several new XML security
specifications are working their way through three standards bodies—the World
Wide Web Consortium (W3C), Internet Engineering Task Force (IETF), and
Organization for the Advancement of Structured Information Standards (OASIS).
We highlight a few of them here:

� XML Signature Syntax and Processing is a specification for digitally signing
electronic documents using XML syntax. According to the W3C, “XML
Signatures provide integrity, message authentication, and/or signer
authentication services for data of any type, whether located within the XML
that includes the signature or elsewhere.”

A key feature of the protocol is the ability to sign parts of an XML document
rather than the document in its entirety. This is necessary because an XML
document might contain elements that will change as the document is passed
along, or various elements that will be signed by different parties.

WebSphere Studio provides you with the ability to create (using a wizard) and
verify XML digital signatures.

� XML encryption will allow encryption of digital content, such as Graphical
Interchange Format (GIF) images or XML fragments. XML Encryption allows
parts of an XML document to be encrypted while leaving other parts open,
encryption of the XML itself, or the super-encryption of data (that is,
encrypting an XML document when some elements have already been
encrypted).

� XML Key Management Specification (XKMS) establishes a standard for
XML-based applications to use Public Key Infrastructure (PKI) when handling
digitally signed or encrypted XML documents. XML signature addresses
message and user integrity, but not issues of trust that key cryptography
ensures.

� Security Assertion Markup Language (SAML) is the first industry standard for
secure e-commerce transactions using XML. It aims to standardize the
exchange of user identities and authorizations by defining how this
information is to be presented in XML documents, regardless of the
underlying security systems in place.

For further discussion, see the Sun ONE article Riddle Me This: Is Your XML
Data Safe? by Brett Mendel:

http://sunonedev.sun.com/building/tech_articles/xmldata.html
 Chapter 7. Technology options 131

http://sunonedev.sun.com/building/tech_articles/xmldata.html

7.2.4 Advantages of XML
XML has many advantages over other technologies. Some of the factors that
have influenced the wide acceptance of XML are:

� Acceptability of use for data transfer

XML is a standard way of putting information in a format that can be
processed and exchanged across different hardware devices, operating
systems, software applications, and the Web.

� Uniformity and conformity

XML gives you a common format that can be developed upon and is accepted
industry-wide.

� Simplicity and openness

Information coded in XML is human readable.

� Separation of data and display

The representation of the data is separated from the presentation and
formatting of the data for display in a browser or other device.

� Industry acceptance

XML has been accepted widely by the information technology and computing
industry. Numerous tools and utilities are available, along with new products
for parsing and transforming XML data to other data, or for display.

7.2.5 Disadvantages of XML
Some XML issues to consider are:

� Complexity

While XML tags can allow software to recognize meaningful content within
documents, this is only useful to the extent that the software reading the
document knows what the tagged content means in human terms, and knows
what to do with it.

� Standardization

When multiple applications use XML to communicate with each other they
need to agree on the tag names they are using. While industry-specific
standard tag definitions often do exist, you can still declare your own
non-standard tags.
132 Patterns: Direct Connections for Intra- and Inter-enterprise

� Large size

XML documents tend to be larger in size than other forms of data
representation.

7.3 Web services
The W3C’s Web Services Architecture Working Group has jointly come to
agreement on the following working definition of a Web service:

“A Web service is a software application identified by a URI, whose interfaces
and bindings are capable of being defined, described, and discovered as XML
artifacts. A Web service supports direct interactions with other software
agents using XML-based messages exchanged via Internet-based protocols.”

Basic Web services combine the power of two ubiquitous technologies: XML, the
universal data description language, and the HTTP transport protocol widely
supported by browser and Web servers.

Web services = XML + transport protocol (such as HTTP)

Some of the key features of Web services are the following:

� Web services are self-contained.

On the client side, no additional software is required. A programming
language with XML and HTTP client support, for example, is enough to get
you started. On the server side, merely a Web server and a servlet engine are
required. It is possible to Web service enable an existing application without
writing a single line of code.

� Web services are self-describing.

Neither the client nor the server knows or cares about anything besides the
format and content of request and response messages (loosely coupled
application integration).

The definition of the message format travels with the message. No external
metadata repositories or code generation tools are required.

� Web services are modular.

Web services are a technology for deploying and providing access to
business functions over the Web; J2EE, CORBA, and other standards are
technologies for implementing these Web services.
 Chapter 7. Technology options 133

� Web services can be published, located, and invoked across the Web.

The standards required to do so are:

– Simple Object Access Protocol (SOAP), also known as service-oriented
architecture protocol, an XML-based RPC and messaging protocol

– Web Service Description Language (WSDL), a descriptive interface and
protocol binding language

– Universal Description, Discovery, and Integration (UDDI), a registry
mechanism that can be used to look up Web service descriptions

� Web services are language independent and interoperable.

The interaction between a service provider and a service requester is
designed to be completely platform and language independent. This
interaction requires a WSDL document to define the interface and describe
the service, along with a network protocol (usually HTTP). Because the
service provider and the service requester have no idea what platforms or
languages the other is using, interoperability is a given.

� Web services are inherently open and standards-based.

XML and HTTP are the technical foundation for Web services. A large part of
the Web service technology has been built using open source projects.
Therefore, vendor independence and interoperability are realistic goals.

� Web services are dynamic.

Dynamic e-business can become a reality using Web services because, with
UDDI and WSDL, the Web service description and discovery can be
automated.

� Web services are composable.

Simple Web services can be aggregated to more complex ones, either using
workflow techniques or by calling lower-layer Web services from a Web
service implementation.

WebSphere V5.0 provides support for Web services. WebSphere applications
can send and receive SOAP messages and also communicate with UDDI
registries to publish and find services.

For detailed information on Web services, check out the following:

� IBM Redbook

– WebSphere Version 5 Web Services Handbook, SG24-6891
134 Patterns: Direct Connections for Intra- and Inter-enterprise

� The World Wide Web Consortium (W3C) Web site at:

http://www.w3.org/

7.3.1 Static and dynamic Web services
There are two ways of binding to Web services: static and dynamic.

� In the static process, the binding is done at design time. The service
requester obtains a service interface and implementation description through
a proprietary channel from the service provider (by e-mail, for example), and
stores it in a local configuration file. No private, public, or shared UDDI
registry is involved.

� The dynamic binding occurs at runtime. While the client application is
running, it dynamically locates the service using a UDDI registry and then
dynamically binds to it using WSDL and SOAP.

This requires that the contents of the UDDI registry be trusted. Currently, only
private UDDI networks can provide such control over the contents.

7.3.2 Web Services Invocation Framework
The Apache Web Services Invocation Framework (WSIF) provides a standard
Java API to invoke services, no matter how or where the service is provided, as
long it is described in WSDL.

WSIF enables the developer to move away from the native APIs of the underlying
service, and interact with representations of the services instead. This allows the
developer to work with the same programming model regardless of how the
service is implemented and accessed.

WSIF is WSDL-driven and provides a uniform interface to invoke services using
WSDL documents. So if a SOAP service you are using becomes available as an
EJB, for example, you can change to RMI/IIOP by just modifying the WSDL
service description, without needing to modify your applications that use the
service.

This API is used by tools such as WebSphere Studio Integration Edition and
runtimes such as WebSphere Application Server to construct and manipulate
services defined in WSDL documents. The architecture allows new bindings to
be added at runtime.

WSIF has the following advantages:

� Multiple bindings can be offered for services, and bindings can be decided at
runtime.
 Chapter 7. Technology options 135

http://www.w3.org/

� Services can be used either by a set of stub classes (static) or by a dynamic
interface invocation (dynamic).

� You can switch protocols, location, and so forth, without having to recompile
your client code.

For more details on the Web Services Invocation Framework see:

http://ws.apache.org/wsif/

7.3.3 Web services and the service-oriented architecture
Service-oriented architectures (SOAs) support a programming model that allows
service components residing on a network to be published, discovered, and
invoked by each other in a platform, network protocol, and language-independent
manner.

The origin of SOA can be traced back to Remote Procedure Calls (RPCs),
distributed object protocols such as CORBA and Java RMI, and
component-based architecture such as J2EE/EJBs (Sun) and
(D)COM/COM+/.Net (Microsoft).

Using XML over HTTP, Web services extend the SOA programming model into
the global Internet, allowing the publication, deployment, and discovery of
service applications over the Internet.

For more information on SOA and Web services, refer to:

http://www.ibm.com/software/solutions/webservices/resources.html

This Web site provides a collection of IBM resources on this topic. For example,
there is an introduction to the SOA in a white paper titled Web Services
Conceptual Architecture (WSCA 1.0).

7.3.4 Web services security
In April 2002, IBM and Microsoft proposed a technical strategy and roadmap for
“addressing security within a Web service environment.” The Web services
security specifications define a comprehensive Web service security model that
supports, integrates, and unifies several popular security models, mechanisms,
and technologies (including both symmetric and public key technologies) in a
way that enables a variety of systems to securely interoperate in a platform- and
language-neutral manner.

The Web services security specification provides a broad set of specifications
that cover security technologies, including authentication, authorization, privacy,
trust, integrity, confidentiality, secure communications channels, federation,
136 Patterns: Direct Connections for Intra- and Inter-enterprise

http://ws.apache.org/wsif/
http://www.ibm.com/software/solutions/webservices/resources.html

delegation, and auditing across a wide spectrum of application and business
topologies. These specifications provide a framework that is extensible and
flexible, and that maximizes existing investments in security infrastructure. By
leveraging the natural extensibility that is at the core of the Web services model,
the specifications build upon foundational technologies such as SOAP, WSDL,
XML Digital Signatures, XML Encryption, and SSL/TLS.

As shown in Figure 7-2, this set includes a message security model
(WS-Security) that provides the basis for the other security specifications.
Layered on this, we have a policy layer that includes a Web service endpoint
policy (WS-Policy), a trust model (WS-Trust), and a privacy model (WS-Privacy).
Together these initial specifications provide the foundation upon which we can
work to establish secure interoperable Web services across trust domains.

Figure 7-2 The evolving WS-Security roadmap

For more information, see the IBM developerWorks® article Security in a Web
Services World: A Proposed Architecture and Roadmap:

http://www.ibm.com/developerworks/webservices/library/ws-secmap/

WS-Security
Web Services Security (WS-Security) Version 1.0 was jointly developed by IBM,
Microsoft, and VeriSign, and was released in April 2002. It was submitted to
OASIS by 18 companies, and now involves over 50 companies.

WS-Security describes enhancements to SOAP messaging to provide quality of
protection through message integrity and message confidentiality. Also, this
specification defines how to attach and include security tokens within SOAP
messages. Finally, a mechanism is provided for specifying binary encoded
security tokens (for example, X.509 certificates). These mechanisms can be
used independently or in combination to accommodate a wide variety of security
models and encryption technologies.

For more information, see the IBM developerWorks article Web Services
Security (WS-Security):

http://www.ibm.com/developerworks/webservices/library/ws-secure/

Today

Ti
m

e

WS-SecureConversation WS-Federation

WS-Policy WS-Trust WS-Privacy

WS-Security

SOAP Foundation

WS-Authorization
 Chapter 7. Technology options 137

http://www.ibm.com/developerworks/webservices/library/ws-secmap/
http://www.ibm.com/developerworks/webservices/library/ws-secure/

7.3.5 Advantages of Web services

Web services technology enables businesses to:

� Deliver new IT solutions faster and at lower cost by focusing their code
development on core business, and using Web services applications for
non-core business programming.

� Protect their investment in IT legacy systems by using Web services to wrap
legacy software systems for integration with modern IT systems.

� Integrate their business processes with customers and partners at less cost.
Web services make this integration feasible by allowing businesses to share
processes without sharing technology. With lower costs, even small business
will be able to participate in B2B integration.

� Enter new markets and widen their customer base. Web services listed in
UDDI registries can be “discovered” and thus are “visible” to the entire Web
community.

7.3.6 Disadvantages of Web services
Some Web services issues to consider are:

� Binding to Web services dynamically requires that the contents of the UDDI
registry be trusted. Currently, only private UDDI networks can provide such
control over the contents.

� The SOAP server footprint is significant and the technology is relatively new,
so adding the Web service provider stack to existing enterprise systems can
be a problem.

7.3.7 Comparing Web services with CORBA and RMI
There are often comparisons made between CORBA, RMI and SOAP, but such
comparisons can be misleading. CORBA and RMI are technologies describing
the whole communication process for publishing, finding, and invoking methods
on remote objects.

In contrast, SOAP describes only the format of the data exchange for
communication. Even the transport protocol is not compulsory. To understand
comparisons between these technologies it is important to realize that SOAP
does not cover the whole interaction process, as the other technologies do.

There are a lot of articles on the Web describing the pros and cons of using one
of these technologies. One aspect worth further consideration is object
references. In SOAP Web services there are no object references! This basic
characteristic of SOAP has far-reaching consequences for the programming
138 Patterns: Direct Connections for Intra- and Inter-enterprise

model, for security, and for the coupling strength between requestor and provider.
The simplest effect is that parameters in Web services are in-parameters and
never in-out-parameters. To return a response value you have to use the return
value of the method.

The security impact results from the fact that in the case of CORBA or RMI the
client is remotely acting in the address space of the server application.
Reference errors can lead to server-side memory access exceptions or data
corruption, for example.

Furthermore, in the case of CORBA and RMI the structures of the stub objects
are identical to those on the server side. Changing the object structure on the
server side needs a refactoring of the clients. In the case of SOAP, no object
structures are exposed, except for methods which can have objects as
parameters and return values. Changing the object structure on the server side
need not lead to a refactoring of the client as a direct consequence.

7.4 J2EE Connector Architecture
The J2EE Connector Architecture is aimed at providing a standard way to access
enterprise applications from a J2EE-based Java application. It defines a set of
Java interfaces through which application developers can access heterogeneous
EIS systems, for example, legacy systems such as CICS, and Enterprise
Resource Planning (ERP) applications.

J2EE Connector Architecture 1.0 support is a requirement of the J2EE 1.3
specification. It provides access to a range of systems through a common client
interface API (CCI). Application programmers code to the single API rather than
having unique interfaces for each proprietary system. The link from the API to the
enterprise system is called a resource adapter and is provided by a third-party
vendor. This is somewhat analogous to the model for JDBC drivers. Resource
adapters are packaged as resource adapter archive (RAR) files.

IBM WebSphere Application Server V5.0 supports the J2EE Connector
Architecture 1.0, as required by the J2EE 1.3 specification. The administrative
console supports J2EE Connector resource adapter configuration. The
administrative console allows the association of connection factories for the
resource adapter that encapsulate the pooling attributes. Component providers
request a connection for an enterprise information system (EIS) from the
connection factory through the JNDI lookup mechanism. IBM supplies resource
adapters for enterprise systems such as CICS, HOD, IMS, SAP, and Crossworlds
as separate products.
 Chapter 7. Technology options 139

IBM WebSphere Studio Application Developer V5.0 supports application
development using J2EE Connectors, and development of custom J2EE
Connectors.

7.4.1 CICS resource adapter
The CICS Transaction Gateway (CICS TG) V5 is a set of client and server
software components that allow a Java application to invoke services in a CICS
region.

The CICS TG offers three basic interfaces for Java clients:

� External Call Interface (ECI) for COMMAREA-based CICS applications

� External Presentation Interface (EPI) for 3270-based transactions

� External Security Interface (ESI) for password management to verify and
change user IDs and passwords

The CICS resource adapter is covered in detail in the following chapters.

7.4.2 IMS resource adapter
The IMS Connector for Java provides a way to create Java applications that can
access IMS transactions. The IMS Connector for Java uses IMS Connect to
access IMS. IMS Connect is a facility that runs on the host IMS machine and
supports TCP/IP and Local Option communication to IMS. A Java application or
servlet accesses IMS Open Transaction Manager Access (OTMA) through IMS
Connect. IMS Connect accepts messages from its TCP/IP clients and routes
them to IMS OTMA using the Cross-System Coupling Facility (XCF).

The runtime component of IMS Connector for Java is provided as a component
of IMS Connect, Version 1 Release 2 (Program Number 5655-E51). The J2EE
Connector implementation of this runtime component is also referred to as the
IBM WebSphere Adapter for IMS. It is packaged as a RAR file, imsico.rar, for
deployment into a WebSphere Application Server. The RAR file is installed to a
target directory from the IBM IMS Connect, Version 1 Release 2.

7.4.3 Advantages of J2EE Connectors
Some reasons to use J2EE Connectors are:

� The common client interface simplifies application integration with diverse
EISs. This common interface makes it easy to plug third-party or home-grown
resource adapters into your applications.
140 Patterns: Direct Connections for Intra- and Inter-enterprise

� Each EIS requires just one implementation of the resource adapter since
there is no need to custom develop an adapter for every application.

� J2EE Connectors facilitate scalability and provide Quality of Service features
transparently to the client application.

� J2EE Connector Architecture-compliant resource adapters are portable
across J2EE application servers. If a vendor provides a resource adapter for
WebLogic, for example, it should also work with the WebSphere Application
Server.

� J2EE Connectors have low intrusion on the enterprise system because native
client interfaces are utilized.

7.4.4 Disadvantages of J2EE Connectors
Some J2EE Connector issues to consider are:

� J2EE Connector Architecture has support only for synchronous
communication. (The CICS adapter does offer support for non-blocking calls.)
Support for asynchronous communications is expected in the J2EE
Connector Architecture 1.5 specification.

� The J2EE Connectors standard is still relatively new, and performance
compared with previous alternatives has not been firmly established. For
example, some customers may prefer to continue with the well-proven
non-J2EE Connector CICS TG base classes.

� Though J2EE Connector Architecture promises an abstraction to access any
legacy system, with J2EE Connector Architecture 1.0, parts of the client
application need to have resource adapter-specific implementation. This
means that if you have to change the resource adapter (move to a different
enterprise system, which provides a different adapter), the client application
will be affected.

For more information on J2EE Connectors and CICS, refer to the following
redbooks:

� Java Connectors for CICS: Featuring the J2EE Connector Architecture,
SG24-6401

� Revealed! Architecting Web Access to CICS, SG24-5466
 Chapter 7. Technology options 141

7.5 Java Message Service
Messaging middleware is a popular choice for accessing existing enterprise
systems in an asynchronous manner. It is one of the options if you are
implementing a solution based on the Message variation of the Direct
Connection pattern in an intra-enterprise scenario.

A standard way of using messaging middleware from a Java application is using
the Java Message Service (JMS) interface. JMS offers Java programmers a
common way to create, send, receive and read enterprise messages. The JMS
specification was developed by Sun Microsystems with the active involvement of
IBM, other enterprise messaging vendors, transaction processing vendors, and
RDBMS vendors.

In IBM WebSphere Application Server V5.0, the J2EE 1.3 specification is
implemented, which includes JMS 1.0 and EJB 2.0.

According to the JMS 1.0 specification, a message provider is integrated in an
application server. As shown in Figure 7-3, the integrated message provider
makes it possible to communicate asynchronously with other WebSphere
applications, without installing separate messaging software like IBM
WebSphere MQ. WebSphere’s integrated JMS server is based on IBM
WebSphere MQ.

Figure 7-3 Integrated JMS Provider

J2EE ServerJ2EE Server
Message

PUT

Message
GET

J2EE Application

Web

Message
GET

Message
PUT

J2EE Application

Web
142 Patterns: Direct Connections for Intra- and Inter-enterprise

An important new feature of EJB 2.0 is message-driven beans (MDB).
Message-driven beans are designed specifically to handle incoming JMS
messages. Further information on message-driven beans can be found in the
IBM Redbook EJB 2.0 Development with WebSphere Studio Application
Developer, SG24-6819.

7.5.1 What messaging is
Messaging is a form of communication between two or more software
applications or components. One strength of messaging is application
integration. Messaging communication is loosely coupled, as compared to tightly
coupled technologies such as Remote Method Invocation (RMI) or Remote
Procedure Calls (RPC). The sender does not need to know anything about the
receiver for communication. The message to be delivered is sent to a destination
(queue) by a sender component, and the recipient picks it up from there.
Moreover, the sender and receiver do not both have to be available at the same
time to communicate.

JMS has two messaging styles, or in other words, two domains:
� One-to-one, or point-to-point model
� Publish/subscribe model

7.5.2 JMS and IBM WebSphere MQ
When you want to integrate with an application not based on IBM WebSphere
Application Server V5.0, an external JMS Provider is needed. IBM WebSphere
MQ V5.3 includes built-in JMS Provider support with enhanced performance
features for integrating JMS applications with other applications.

WebSphere MQ enables application integration by allowing business
applications to exchange information across different platforms, sending and
receiving data as messages. WebSphere MQ takes care of network interfaces,
assures once and once only delivery of messages, deals with communications
protocols, dynamically distributes workload across available resources, and
handles recovery after system problems.

7.5.3 Advantages of JMS
The JMS standard is important because:

� It is the first enterprise messaging API that has achieved wide cross-industry
support.

� It simplifies the development of enterprise applications by providing standard
messaging concepts and conventions that apply across a wide range of
enterprise messaging systems.
 Chapter 7. Technology options 143

� It leverages existing, enterprise-proven messaging systems.

� It allows you to extend existing message-based applications by adding new
JMS clients that are integrated fully with their existing non-JMS clients.

� Developers have to learn only one common interface for accessing diverse
messaging systems.

7.5.4 Disadvantages of JMS
Though JMS provides a common interface for Java applications to interact with
messaging systems, it might lose out on some specific functionality offered by
the messaging vendor. In that case, you might still have to write vendor-specific
code to access such functionality.

JMS only provides asynchronous messaging, so the design is more complex
when addressing response correlation, error handling, and data synchronization.

Further information on JMS can be found in the IBM Redbook MQSeries
Programming Patterns, SG24-6506.

7.6 Other integration technologies
In this section we briefly touch on a few other integration technologies, including:

� RMI/IIOP
� CORBA

7.6.1 RMI/IIOP
Remote Method Invocation (RMI) APIs allow developers to build distributed
applications in the Java programming language. They enable an object running in
one Java Virtual Machine to access another object running in a different Java
Virtual Machine.

The Internet Inter-ORB (Object Request Broker) Protocol (IIOP) is a protocol
used for communication between CORBA object request brokers. An object
request broker is a library that enables CORBA objects to locate and to
communicate with one another.

RMI/IIOP is an implementation of the RMI API over IIOP that allows developers
to write remote interfaces in the Java programming language.
144 Patterns: Direct Connections for Intra- and Inter-enterprise

7.6.2 CORBA
Common Object Request Broker Architecture (CORBA) is a platform-,
language-, and vendor-neutral standard for writing distributed object systems.
The CORBA standard was developed by the Object Management Group (OMG),
a consortium of companies founded in 1989. CORBA offers a broad range of
middleware services, including naming service, relationship service, and so on.

CORBA can be used for integration with legacy applications. This is done by
creating a CORBA wrapper for the existing application, which can then be
invoked by other applications.

CORBA is just a specification, and there are a number of vendors (such as IONA
or Borland) that implement it. Each vendor will provide additional value-added
services such as persistence, security, and so on, which can be leveraged by
CORBA developers.

The disadvantage of CORBA is in the steep learning curve involved. Also,
CORBA is slow-moving; it takes a long time for the OMG to adopt a new feature.

7.7 Where to find more information
For more information on topics discussed in this chapter, see:

� WebSphere Version 5 Web Services Handbook, SG24-6891

� Java Connectors for CICS: Featuring the J2EE Connector Architecture,
SG24-6401

� Revealed! Architecting Web Access to CICS, SG24-5466

� MQSeries Programming Patterns, SG24-6506

� IBM CICS

http://www.ibm.com/software/ts/cics

� IBM WebSphere MQ

http://www.ibm.com/software/ts/mqseries

� Java APIs and technology

http://java.sun.com/products

� World Wide Web Consortium (W3C) site

http://www.w3.org/

� Open source XML frameworks

http://xml.apache.org/
 Chapter 7. Technology options 145

http://www.ibm.com/software/ts/cics
http://www.ibm.com/software/ts/mqseries
http://java.sun.com/products
http://www.w3.org/
http://xml.apache.org/

� Sun ONE article, Riddle Me This: Is Your XML Data Safe? by Brett Mendel:

http://sunonedev.sun.com/building/tech_articles/xmldata.html

� Service-oriented architecture and Web services:

http://www.ibm.com/software/solutions/webservices/resources.html
146 Patterns: Direct Connections for Intra- and Inter-enterprise

http://sunonedev.sun.com/building/tech_articles/xmldata.html
http://www.ibm.com/software/solutions/webservices/resources.html

Chapter 8. Using RPC style Web
services

This chapter discusses using RPC style Web services in an intra-enterprise
integration scenario. We are using Web services for J2EE as provided with IBM
WebSphere Application Server base V5.0.2 in this scenario.

This chapter describes the following:

� An overview of the ITSO Electronics sample application, which we use to
demonstrate the different scenarios.

� Design issues to be considered when using RPC style Web services and the
design applied to our RPC based Web services.

� Creating a Web service provider and requester using Web Services for J2EE.

� Quality of Service capabilities for Web services.

� Best practices for Web services.

8

© Copyright IBM Corp. 2003. All rights reserved. 147

8.1 Business scenario
As described in 6.2.1, “Stage I: Internal ordering on demand” on page 116, ITSO
Electronics plans to integrate their retail and wholesale departments. Both
departments have existing IT infrastructures, but currently there is no
connectivity between their applications.

The retail order information is to be integrated with the wholesale inventory
system, eliminating the lag that occurs with the current manual process and
providing up-to-date inventory information.

The Application Integration pattern applies to this situation. This pattern can be
applied for intra-enterprise integration activities. This use of the Application
Integration pattern will provide a number of benefits to ITSO Electronics. Not only
does it provide a means to integrate existing business processes, information
and systems, but it also improves organizational efficiency and reduces the
latency of business events. Integrating existing systems will leverage existing
skills in the organization and maximize the investment already made in the
legacy systems.

When the retail department needs to notify the wholesale department that a part
must be ordered, the Message variation of Direct Connection application pattern
can be applied. This Application pattern is suitable because the retail department
will be notifying the wholesale department that a part must be ordered, but the
retail department does not require any response as part of this process.

When the retail department needs to know the expected delivery date for a part
on order, the Call variation of the Direct Connection application pattern can be
applied. In this instance, the retail department requires a response from the
wholesale department, advising them of the expected delivery date for the part in
question.

The RPC style Web service can be applied to both processes. It provides a
relatively simple development effort in integrating the existing systems in the
retail and wholesale departments. It has the advantages of providing
heterogeneous platform support and loose-coupling between the two systems.

8.2 System design overview
The Application Integration pattern focuses on the mechanisms selected to
achieve communication between two applications within the domain of a single
organization.
148 Patterns: Direct Connections for Intra- and Inter-enterprise

To illustrate the various runtime patterns applicable when using the Direct
Connection application pattern, we use a very simple Web application as the
source application. It comprises a welcome page, a servlet, a factory class,
command beans, a view bean and a JSP to display the response of the
interaction.

We use an enterprise bean as the target application, which is exposed as a Web
service. Selecting an EJB can simplify a business application because the EJB
container provides services that handle complexities such as security, resource
pooling, persistence, concurrency, and transactional integrity. The business logic
provided by our EJB is also available to any Java source application using RMI.

Figure 8-1 highlights the ability to establish a Direct Connection between the
source and target applications as the focus of our discussion. It also shows the
major components constructed for the source and target applications used in our
sample solution.

Figure 8-1 High level design for source and target application

A Welcome page, shown in Figure 8-2, enables the user to exercise a Direct
Connection using a variety of different technologies by selecting the required
option. The Update Inventory button invokes a Message-style interaction, where
a reply is not needed. The Get Delivery Date button uses a Call-style interaction,
where a reply providing an expected delivery date is required.

Web Application Server

Browser

Web Application Server

Target Application
(Wholesale system)

Source Application
(Retail system)

JSP Command
Bean

Command
Bean FactoryServlet

Focus of

Discussion
Enterprise

Bean
 Chapter 8. Using RPC style Web services 149

Figure 8-2 Welcome page

Our source application is a simple implementation of the Model-View-Controller
(MVC) design pattern. The InventoryServlet acts as the Controller by parsing the
request from the browser.

The CommandBean acts as the Model in our source application. This class is
responsible for implementing the business logic of our application. A
CommandBean is created using a singleton CommandBeanFactory class which
instantiates the relevant CommandBean based on the option selected. The
implementation of each specific CommandBean makes use of generated classes
specific to the option selected. Each CommandBean implements an
updateInventory() and a getDeliveryDate() method. The InventoryServlet calls
the execute() method on the generic CommandBean, passing a parameter
indicating which push button has been selected. The execute() method on the
base class then invokes the required method. These methods interact with the
target Web service application.
150 Patterns: Direct Connections for Intra- and Inter-enterprise

The View represents the result of the interaction with the target application. This
is provided by an InventoryViewBean, which is created by the InventoryServlet
and used in a JSP which is displayed to the user in the browser.

8.3 Web services for J2EE
Web services provide communication between programs based on industry
standards, and are platform and language independent. Each Web service has
an interface description that encapsulates its details in a form suitable for use by
other applications. This interface description may be published in a repository, so
that applications can find and utilize the Web service. The description is
constructed using Web Services Description Language (WSDL).

Web services are typically based on SOAP (Simple Object Access Protocol),
which is an XML-based message protocol that is transport protocol independent.
Our sample solution uses the Web Services for J2EE support provided in IBM
WebSphere Application Server V5.0.2; Web Services for J2EE support is
provided using a standard defined in Java Specification Request (JSR) 109.

In our sample solution, the target EJB application is wrapped as a JSR
109-based Web service. The source application accesses the target Web service
using proxy classes generated from the WSDL file for the target Web service.

A new set of Java Specification Requests
The technologies used by J2EE application servers to provide Web services
facilities are evolving very quickly. The Java community has recently adopted a
set of standards to define the different aspects of how Web services can be
supported in a J2EE-compliant application server. These standards are
described in Java Specification Requests (JSRs).

The main JSR for Web services is JSR-109, Implementing Enterprise Web
Services (also known as Web services for J2EE). It reached the final release
status in November 2002.

The aim of JSR-109 is to define the programming model and runtime architecture
for implementing Web services in Java. It federates the work done on several
other JSRs. This JSR was led by IBM.

The Web services for J2EE Version 1.0 specification is an addition to J2EE 1.3.
J2EE 1.4 requires support for Web services for J2EE Version 1.1. There are
minor differences between the J2EE 1.3 Version (JSR-109 Version 1.0) and the
J2EE 1.4 Version (JSR-109 Version 1.1).
 Chapter 8. Using RPC style Web services 151

Specifications have also been opened for defining APIs for specific parts of the
Web services stack:

� JSR 67: Java APIs for XML Messaging (JAXM)

JAXM provides an API for packaging and transporting business transactions
using on-the-wire protocols being defined by ebXML.org, OASIS, W3C, and
IETF.

� JSR 93: Java APIs for XML Registry

JAXR provides an API for a set of distributed registry services that enables
business-to-business integration between business enterprises, using the
protocols being defined by ebXML.org, OASIS, and ISO 11179.

� JSR 101: Java APIs for XML-Based RPC

JAX-RPC defines APIs to support emerging industry XML-based RPC
standards.

� JSR 110: Java APIs for WSDL

This JSR provides a standard set of APIs for representing and manipulating
services described by WSDL (Web Services Description Language)
documents. These APIs define a way to construct and manipulate models of
service descriptions.

See the Java Community Process Web site for the JSR details:

http://www.jcp.org/

8.4 Design guidelines
Figure 8-3 shows the Runtime pattern and Product mapping we used to
demonstrate the Direct Connection application pattern within the business
domain of an organization, using Web services technology. It illustrates the
logical connection between the source and target applications provided using
SOAP.
152 Patterns: Direct Connections for Intra- and Inter-enterprise

http://www.jcp.org/

Figure 8-3 Web services product mapping for Application Integration::Direct Connection

This view of the solution can be further expanded to obtain a “stack” of coupling
adapter pairs over “virtual” connections between the source and target, as shown
in Figure 8-4. In this diagram the dotted line represents a virtual connection
which is actually implemented at lower levels.

Figure 8-4 Web services coupling adapter connector stack

8.4.1 Design considerations
A number of factors affect the design of a Web service. In this section we discuss
some of the factors we considered when building our sample application.

SOAP messaging style
SOAP provides support for both RPC style Web services and document-style
Web services. In RPC style, Web Services are invoked using remote method
calls. In document-style messaging, Web Services are invoked by sending a

Internal network

SOAP
/HTTP

ConnectorApp Server/
Services Connector App Server/

Services

WebSphere
Application Server

V5.0.2

JAX-RPC SOAP Provider JAX-RPC

WebSphere
Application Server

V5.0.2

SOAP Provider

HTTP

App Server
Services SOAP

Adapter

App Server
Services

Java

SOAP

HTTP
IP

Connection

IP

HTTP

IP

SOAP
Adapter
 Chapter 8. Using RPC style Web services 153

complete well-formed document describing the task to be performed, and
possibly, some parametric data.

The advantages of SOAP RPC-based Web services are:

� Simpler to develop than SOAP message-oriented messaging

� Uses a higher level API

� Supports strong typing: all calls must conform to the method signature

The disadvantages of RPC-based SOAP messaging are:

� Higher coupling between the Web service requester and provider because
the requester to provider binding includes both methods and parameters.

We used the RPC-based mechanism in our sample solution to demonstrate the
Direct Connection pattern because of the simpler development effort involved.
The RPC-based mechanism can be used for both the Call and Message styles of
communication.

Transmission style
Web services support a number of transmission operations. These are the
different types of operations that can be defined in a WSDL file:

� One-way - client sends a message to service
� Request-response - client sends a message to service, and awaits response
� Solicit-response - service sends a message to the client, and awaits response
� Notification operation - service sends a message to the client

The Direct Connection Call variation is a Request-response operation, while the
Message variation is one-way.

SOAP transport protocol
In principle, SOAP is transport protocol independent and can therefore
potentially use a variety of protocols (such as HTTP, JMS, SMTP, and others) to
connect the Web service requestor and the provider.

HTTP is currently the most popular transport protocol for SOAP. The reasons for
this mainly result from the following advantages:

� HTTP is the de facto standard on the Internet
� HTTP is wide spread
� HTTP is supported from most programming languages
� HTTP has a simple extension for security, HTTPS
� HTTP needs no complex infrastructure
154 Patterns: Direct Connections for Intra- and Inter-enterprise

But there are also some important limitations:

� HTTP is optimized for use in browser and end-user scenarios
� HTTP is a stateless communication protocol
� HTTP does not provide reliable communication
� HTTP establishes a point-to-point connection

These limitations are usually acceptable for human-to-machine communication
using a Web browser. This may not be valid when switching to
machine-to-machine communication. The requirements in machine-to-machine
communication are usually more complex and other transport protocols may be
more suitable.

For example, if you need assured, once-only delivery, message-oriented
middleware may be more suitable. In Java you can use Java Messaging Service
(JMS) with IBM WebSphere MQ. The advantages are:

� Reliable messaging
� Option of asynchronous communication

On the other hand you have the following disadvantages:

� More complex infrastructure
� Not generally available for all potential customers
� Message-oriented middleware skills are necessary
� At this time most vendors only have limited support for SOAP over JMS

With the increasing adoption of Web services, the portfolio of supported
transport protocols will also increase.

We use the HTTP transport protocol in our sample solution to demonstrate the
Direct Connection pattern because HTTP can provide the point-to-point
connection we need between source application and target application without
the need for added infrastructure.

Static versus dynamic Web services discovery
The source (requester) application can use either static or dynamic discovery of
available Web services. The requester has to begin with the WSDL file that
describes the interface and implementation specification of the Web service to be
invoked. This WSDL file can be retrieved dynamically using a service registry, or
statically, as shown in Figure 8-5.
 Chapter 8. Using RPC style Web services 155

Figure 8-5 Web services discovery methods

Three types of discovery methods for requesters can be identified:

� Static service with no public, private, or shared UDDI registry. The service
description is obtained through a proprietary channel (an e-mail, for example).

� Provider-dynamic, where the service interface is dynamically discovered
using a UDDI registry, and proxy code is generated from the interface at build
time. The service implementation is dynamically discovered at runtime using
the same or another UDDI registry.

� Type-dynamic, where the service requester dynamically discovers both the
service implementation and interface at runtime. The requester uses generic
SOAP APIs to bind to the service provider and invoke the Web service, rather
than using generated proxy code.

Although early thinking on Web services asserted that discovery using UDDI
would play a significant role in the implementation of the technology, at this time
the vast majority of business solutions do not make use of dynamic discovery
mechanisms. For this reason, our sample application uses the static service
discovery method to access the WSDL file. For further details on dynamic
discovery with examples, refer to the following redbook:

� WebSphere Version 5 Web Services Handbook, SG24-6891

Message structure
The Web services specification does not mandate any particular message
structure. The message structure is defined by the service provider. Message
structures can be anything from simple strings to complex XML documents. In
our example we use a simple message structure passing a string representing

Service
Requester

Static Service

SOAP
Listener

Service
Provider

Service
Requester

Dynamic Discovery

SOAP
Listener

Service
Provider

Service
Registry

1

2

156 Patterns: Direct Connections for Intra- and Inter-enterprise

the part number being ordered in the request message and receiving another
string representing the expected delivery date in the response.

For an example using an XML message see “Message structure” on page 187.

8.4.2 Object model
In this section we provide an object model for our RPC-based Web services
scenario. We focus on how the source application accesses the target
application using the JAX-RPC API in WebSphere V5.0.2.

Class diagram
Figure 8-6 is a class diagram of the main source and target application classes
directly involved in initiating the direct connection between the source and target
applications.

Only the WebServiceBean class and the Inventory interface were developed by
hand. The Inventory interface is developed as part of the target EJB application.
It is based on the Inventory interface of the InventoryBean session EJB, but is
modified to extend java.rmi.Remote rather than javax.ejb.EJBObject, as
discussed below in 8.5.1, “Web service enabling the target application” on
page 161. This interface is used to generate the target WSDL file, which we use
later when generating the client bindings. This is discussed in 8.5.2, “Web
service-enabling the source application” on page 166.

The InventoryService, InventoryServiceLocator, and InventorySoapBindingStub
shown in Figure 8-6 were generated from the WSDL file. The
WebServicesServlet is provided in the WebSphere V5.0.2 Web services runtime.
 Chapter 8. Using RPC style Web services 157

Figure 8-6 Class diagram of the Web service requester and provider (source and target)

Interaction diagrams
In this section we provide interaction diagrams for the Message variation and Call
variation of our RPC-based Web services scenario.

Message variation
Our implementation of the Update Inventory use case follows the Message
variation, where the source application does not expect or wait for a response
from the target application.

The interaction diagram in Figure 8-7 shows the sequence of steps performed
when the source application uses the WebServiceBean to perform the
updateInventory() method:

1. WebServiceBean in the source application creates an InitialContext and uses
it to perform a JNDI lookup to locate the InventoryService. This lookup finds
the value set in the webservicesclient.xml deployment descriptor.

2. WebServiceBean invokes the getInventory method of the InventoryService
interface (implemented by InventoryServiceLocator) to get the target service
endpoint interface, Inventory.

3. WebServiceBean calls the updateInventory method of the Inventory interface
(implemented by InventorySoapBindingStub) to invoke the Web service.

4. The stub implementing the Inventory interface performs a one-way invocation
of the remote Web service via SOAP and HTTP using the WebSphere Web
services runtime.

CommandBean

WebServiceBean

+ updateInventory ()
+ getDeliveryDate ()

Invent oryService
Locat or

Invent ory

Invent orySoap
BindingSt ub

«JavaInterface»
Service

«JavaInterface»
Remot e

I nvent oryService

WebServices
Servlet

SOAP/HTTP

Invent oryBean
158 Patterns: Direct Connections for Intra- and Inter-enterprise

5. The WebServicesServlet in the target application server invokes the
getDeliveryDate method on the InventoryBean, which is the stateless session
bean on the target application.

The one-way invocation of the Web service does not block the client application.
Execution control returns back through the chain to the WebServiceBean at
step 4, without having to wait for the updateInventory call to the InventoryBean to
complete.

Figure 8-7 Interaction diagram for Web services Message variation

Call variation
Our implementation of the Get Delivery Date use case follows the Call variation,
where the source application expects and waits for a response from the target
application.

The interaction diagram in Figure 8-8 shows the sequence of steps performed
when the source application uses the WebServiceBean to perform the
getDeliveryDate() method:

1. WebServiceBean in the source application creates an InitialContext and uses
it to perform a JNDI lookup to locate the InventoryService. This lookup finds
the value set in the webservicesclient.xml deployment descriptor.

2. WebServiceBean invokes the getInventory method of the InventoryService
interface (implemented by InventoryServiceLocator) to get the target service
endpoint interface, Inventory.

: WebServices
Servlet

: Inventory
Service

 : Inventory
Bean

: Inventory : WebService
Bean

 : InitialContext

1 : lookup (arg0)

2 : getInventory ()

3 : updateInventory (arg0)
4 : \ SOAPRequest\

5 : updateInventory (arg0)
 Chapter 8. Using RPC style Web services 159

3. WebServiceBean calls the getDeliveryDate method of the Inventory interface
(implemented by InventorySoapBindingStub) to invoke the Web service.

4. The stub implementing the Inventory interface invokes the remote Web
service via SOAP and HTTP using the WebSphere Web services runtime.

5. The WebServicesServlet in the target application server invokes the
getDeliveryDate method on the InventoryBean, which is the stateless session
bean on the target application.

The delivery date then gets passed back through the chain to the requester side
and to the WebServiceBean that made the request to begin with.

Figure 8-8 Interaction diagram for Web services Call variation

8.5 Development guidelines
In this section we describe:

� How to enable an EJB target application as an RPC style Web service
provider.

� How to enable a Web source application as an RPC style Web service client.

We are using the Web Services for J2EE support provided with WebSphere
V5.0.2 to implement our solution, which includes command line tools to generate
the Web services classes and deployment descriptors. WebSphere Studio

 : Inventory
Service

 : WebService
Bean

: WebServices
Servlet

 : Inventory
Bean

 : Inventory : InitialContext

1 : lookup (arg0)

2 : getInventory ()

3 : getDeliveryDate (arg0)
4 : \SOAPRequest\

5 : getDeliveryDate (arg0)
160 Patterns: Direct Connections for Intra- and Inter-enterprise

Application Developer V5.1 also provides full support for the creation of Web
services for J2EE.

Although all the specifications are human readable (XML), there is a strong need
for tools supporting development because many documents with overlapping
content are involved. It would be cumbersome and error prone to define all these
files without tools.

8.5.1 Web service enabling the target application
Figure 8-9 shows the steps involved in creating the Web services enabled target
application using the stateless session bean from our sample code.

Figure 8-9 Web service development for target application

Let’s walk through the process shown in Figure 8-9 for our target application.

We have already created a simple EJB application using IBM WebSphere Studio
Application Developer. We can create an RPC style Web service using this EJB
as follows:

1. Create a service endpoint interface for the Web service in a new package.
(This step has already been done for you in our sample application.)

a. Using WebSphere Studio, switch to the J2EE Perspective and click the
Project Navigator tab.

b. Navigate to the ITSOTargetAppEJB → ejbModule folder.

Application
Assembler Deployer

Application
Component

Provider

develop package deploy

WebSphere
Studio

Web

JAR

WebSphere
Studio

WebSphere
Admin

Console

WebSphere
Admin

Command
Line Tool

WSDL2
Java

Command
Line Tool

Target
WSDL

WebSphere
Application

Server
Enterprise

Archive

Enterprise
Archive

Set of
Components

Deployment
Descriptors,

Proxy classes
 Chapter 8. Using RPC style Web services 161

c. Right-click the ejbModule folder and select New → Package. Set the
package name to com.ibm.itso.ws.inventory.

d. Create the service endpoint interface by copying the Inventory EJB
Remote Interface, Inventory.java, from the com.ibm.itso.ejb.inventory
package to Inventory.java in the new com.ibm.itso.ws.inventory package.

e. Edit the new Inventory.java file, so that it extends java.rmi.Remote, as
shown in Example 8-1.

Example 8-1 Inventory service endpoint interface

package com.ibm.itso.ws.inventory;

public interface Inventory extends java.rmi.Remote {
public void updateInventory(String partNo)

throws java.rmi.RemoteException;
public String getDeliveryDate(String partNo)

throws java.rmi.RemoteException;
}

2. Open a command window and change to ITSOTargetAppEJB \ejbModule in
your Studio workspace folder.

3. Generate a Web Services Description Language (WSDL) file from the service
endpoint interface. We used the command shown in Example 8-2.

Example 8-2 Generating WSDL using Java2WSDL

C:\WebSphere\AppServer\bin\Java2WSDL -verbose
-implClass com.ibm.itso.ejb.inventory.InventoryBean
-location http://target.itso.ral.ibm.com:9080/ITSOTargetApp/services/Inventory
-output C:\workspace\ITSOTargetAppEJB\ejbModule\META-INF\wsdl\Inventory.wsdl
-style rpc -use literal -voidReturn ONEWAY com.ibm.itso.ws.inventory.Inventory

WSWS3010I: Info: Generating portType {http://inventory.ws.itso.ibm.com}Inventory
WSWS3010I: Info: Generating message {http://inventory.ws.itso.ibm.com}getDeliveryDateRequest
WSWS3010I: Info: Generating message {http://inventory.ws.itso.ibm.com}getDeliveryDateResponse
WSWS3010I: Info: Generating message {http://inventory.ws.itso.ibm.com}updateInventoryRequest
WSWS3010I: Info: Generating message {http://inventory.ws.itso.ibm.com}updateInventoryResponse
WSWS3010I: Info: Generating binding {http://inventory.ws.itso.ibm.com}InventorySoapBinding
WSWS3010I: Info: Generating service {http://inventory.ws.itso.ibm.com}InventoryService
WSWS3010I: Info: Generating port Inventory

You can see the result of the -voidReturn ONEWAY option we specified with
Java2WSDL by examining the generated WSDL, Inventory.wsdl. As shown in
Example 8-3, the getDeliveryDate operation has input and output messages,
so it is a request-response operation where a reply is required. The
updateInventory operation, however, only has an input message, so it is a
one-way operation that does not require a response.
162 Patterns: Direct Connections for Intra- and Inter-enterprise

Example 8-3 Generated portTypes for Inventory service

...
<wsdl:portType name="Inventory">

<wsdl:operation name="getDeliveryDate" parameterOrder="partNo">
<wsdl:input message="intf:getDeliveryDateRequest"

name="getDeliveryDateRequest"/>
<wsdl:output message="intf:getDeliveryDateResponse"

name="getDeliveryDateResponse"/>
</wsdl:operation>
<wsdl:operation name="updateInventory" parameterOrder="partNo">

<wsdl:input message="intf:updateInventoryRequest"
name="updateInventoryRequest"/>

</wsdl:operation>
</wsdl:portType>
...

4. Using the WSDL file created in the previous step, generate the Web services
deployment descriptors and classes using the WSDL2Java tool. We used the
command shown in Example 8-4.

Example 8-4 Generating server deployment descriptors and classes using WSDL2Java

C:\WebSphere\AppServer\bin\WSDL2Java -verbose -role server -container ejb
-output C:\workspace\ITSOTargetAppEJB\ejbModule
C:\workspace\ITSOTargetAppEJB\ejbModule\META-INF\wsdl\Inventory.wsdl

WSWS3185I: Info: Parsing XML file:
C:\workspace\ITSOTargetAppEJB\ejbModule\META-INF\wsdl\Inventory.wsdl
WSWS3330I: Info:
C:\workspace\ITSOTargetAppEJB\ejbModule\com\ibm\itso\ws\inventory\Inventory.java already
exists, WSDL2Java will not overwrite it.
WSWS3282I: Info: Generating
C:\workspace\ITSOTargetAppEJB\ejbModule\com\ibm\itso\ws\inventory\InventorySoapBindingImpl.java
.
WSWS3282I: Info: Generating
C:\workspace\ITSOTargetAppEJB\ejbModule\com\ibm\itso\ws\inventory\Inventory_RI.java.
WSWS3282I: Info: Generating
C:\workspace\ITSOTargetAppEJB\ejbModule\com\ibm\itso\ws\inventory\InventoryHome.java.
WSWS3282I: Info: Generating C:\workspace\ITSOTargetAppEJB\ejbModule\META-INF\webservices.xml.
WSWS3282I: Info: Generating
C:\workspace\ITSOTargetAppEJB\ejbModule\META-INF\ibm-webservices-bnd.xmi.
WSWS3282I: Info: Generating
C:\workspace\ITSOTargetAppEJB\ejbModule\META-INF\ibm-webservices-ext.xmi.

Note: One-way invocations will not throw any exceptions if the target
application is not available.
 Chapter 8. Using RPC style Web services 163

WSWS3282I: Info: Generating
C:\workspace\ITSOTargetAppEJB\ejbModule\META-INF\Inventory_mapping.xml.

5. Right-click the ITSOTargetAppEJB project and select Refresh. You should
see the generated files shown in Figure 8-10.

The webservices.xml deployment descriptor defines the set of Web services
that are being deployed in the Web service-enabled J2EE container.

Figure 8-10 WSDL2Java generated files

6. Navigate to ITSOTargetAppEJB → ejbModule → META-INF and edit
webservices.xml. Set the ejb-link element to Inventory, as shown in
Example 8-5.

The ejb-link element corresponds to the ejb-name element of the required
EJB, as defined in ejb-jar.xml.

Example 8-5 Updating webservices.xml

<?xml version="1.0" encoding="UTF-8"?>

Note: The deployment descriptors and class files will not be regenerated
when the tool is re-run, unless the existing files have been removed first.
164 Patterns: Direct Connections for Intra- and Inter-enterprise

<!DOCTYPE webservices PUBLIC "-//IBM Corporation, Inc.//DTD J2EE Web services 1.0//EN"
"http://www.ibm.com/webservices/dtd/j2ee_web_services_1_0.dtd">
<webservices>
 <webservice-description>
 <webservice-description-name>InventoryService</webservice-description-name>
 <wsdl-file>META-INF/wsdl/Inventory.wsdl</wsdl-file>
 <jaxrpc-mapping-file>META-INF/Inventory_mapping.xml</jaxrpc-mapping-file>
 <port-component>
 <port-component-name>Inventory</port-component-name>
 <wsdl-port>
 <namespaceURI>http://inventory.ws.itso.ibm.com</namespaceURI>
 <localpart>Inventory</localpart>
 </wsdl-port>

<service-endpoint-interface>com.ibm.itso.ws.inventory.Inventory</service-endpoint-interface>
 <service-impl-bean>
 <ejb-link>Inventory</ejb-link>
 </service-impl-bean>
 </port-component>
 </webservice-description>
</webservices>

7. Export the ITSOTargetApp project to an EAR file:

a. Right click the ITSOTargetApp project and select Export....

b. Select EAR file and click Next.

c. Select the destination you want the EAR file to be exported to, for
example:

C:\WebSphere\AppServer\installableApps\ITSOTargetApp.ear

d. Click Finish.

8. Run the endptEnabler command line tool to add an HTTP router module to
the EAR file. (This step has already been done for you in our sample
application.) We used the command shown in Example 8-6.

Example 8-6 Running the endpoint enabler tool

C:\WebSphere\AppServer\bin\endptEnabler

WSWS2004I: IBM WebSphere Application Server Release 5
WSWS2005I: Web Services Enterprise Archive Endpoint Enabler Tool.
WSWS2007I: (C) COPYRIGHT International Business Machines Corp. 1997, 2003.
WSWS2006I: Please enter the name of your EAR file: ITSOTargetApp.ear

Tip: This step is only required if the Web service is implemented in an EJB
module.
 Chapter 8. Using RPC style Web services 165

WSWS2003I: Backing up EAR file to: ITSOTargetApp.ear~

WSWS2016I: Loading EAR file: ITSOTargetApp.ear
WSWS2017I: Found EJB Module: ITSOTargetAppEJB.jar

WSWS2029I: Enter http router name for EJB Module ITSOTargetAppEJB
[ITSOTargetAppEJB_HTTPRouter.war]: ITSOTargetAppWeb.war

WSWS2030I: Enter http context root for EJB Module ITSOTargetAppEJB
[/ITSOTargetAppEJB]: ITSOTargetApp
WSWS2024I: Adding http router for EJB Module ITSOTargetAppEJB.jar.
WSWS2036I: Saving EAR file ITSOTargetApp.ear...
WSWS2037I: Finished saving the EAR file.
WSWS2018I: Finished processing EAR file ITSOTargetApp.ear.

The endptEnabler tool makes the following changes to the EAR file:

� Adds a Web module to the EAR file that contains the HTTP router for the EJB
module. Also sets the context root for the Web module in application.xml.

� Adds servlet and servlet-mapping elements to the Web module deployment
descriptor. These elements map the Web service endpoint URL to the Web
services router servlet, and are added for each Web service in the module.

� Adds a routerModules element to ibm-webservices-bnd.xmi in the EJB
module.

The EAR file is now ready to deploy in the IBM WebSphere Application Server
V5.0.2 runtime.

8.5.2 Web service-enabling the source application
Figure 8-11 shows the steps involved in Web services-enabling the source
(client) application.

Tip: If you are using WebSphere Studio V5.1, you can right-click the EAR
project, and select Web Services → Endpoint Enabler from the pop-up
menu.

Note: The WebSphere V5.0.2 Web service deployment tools will not append
new Web services to existing Web services deployment descriptors. If you
need to deploy more than one Web service in a module, you will need to
manually merge the Web service deployment descriptors.
166 Patterns: Direct Connections for Intra- and Inter-enterprise

Figure 8-11 Web service development for source application

Let’s walk through the process shown in Figure 8-11 for our source application.

When developing a Web services client, you must have access to a server
application. This could be developed by a separate department within your
organization, which will supply the WSDL file defining their server. In our
example, we use the target application described in 8.5.1, “Web service enabling
the target application” on page 161.

Web service-enabling our source application is simply a matter of obtaining the
WSDL file for the target Web service, and running the WSDL2Java tool to
generate the required deployment descriptors and proxy classes:

1. Copy the target application WSDL file to the source application Web module:

a. Using WebSphere Studio, switch to the J2EE Perspective and click the
Project Navigator tab.

b. Navigate to the ITSOSourceAppWeb → WebContent → WEB-INF folder.

c. Right-click the WEB-INF folder and select New → Folder. Set the folder
name to wsdl.

d. Copy the target application WSDL file, Inventory.wsdl, from the
ITSOTargetAppEJB/ejbModule/META-INF/wsdl folder to Inventory.wsdl in
the new ITSOSourceAppWeb/WebContent/WEB-INF/wsdl folder.

2. Open a command window.

Application
Assembler Deployer

Application
Component

Provider

develop package deploy

WebSphere
Studio

Web

JAR

WebSphere
Studio

WebSphere
Admin
Console

WebSphere
Admin

Command
Line Tool

WSDL2
Java

Command
Line Tool

Target
WSDL

WebSphere
Application

Server
Enterprise

Archive

Enterprise
Archive

Set of
Components

Deployment
Descriptors,

Proxy classes
 Chapter 8. Using RPC style Web services 167

3. Using the WSDL file created in step 1, generate the Web service client
deployment descriptors and classes using the WSDL2Java tool. We used the
command shown in Example 8-7.

Example 8-7 Generating client deployment descriptors and classes using WSDL2Java

C:\WebSphere\AppServer\bin\WSDL2Java -verbose -role client -container web
-output C:\workspace\ITSOSourceAppWeb\WebContent
C:\workspace\ITSOSourceAppWeb\WebContent\WEB-INF\wsdl\Inventory.wsdl

WSWS3185I: Info: Parsing XML file:
C:\workspace\ITSOSourceAppWeb\WebContent\WEB-INF\wsdl\Inventory.wsdl
WSWS3282I: Info: Generating
C:\workspace\ITSOSourceAppWeb\WebContent\com\ibm\itso\ws\inventory\InventoryService.java.
WSWS3282I: Info: Generating
C:\workspace\ITSOSourceAppWeb\WebContent\com\ibm\itso\ws\inventory\InventoryServiceLocator.java
.
WSWS3282I: Info: Generating
C:\workspace\ITSOSourceAppWeb\WebContent\com\ibm\itso\ws\inventory\Inventory.java.
WSWS3282I: Info: Generating
C:\workspace\ITSOSourceAppWeb\WebContent\com\ibm\itso\ws\inventory\InventorySoapBindingStub.jav
a.
WSWS3282I: Info: Generating
C:\workspace\ITSOSourceAppWeb\WebContent\WEB-INF\webservicesclient.xml.
WSWS3282I: Info: Generating
C:\workspace\ITSOSourceAppWeb\WebContent\WEB-INF\ibm-webservicesclient-bnd.xmi.
WSWS3282I: Info: Generating
C:\workspace\ITSOSourceAppWeb\WebContent\WEB-INF\ibm-webservicesclient-ext.xmi.
WSWS3282I: Info: Generating
C:\workspace\ITSOSourceAppWeb\WebContent\WEB-INF\Inventory_mapping.xml.

4. In WebSphere Studio, move the generated Java source files from the Web
module’s WebContent folder to its JavaSource folder:

a. Right-click the ITSOSourceAppWeb project and select Refresh from the
pop-up menu. The generated files should now appear in the Studio
workspace.

b. Move the com.ibm.itso.ws.inventory package in the
ITSOSourceAppWeb\WebContent folder to the
ITSOSourceAppWeb\JavaSource folder.

The generated files are highlighted in Figure 8-12.

The webservicesclient.xml deployment descriptor defines the JNDI name for
accessing the Web service and the associated service endpoint interface to
be used.
168 Patterns: Direct Connections for Intra- and Inter-enterprise

Figure 8-12 Generated client binding files and deployment descriptors

5. Add client application code to invoke the Web service on the target
application.

To invoke getDeliveryDate on the target application, we added the code
shown in Example 8-8. We added this code to the
com.ibm.itso.command.WebServiceBean command bean in our
ITSOSourceAppWeb module.

Example 8-8 Web service client code for getDeliveryDate

public String getDeliveryDate(String partNumber) throws Exception {

String deliveryDate = null;

try {

Context ctx = new InitialContext();

InventoryService service = (InventoryService) ctx.lookup(
 Chapter 8. Using RPC style Web services 169

"java:comp/env/service/InventoryService");

// Request the Service Endpoint from the Service
Inventory port = service.getInventory();

// Get the quote
deliveryDate = port.getDeliveryDate(partNumber);

} catch (Exception e) {
//...

}

return deliveryDate;
}

6. Test the source and target applications in the WebSphere Studio Application
Developer V5.1 test environment.

7. Deploy the source and target applications in your IBM WebSphere Application
Server V5.0.2 runtime environment to try the applications on separate
machines.

Figure 8-13 shows the results page for our Get Delivery Date use case.

Note: If you want to go ahead and test the RPC style Web service before
you implement the document style Web service (described in Chapter 9,
“Using document style Web services” on page 183) you need to comment
out the following imports and methods in
com.ibm.itso.ejb.inventory.Inventory and
com.ibm.itso.ejb.inventory.InventoryBean in the ITSOTargetAppEJB
module in the sample application:

import com.ibm.itso.ws.inventory.reply.InventoryReply
import com.ibm.itso.ws.inventory.request.InventoryRequest
public void updateInventory(InventoryRequest reqMsg)
public InventoryReply getDeliveryDate(InventoryRequest reqMsg)
170 Patterns: Direct Connections for Intra- and Inter-enterprise

Figure 8-13 Get delivery date results page

Changing the Web service endpoint URL
By default, the endpoint proxy class (InventoryServiceLocator in our example)
will use the endpoint address specified in the WSDL file when the proxy class
was originally generated. It is likely that the endpoint address used will change
over time, as the client application moves though the development, test, and
production environments, for example. You can set the endpoint address in
several ways:

1. When getting an instance of the generated endpoint class from the Service
interface, you can optionally pass an endpoint address that will override the
default address obtained from the WSDL file. Compare the following
approach with that used in Example 8-8 on page 169:

// Request the Service Endpoint from the Service
// overriding the default endpoint address
Inventory port = service.getInventory(new java.net.URL(

"http://localhost:9080/ITSOTargetApp/services/Inventory"));

2. When deploying your client application to IBM WebSphere Application Server
V5.0.2, you can specify the Deploy WebServices option, as shown in
Figure 8-14.

WebSphere will regenerate the deployment code based on the Web services
client deployment descriptors, updating it with the current endpoint address
from the WSDL file. Similar to EJB deployment, this only needs to be
performed when the deployment details have changed.

Example 8-9 shows how the endpoint address is specified in the WSDL file
for our Inventory service.
 Chapter 8. Using RPC style Web services 171

The second option is recommended in most cases. Using this method, the
endpoint address can be specified at application packaging/deployment time
using the Web services deployment features of the application server.

Example 8-9 Setting the endpoint address in the WSDL file

...
<wsdl:service name="InventoryService">

<wsdl:port binding="intf:InventorySoapBinding" name="Inventory">
<wsdlsoap:address location="http://localhost:9080/ITSOTargetApp/services/Inventory"/>

</wsdl:port>
</wsdl:service>
...

Figure 8-14 Deploying Web services using the WebSphere administrative console

8.5.3 Monitoring SOAP messages
You can trace the XML messages exchanged between a Web service client and
the server. In this section we look at two tools:

� The TCPMon tool provided with IBM WebSphere Application Server V5.0

� The TCP/IP Monitor Server provided with WebSphere Studio Application
Developer
172 Patterns: Direct Connections for Intra- and Inter-enterprise

WebSphere TCPMon tool
The TCPMon tool allows SOAP messages to be traced by redirecting messages
from one port to another, displaying the contents as they go. The WebSphere
application server normally listens on port 9080. To trace messages sent to the
application server, TCPMon can be configured, for example, to listen on port
9088 and redirect messages to 9080. The client is modified to use port 9088 to
access the Web service.

This tool is provided with IBM WebSphere Application Server V5.0.2. It allows
you to view the contents of the SOAP messages exchange between the source
and target applications, as shown in Figure 8-15.
 Chapter 8. Using RPC style Web services 173

Figure 8-15 Tracing SOAP messages using TCPMon

You can start TCPMon from a command window as follows:

set CLASSPATH=%CLASSPATH%;<WAS_HOME>\lib\webservices.jar
<WAS_HOME>\java\bin\java com.ibm.ws.webservices.engine.utils.tcpmon

For further details on TCPMon, see the InfoCenter article Tracing Web services
messages at:

http://www.ibm.com/software/webservers/appserv/infocenter.html
174 Patterns: Direct Connections for Intra- and Inter-enterprise

http://www.ibm.com/software/webservers/appserv/infocenter.html

The SOAP request for our one-way updateInventory() method is shown in
Example 8-10.

Example 8-10 SOAP request for updateInventory

POST /ITSOTargetApp/services/Inventory HTTP/1.0
Content-Type: text/xml; charset=utf-8
Accept: application/soap+xml, application/dime, multipart/related, text/*
User-Agent: IBM WebServices/1.0
Host: localhost
Cache-Control: no-cache
Pragma: no-cache
SOAPAction: ""
Content-Length: 427

<?xml version="1.0" encoding="UTF-8"?>
 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Body>
 <updateInventory xmlns="http://inventory.ws.itso.ibm.com">
 <partNo xmlns="">12345</partNo>
 </updateInventory>
 </soapenv:Body>
 </soapenv:Envelope>

The HTTP response for our updateInventory() method is shown in Example 8-11.
There is no SOAP response envelope for the one-way invocation of
updateInventory.

A response appears because the HTTP protocol requires an acknowledgement
to be returned to the sender. However, this acknowledgement simply confirms
that the one-way call was successfully received by the HTTP transport
mechanism, for “out-bound” transmission. There is no guarantee that the call
was successfully delivered to the final recipient, nor can there be one, by
definition.

Example 8-11 SOAP response for updateInventory

HTTP/1.1 200 OK
Server: WebSphere Application Server/5.0
Content-Type: text/html; charset=ISO-8859-1
Content-Language: en-US
Content-Length: 0
Connection: close

The SOAP request for our getDeliveryDate() method is shown in Example 8-12.
 Chapter 8. Using RPC style Web services 175

Example 8-12 SOAP request for getDeliveryDate

POST /ITSOTargetApp/services/Inventory HTTP/1.0
Content-Type: text/xml; charset=utf-8
Accept: application/soap+xml, application/dime, multipart/related, text/*
User-Agent: IBM WebServices/1.0
Host: localhost
Cache-Control: no-cache
Pragma: no-cache
SOAPAction: ""
Content-Length: 427

<?xml version="1.0" encoding="UTF-8"?>
 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Body>
 <getDeliveryDate xmlns="http://inventory.ws.itso.ibm.com">
 <partNo xmlns="">12345</partNo>
 </getDeliveryDate>
 </soapenv:Body>
 </soapenv:Envelope>

The SOAP response for the getDeliveryDate() method is shown in Example 8-13.

Example 8-13 SOAP response for getDeliveryDate

HTTP/1.1 200 OK
Server: WebSphere Application Server/5.0
Content-Type: text/xml; charset=utf-8
Content-Language: en-US
Connection: close

<?xml version="1.0" encoding="UTF-8"?>
 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Body>
 <getDeliveryDateResponse xmlns="http://inventory.ws.itso.ibm.com">
 <getDeliveryDateReturn xmlns="">09/12/2003</getDeliveryDateReturn>
 </getDeliveryDateResponse>
 </soapenv:Body>
 </soapenv:Envelope>
176 Patterns: Direct Connections for Intra- and Inter-enterprise

TCP/IP Monitor Server
The TCP/IP Monitor Server provided with WebSphere Studio Application
Developer (shown in Figure 8-16) also allows tracing of SOAP messages. It
works in a similar way to the WebSphere TCPMon tool. To use the TCP/IP
Monitor Server, create a new Server and Configuration and select Other →
TCP/IP Monitor Server for the server type.

Figure 8-16 Tracing SOAP messages using WebSphere Studio TCP/IP Monitor Server

8.6 Quality of Service capabilities
In this section we discuss Quality of Service capabilities and considerations
specific to Web services.

For further discussion on Quality of Services see the IBM developerWorks article
Understanding quality of service for Web services:

http://www.ibm.com/developerworks/library/ws-quality.html

8.6.1 Autonomic
Log and trace facilities are important for fault monitoring and isolation.
WebSphere Application Server provides a number of log files. JVM logs are
located in the <WAS_HOME>/logs/<applicationServerName> directory, and by
default are named SystemOut.log and SystemErr.log.

The Diagnostic Trace Service can be used to enable tracing of application server
components. The following trace specification can be used when diagnosing
Web services problems:

com.ibm.ws.webservices.*=all=enabled
 Chapter 8. Using RPC style Web services 177

http://www.ibm.com/developerworks/library/ws-quality.html

The TCPMon tool described in 8.5.3, “Monitoring SOAP messages” on page 172
allows you to view the contents of the SOAP messages being generated by the
interaction between the source and target applications.

8.6.2 Availability
The Patterns for e-business define a set of high-availability patterns that provide
the node redundancy and failover capabilities needed to eliminate
single-point-of-failure for the end-to-end production system. The following
Non-Functional Requirements::High Availability: Runtime patterns are defined:

� High Availability: Basic Runtime pattern
� High Availability: Runtime pattern: Single load balancer
� High Availability: Runtime pattern: Load balancer hot standby
� High Availability: Runtime pattern: Mutual high availability
� High Availability: Runtime pattern: Wide area load balancing

Many of the same principles that apply to any Web application can be applied to
Web services when it comes to availability.

See the IBM Redbook Patterns for the Edge of Network, SG24-6822, for details
on how these Non-Functional Requirements custom designs are applied to Web
applications.

8.6.3 Performance
The Patterns for e-business also define a set of high performance patterns that
provide the scalability and workload management capabilities needed to meet
performance and throughput requirements. The following Non-Functional
Requirements::High Performance: Runtime patterns are defined:

� High Performance: Basic Runtime pattern
� High Performance: Runtime pattern: Redirectors
� High Performance: Runtime pattern: Separation
� High Performance: Runtime pattern: Caching proxy

Many of the same principles that apply to any Web application can be applied to
Web services when it comes to performance.

See the IBM Redbook Patterns for the Edge of Network, SG24-6822, for details
on how these Non-Functional Requirements custom designs are applied to Web
applications.

XML parsing
The WebSphere V5.0.2 Web services runtime uses SAX (event-based) parsing,
achieving improved performance over the earlier versions of Apache SOAP,
178 Patterns: Direct Connections for Intra- and Inter-enterprise

which used DOM parsing. Still, in order to minimize the effect on performance of
XML parsing, some steps can be taken:

� Avoid chaining services if possible, since this will increase path lengths.

� Design for coarse-grained, document-based interactions.

� Balance architecting service re-use with number of invocations per
transaction.

Usually the performance loss from using an XML parser such as SAX is
negligible compared to the effort necessary to build up the communication itself.
The highest performance results can be expected from using the appropriate
transport protocol. For example, consider using RMI instead, if appropriate. You
can always expose the EJB as Web services later, if needed.

8.6.4 Security
Web services security for IBM WebSphere Application Server V5.0.2 is based on
standards included in the Web services security (WS-Security) specification.
Web services security is a message-level standard, based on securing SOAP
messages through XML digital signatures, confidentiality through XML
encryption and credential propagation through security tokens.

Transport-level security is based on the Secured Sockets Layer (SSL) or
Transport Layer Security (TLS) mechanisms across the HTTP protocol. SSL and
TLS provide security features including authentication, data protection, and
cryptographic token support for secure HTTP connections. To run with HTTPS,
the service endpoint address must be in the form of https://.

For further details on Web services security for WebSphere V5.0.2, see the
InfoCenter article Securing Web services at:

http://www.ibm.com/software/webservers/appserv/infocenter.html

UDDI security
One reason for the delay in widespread adoption of UDDI is the lack of security
standards that would allow companies to restrict Web services access
information to trusted partners. The third version of the UDDI standard will
include security specifications.

8.6.5 Standards compliance
By utilizing open standards, Web services can, in theory, enable any two
software components to communicate—no matter what technologies or
platforms are used to create or deploy them. Interoperability across
heterogeneous platforms is one of the key value propositions of Web services.
 Chapter 8. Using RPC style Web services 179

http://www.ibm.com/software/webservers/appserv/infocenter.html

Unfortunately, there is still no common, agreed-upon definition of what a Web
service is, many needed standards are still in their infancy, and some are still
competing against each other. To address the potential problems, the Web
Services Interoperability (WS-I) Group released the Web Services Basic Profile
1.0 on October 17, 2002.

See the WS-I Basic Profile Version 1.0 specification for more details:

http://www.ws-i.org/Profiles/Basic/2002-10/BasicProfile-1.0-WGD.htm

8.6.6 Transactionality
Almost every party agrees that we need a standard that accommodates both
classical ACID (XA or database-style transactions) and long-running,
compensating transactions. But there is still sharply divided opinion on where
such standards fit in the Web services stack.

The Business Transaction Protocol (BTP) from OASIS was backed by a number
of smaller vendors (BEA, HP, Choreology, Oracle) and Version 1.0 was released
in May 2002. BTP tries to adopt XML-based technology for business transactions
on the Internet and tackles such challenges as transactions that span multiple
enterprises and long-lasting transactions. BTP has been criticized as being too
complex, and still lacks backing from an industry heavyweight (like IBM or
Microsoft).

In August 2002, IBM, Microsoft, and BEA published two draft specifications:

� WS-Coordination is a general purpose and extensible framework for providing
protocols that coordinate the actions of distributed transactions. The defined
framework enables an application service to create a context needed to
propagate an activity to other services and to register for coordination
protocols. The framework also enables existing transaction processing,
workflow, and other systems for coordination to hide their proprietary
protocols and to operate in a heterogeneous environment. It can be used with
message sequencing and state machine synchronization.

See http://www.ibm.com/developerworks/library/ws-coor/ for the published
specification.

� WS-Transaction includes support for the two types of transactions. It
describes coordination types that are used with the extensible coordination
framework as described in WS-Coordination. Two coordination types are
defined: Atomic Transaction (AT) and Business Activity (BA). WS-Transaction
is a building block used with other specifications (for example,
WS-Coordination, WS-Security) and application-specific protocols that are
able to accommodate a wide variety of coordination protocols related to the
coordination actions of distributed applications.
180 Patterns: Direct Connections for Intra- and Inter-enterprise

http://www.ws-i.org/Profiles/Basic/2002-10/BasicProfile-1.0-WGD.htm
http://www.ibm.com/developerworks/library/ws-coor/

See http://www.ibm.com/developerworks/library/ws-transpec/ for the published
specification.

While these proposals and specifications are still evolving, it is recommended
that we, as architects and developers, actively participate in, review, comment
on, and help improve the specifications. Also evaluate early implementations for
inclusion in corporate architecture standards and possible application
implementation. If there is urgent need for designing and implementing a Web
services-based transactional infrastructure and related business services, we
recommend using the principles behind the new specifications.

8.7 Best practices
In this section, we focus on best practices for Web services development and
deployment within a J2EE environment, that is, Web services that are built using
servlets, JSP pages, EJB architecture, and all the other standards that are part of
the J2EE technology.

These best practices include:

� Apply distributed computing principles

Think of Web services as another technology for developing distributed
systems.

� Design systems that are layered.

It is especially important in Web services applications where we do not have
control over some components (services) that we access in our application.

� Design coarse-grained Web services.

Requesting a service from a machine over the network is more expensive
than a local operation. Keep the request as coarse grained as possible when
requesting a Web service from a remote machine, thereby avoiding
unnecessary network traffic and overhead on the communication stack.

� Design for “loosely coupled” components.

Because a Web service is by definition an interface to a loosely coupled
component on a remote system, define clear contracts between layers and
services, but utilize the “Parameter List” paradigm where possible.
 Chapter 8. Using RPC style Web services 181

http://www.ibm.com/developerworks/library/ws-transpec/

� Limit dependency on other components.

Common dependencies to be avoided are Call flow dependency and Object
association dependency. Implement all cross “domain” business processes in
a “control” or “workflow” layer.

� Utilize standard XML structures to pass data, where possible using a
standardized structure and meaning.

� Use existing Web services tools, such as WebSphere Studio Application
Developer.

This allows you to expose assets and services using WSDL and
proxy-generation tools, which shield you from the underlying XML messages
in Web services.
182 Patterns: Direct Connections for Intra- and Inter-enterprise

Chapter 9. Using document style Web
services

This chapter discusses using document style Web services in an intra-enterprise
integration scenario. We are using Web services for J2EE as provided with IBM
WebSphere Application Server base V5.0.2 in this scenario.

This chapter describes the following:

� Using document style Web services in the context of our ITSO Electronics
business scenario.

� Design issues to be considered when using document style Web services
and the design applied to our document-based Web services.

� Creating a document style Web service provider and requester using Web
Services for J2EE.

� An example of integrating WebSphere with .NET-based Web services.

� Quality of Service capabilities for document style Web services.

� Best practices for document style Web services.

� An overview of ebXML.

9

© Copyright IBM Corp. 2003. All rights reserved. 183

9.1 Business scenario
The document style Web service is equally applicable to the business scenario
we described in Chapter 8, “Using RPC style Web services” on page 147. The
development effort involved is more complex than RPC style, but document style
provides some other advantages that make it an important alternative to RPC
style. Document style provides lower coupling between the Web service
requester and provider because requester and provider binding is reduced from
stricter methods and parameters to more flexible documents.

9.2 Document style Web services
While our discussion of Web service implementation has so far been based on
the RPC communication style, the SOAP and WSDL specifications allow for
another kind of Web service binding style: the document style.

Document style Web services are document-driven and more loosely coupled
than RPC style Web service. RPC style assumes that the provider is a
procedure, and the call to the service is a remote procedure call, where the
requester provides the call parameters in the SOAP body. The call parameters
are wrapped in an element that specifies the procedure’s name. The document
style makes no assumptions about how the provider will process the service call,
which leaves more flexibility in the definition of the messages consumed by and
produced by the service.

Advantages of document style include:

� Document style is more naturally suited to asynchronous processing and
one-way scenarios.

� Changes to the message schema are less likely to break service consumers.
Adding elements to messages, and reordering sequences in message
definitions, are less likely to impact both consumers and providers.

� It is possible to add information to the XML document that is being exchanged
between the consumer and provider for purposes other than the invocation of
the service. In the RPC style, the message must be validated in order to
invoke the target procedure. With document style, validation of additional
elements can be deferred to a component of the implemented service.

� Microsoft tools for the creation of Web services tend to use the document
style, so interoperability with service providers or requesters built for
compatibility with Microsoft platforms is more likely.

� Document style services tend to perform better than RPC style services. This
is because the SOAP server has to perform validation with RPC style,
184 Patterns: Direct Connections for Intra- and Inter-enterprise

whereas for document style the XML request is sent straight to the processing
application.

Disadvantages of document style include:

� It is more complex to write and provide services for document style. RPC
services are more rigid in the message formats they use, and therefore less
parsing and message analysis code is required in the application code than
with document style, which may have to cater for more data and more
combinations of document structure.

� Development tool support for document style Web services has not been
strong. WebSphere Studio Application Developer V5.1 and WebSphere
Application Server V5.0.2 provide new development and deployment tools
supporting document style Web services.

A detailed discussion of the merits of document style is available from:

http://www.ibm.com/developerworks/webservices/library/ws-docstyle.html
http://www.ibm.com/developerworks/webservices/library/ws-castor

9.3 Design guidelines
Figure 9-1 shows the Runtime pattern and Product mapping we used to
demonstrate the Direct Connection application pattern within the business
domain of an organization, using Web services technology. It is the same
Runtime pattern and Product mapping used in Chapter 8, “Using RPC style Web
services” on page 147. It supports both RPC and document style Web services.

Figure 9-1 Web services product mapping for Application Integration::Direct Connection

See Figure 8-4 on page 153 for an expanded view of this solution, showing the
“stack” of coupling adapter pairs over “virtual” connections between the source
and target.

Internal network

SOAP
/HTTP

ConnectorApp Server/
Services Connector App Server/

Services

WebSphere
Application Server

V5.0.2

JAX-RPC SOAP Provider JAX-RPC

WebSphere
Application Server

V5.0.2

SOAP Provider
 Chapter 9. Using document style Web services 185

http://www.ibm.com/developerworks/webservices/library/ws-docstyle.html
http://www.ibm.com/developerworks/webservices/library/ws-castor

9.3.1 Design considerations
A number of factors affect the design of a Web service. In this section we discuss
some of the factors we considered when using document style Web services in
our sample application.

SOAP messaging style
SOAP provides support for both RPC style Web services and document style
Web services. As discussed previously, the advantages of document style Web
services include:

� Looser coupling between the Web service requester and provider

� Better interoperability between Web service requesters and providers

� Better fit with asynchronous messaging scenarios

The disadvantages of document style include:

� Higher development effort than RPC style

We used document style Web services in our sample solution to demonstrate the
Direct Connection pattern because of the improved interoperability and looser
coupling provided. The document-based mechanism can be used for both the
Call and Message styles of communication.

Transmission style
As with RPC style Web services, document style Web services can be operated
in synchronous (request-reply, solicit-response) or asynchronous (one-way,
notification operation) modes. Deciding which mode to use depends on several
factors:

� Quality of Service requirements

Improving the performance, reliability, and scalability of the business process
may be a major issue when discussing the decoupling of applications.
Services using asynchronous mode are usually less prone to execution
delays or failures of the target application.

� Implementation effort

Where the source application expects a response from the target application,
or requires confirmation of successful execution on the target side, it may be
easier and more appropriate to provide services using a synchronous mode,
such as request-reply. Using an asynchronous mode would require additional
effort to handle the receipt of responses and notifications or to implement
error handling. This also has an impact on QoS aspects such as
maintainability or complexity of architecture.
186 Patterns: Direct Connections for Intra- and Inter-enterprise

� Transport protocol

The choice of underlying transport protocol, and the resulting transport
capabilities, will affect the ease of using one or other asynchronous mode. For
example, using a message transport infrastructure facilitates asynchronous
operations while HTTP rather favors synchronous operations.

Message structure
The Web services specification does not mandate any particular message
structure; the message structure is defined by the service provider. Message
structures can be anything from simple strings to complex XML documents. In
our document style example we use an XML request document containing the
part number being ordered in the request message, and in reply receive an XML
response document containing the expected delivery date.

We define the required message structures using schema files that are imported
into the WSDL file for our Web service provider. There are a number of
considerations when importing your message and type definitions, including:

� Defining messages separately from the interface or implementation files
facilitates reuse of the message definitions in other service definitions.

� Changes to schema files may impact services that use those definitions,
particularly if the implementer of the service or consumer has generated
serialization code directly from the WSDL files. This means that once a data
schema is published, altering it may have a big impact on users of services
that use the schema.

� For any imports that refer to a network location, the network location must be
available when performing operations such as designing WSDL files, starting
services, and so on.

� Both run-time and development-time products must support the use of
imported schemas.

9.3.2 Object model
In this section we provide an object model for our document style Web services
scenario. We focus on how the source application is accessing the target
application using Axis.

Class diagram
Figure 9-2 is a class diagram of the main application classes involved in initiating
the direct connection between the source and target applications via document
style Web services.
 Chapter 9. Using document style Web services 187

The WebServiceDocBean class was developed by hand. The InventoryDoc,
InventoryDocService, InventoryDocServiceLocator, and
InventoryDocSoapBindingStub shown in Figure 9-2 were generated from the
WSDL file. The WebServicesServlet is provided in the WebSphere V5.0.2 Web
services runtime.

The InventoryRequest and InventoryReply classes were also generated from
from the WSDL file. These classes provide application access to the XML
request and reply documents. We developed the InventoryRequestBuilder and
InventoryReplyBuilder classes by hand as constructor helpers for request and
reply messages.

Figure 9-2 Class diagram of the document style Web service requester and provider (source and target)

CommandBean

«JavaInterface»
Service

«JavaInterface»
Remote

WebServices
Servlet

SOAP/HTTP

InventoryBean

InventoryReply

InventoryRequest

InventoryReplyBuilder

InventoryRequestBuilder

InventoryDoc

InventoryDocSoap
BindingStub

InventoryDoc
Service

InventoryDoc
ServiceLocator

WebServiceDocBean

+ updateInventory ()
+ getDeliveryDate ()
188 Patterns: Direct Connections for Intra- and Inter-enterprise

Interaction diagrams
The interaction diagrams in Figure 9-3 and Figure 9-4 show the sequence of
steps performed when the source application uses the WebServiceDocBean to
perform the getDeliveryDate() method. In Figure 9-3:

1. WebServiceDocBean in the source application creates an InitialContext and
uses it to perform a JNDI lookup to locate the InventoryDocService. This
lookup finds the value set in the webservicesclient.xml deployment descriptor.

2. WebServiceDocBean invokes the getInventoryDoc method of the
InventoryDocService interface (implemented by InventoryDocServiceLocator)
to get the target service endpoint interface, InventoryDoc.

3. The WebServiceDocBean uses the InventoryRequestBuilder to create an
InventoryRequest message.

4. WebServiceDocBean calls the getDeliveryDate method of the InventoryDoc
interface (implemented by InventoryDocSoapBindingStub) to invoke the Web
service. WebServiceDocBean passes the InventoryRequest message as a
parameter of getDeliveryDate.

The stub implementing the InventoryDoc interface invokes the remote Web
service via SOAP and HTTP using the WebSphere Web services runtime.

The stub returns an InventoryReply message to WebServiceDocBean.

5. The WebServiceDocBean calls the getBody method of the returned
InventoryReply object. It can then get the delivery date from the message
Body.

Figure 9-3 Interaction diagram for document style Web services: Part 1

 : WebServiceDoc
Bean

 : InitialContext : InventoryDoc
Service

 : InventoryRequest
Builder

: InventoryReply : InventoryDoc

1 : lookup (arg0)

2 : getInventoryDoc ()

3 : InventoryRequestBuilder (arg0 ,
arg1)

4 : getDeliveryDate (arg0)

5 : getBody ()

See next
diagram
 Chapter 9. Using document style Web services 189

In Figure 9-4:

1. The stub implementing the InventoryDoc interface
(InventoryDocSoapBindingStub) invokes the remote Web service via SOAP
and HTTP using the WebSphere Web services runtime.

2. The WebServicesServlet in the target application server invokes the
getDeliveryDate method on the InventoryBean, which is the stateless session
bean on the target application.

3. The InventoryBean calls the getBody method of the passed InventoryRequest
message. It can then get the part number from the message Body.

4. The InventoryBean determines the delivery date for the part number and uses
the InventoryReplyBuilder to create an InventoryReply message.

The InventoryReply message then gets passed back through the chain to the
requester side and to the WebServiceDocBean that made the request to begin
with.

Figure 9-4 Interaction diagram for document style Web services - part 2

These interaction diagrams cover our implementation of the Get Delivery Date
use case using document style Web services. Although we have not provided
interaction diagrams covering the Update Inventory use case, this use case has
been implemented as a one-way document style Web service. Its interaction
diagrams are similar, except the InventoryReply message is not used. Also, the
one-way invocation of the Web service does not block the client application.
Execution control returns back to the WebServiceDocBean, without having to
wait for the updateInventory call to the InventoryBean to complete.

 : WebServices
Servlet

 : InventoryReply
Builder

 : InventoryRequest: InventoryBean : InventoryDoc

1 : \SOAPRequest\
2 : getDeliveryDate (arg0)

3 : getBody ()

4 : InventoryReplyBuilder (arg0 , arg1
, arg2)
190 Patterns: Direct Connections for Intra- and Inter-enterprise

See also Figure 8-7 on page 159 for our interaction diagram for one-way RPC
style Web services.

9.4 Development guidelines
In this section we describe:

� How to enable an EJB target application as a document style Web service
provider.

� How to enable a Web source application as a document style Web service
client.

We are using the Web Services for J2EE support provided with WebSphere
V5.0.2 to implement our solution, which includes command line tools to generate
the Web services classes and deployment descriptors. IBM WebSphere Studio
Application Developer V5.1 also provides full support for the creation of Web
services for J2EE.

9.4.1 Web service enabling the target application
See Figure 8-9 on page 161 for an overview of the Web service development
process for a target application. Let’s walk through this process for our target
application.

We have already created a simple EJB application using WebSphere Studio
Application Developer. We can create a document style Web service using this
EJB as follows:

1. Create a service endpoint interface for the Web service:

a. Using WebSphere Studio, switch to the J2EE Perspective and click the
Project Navigator tab.

b. Navigate to the ITSOTargetAppEJB → ejbModule folder.

c. Create the service endpoint interface by copying the Inventory EJB
Remote Interface, Inventory.java, from the com.ibm.itso.ejb.inventory
package to InventoryDoc.java in the com.ibm.itso.ws.inventory package.

d. Edit the new InventoryDoc.java file so that it extends java.rmi.Remote, as
shown in Example 9-1.

Example 9-1 InventoryDoc service endpoint interface

package com.ibm.itso.ws.inventory;

public interface InventoryDoc extends java.rmi.Remote {
public void updateInventory(String partNo)
 Chapter 9. Using document style Web services 191

throws java.rmi.RemoteException;
public String getDeliveryDate(String partNo)

throws java.rmi.RemoteException;
}

2. Open a command window.

3. Generate a Web Services Description Language (WSDL) file from the service
endpoint interface. We used the command shown in Example 9-2.

Note the -style document option. It specifies that we want to generate WSDL
for a document style Web service.

Example 9-2 Generating WSDL using Java2WSDL

C:\WebSphere\AppServer\bin\Java2WSDL -verbose
-implClass com.ibm.itso.ejb.inventory.InventoryBean
-location http://target.itso.ral.ibm.com:9080/ITSOTargetApp/services/InventoryDoc
-output C:\workspace\ITSOTargetAppEJB\ejbModule\META-INF\wsdl\InventoryDoc.wsdl
-style document -use literal -voidReturn ONEWAY com.ibm.itso.ws.inventory.InventoryDoc

WSWS3010I: Info: Generating portType {http://inventory.ws.itso.ibm.com}InventoryDoc
WSWS3010I: Info: Generating message {http://inventory.ws.itso.ibm.com}getDeliveryDateRequest
WSWS3010I: Info: Generating message {http://inventory.ws.itso.ibm.com}getDeliveryDateResponse
WSWS3010I: Info: Generating message {http://inventory.ws.itso.ibm.com}updateInventoryRequest
WSWS3010I: Info: Generating message {http://inventory.ws.itso.ibm.com}updateInventoryResponse
WSWS3010I: Info: Generating binding {http://inventory.ws.itso.ibm.com}InventoryDocSoapBinding
WSWS3010I: Info: Generating service {http://inventory.ws.itso.ibm.com}InventoryDocService
WSWS3010I: Info: Generating port InventoryDoc

4. Create XML schemas defining the required messages structures. We created
two XML schemas:

– InventoryRequest.xsd as the request message for both updateInventory
and getDeliveryDate

– InventoryReply.xsd as the reply message for getDeliveryDate

See Example 9-3 for the listing of InventoryReply.xsd. InventoryRequest.xsd
is the same except it doesn’t have the DeliveryDate element. We placed both
schema files in the ITSOTargetAppEJB\ejbModule\META-INF\wsdl folder
along with the WSDL file.

Example 9-3 InventoryReply.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="http://reply.inventory.ws.itso.ibm.com"

xmlns:reply="http://reply.inventory.ws.itso.ibm.com"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:complexType name="InventoryReply">
 <xsd:sequence>
192 Patterns: Direct Connections for Intra- and Inter-enterprise

 <xsd:element name="Header">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="SourceName" type="xsd:string"/>
 <xsd:element name="Version" type="xsd:int"/>
 <xsd:element name="CreateDate" type="xsd:dateTime"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="Body">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="PartNumber" type="xsd:string"/>
 <xsd:element name="DeliveryDate" type="xsd:date"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

5. Edit the generated WSDL file so it imports the required XML schemas into the
WSDL types element.

Example 9-4 shows the WSDL types definitions in the generated WSDL file
before editing.

Example 9-4 Generated WSDL types from InventoryDoc.wsdl

...
<wsdl:types>
 <schema elementFormDefault="qualified"
 targetNamespace="http://inventory.ws.itso.ibm.com"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="getDeliveryDate">
 <complexType>
 <sequence>
 <element name="partNo" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>
 <element name="getDeliveryDateResponse">
 <complexType>
 <sequence>
 <element name="getDeliveryDateReturn" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>
 <element name="updateInventory">
 Chapter 9. Using document style Web services 193

 <complexType>
 <sequence>
 <element name="partNo" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>
 </schema>
</wsdl:types>
...

Looking at Example 9-5, you can see that we have imported the
InventoryRequest.xsd and InventoryReply.xsd XML schemas. The
getDeliveryDate and updateInventory elements now reference
InventoryRequest rather than string. The getDeliveryDateResponse element
references InventoryReply rather than string. Our XML types will now be used
in the WSDL message definitions, instead of string types.

Example 9-5 Imported WSDL types from InventoryDoc.wsdl

...
<wsdl:types>
 <xsd:schema elementFormDefault="qualified"

targetNamespace="http://inventory.ws.itso.ibm.com"
xmlns:reply="http://reply.inventory.ws.itso.ibm.com"
xmlns:request="http://request.inventory.ws.itso.ibm.com">

 <xsd:import namespace="http://reply.inventory.ws.itso.ibm.com"
schemaLocation="InventoryReply.xsd"/>

 <xsd:import namespace="http://request.inventory.ws.itso.ibm.com"
schemaLocation="InventoryRequest.xsd"/>

 <xsd:element name="getDeliveryDate">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="InventoryRequest" type="request:InventoryRequest"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="getDeliveryDateResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="InventoryReply" type="reply:InventoryReply"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="updateInventory">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="InventoryRequest" type="request:InventoryRequest"/>
 </xsd:sequence>
 </xsd:complexType>
194 Patterns: Direct Connections for Intra- and Inter-enterprise

 </xsd:element>
 </xsd:schema>
</wsdl:types>
...

6. Delete the service endpoint interface we created previously,
com.ibm.itso.ws.inventory.InventoryDoc in ITSOTargetAppEJB\ejbModule.
We have changed the WSDL for our service so it is no longer valid.

7. Using the WSDL file we just created, generate the Web services deployment
descriptors and classes using the WSDL2Java tool. We used the command
shown in Example 9-6.

Example 9-6 Generating server deployment descriptors and classes using WSDL2Java

C:\WebSphere\AppServer\bin\WSDL2Java -verbose -role server -container ejb
-output C:\workspace\ITSOTargetAppEJB\ejbModule
C:\workspace\ITSOTargetAppEJB\ejbModule\META-INF\wsdl\InventoryDoc.wsdl

WSWS3185I: Info: Parsing XML file: C:\...\wsdl\InventoryDoc.wsdl
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\UpdateInventory.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\UpdateInventory_Helper.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\UpdateInventory_Ser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\UpdateInventory_Deser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\InventoryReply.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\InventoryReply_Helper.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\InventoryReply_Ser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\InventoryReply_Deser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\Header.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\Header_Helper.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\Header_Ser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\Header_Deser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\Body.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\Body_Helper.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\Body_Ser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\Body_Deser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\InventoryRequest.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\InventoryRequest_Helper.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\InventoryRequest_Ser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\InventoryRequest_Deser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\Header.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\Header_Helper.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\Header_Ser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\Header_Deser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\Body.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\Body_Helper.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\Body_Ser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\Body_Deser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\InventoryDoc.java.
 Chapter 9. Using document style Web services 195

WSWS3282I: Info: Generating C:\...\itso\ws\inventory\InventoryDocSoapBindingImpl.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\InventoryDoc_RI.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\InventoryDocHome.java.
WSWS3282I: Info: Generating C:\...\META-INF\webservices.xml.
WSWS3282I: Info: Generating C:\...\META-INF\ibm-webservices-bnd.xmi.
WSWS3282I: Info: Generating C:\...\META-INF\ibm-webservices-ext.xmi.
WSWS3282I: Info: Generating C:\...\META-INF\InventoryDoc_mapping.xml.

8. Right-click the ITSOTargetAppEJB project and select Refresh. You should
see the generated files shown in Figure 9-5.

The webservices.xml deployment descriptor defines the set of Web services
that are being deployed in the Web service-enabled J2EE container.

Figure 9-5 WSDL2Java generated files

Note: The deployment descriptors and class files will not be regenerated
when the tool is re-run, unless the existing files have been removed first.
196 Patterns: Direct Connections for Intra- and Inter-enterprise

9. Navigate to ITSOTargetAppEJB → ejbModule → META-INF and edit
webservices.xml. Set the ejb-link element to Inventory, as shown in
Example 9-7.

The ejb-link element corresponds to the ejb-name element of the required
EJB, as defined in ejb-jar.xml.

Example 9-7 Updating webservices.xml

...
<service-impl-bean>

<ejb-link>Inventory</ejb-link>
</service-impl-bean>
...

Next we need to add methods to the EJB in our target application that will
process the document style Web service requests.

10.Open the generated service endpoint interface,
com.ibm.itso.ws.inventory.InventoryDoc in the
ITSOTargetAppEJB\ejbModule folder.

Notice that the input parameter of the getDeliveryDate and updateInventory
methods is now type InventoryRequest, and getDeliveryDate returns type
InventoryReply, as shown in Example 9-8.

The WSDL2Java tool has generated the InventoryRequest and
InventoryReply classes so our application can access the XML request and
reply documents.

Attention: We found an error in the InventoryDoc_mapping.xml file generated
by the WSDL2Java tool that resulted in the following exception when starting
the application server hosting the Web service:

java.io.IOException: WSWS3097E: Error: Emitter failure. All input parts
must be listed in the parameterOrder attribute of updateInventory

To correct this problem, we added the following line to the mapping file to
identify the updateInventory operation as wrapped:

...
<wsdl-operation>updateInventory</wsdl-operation>
<wrapped-element></wrapped-element>
<method-param-parts-mapping id="MethodParamPartsMapping_...">
...

Contact WebSphere technical support for details on P169766.
 Chapter 9. Using document style Web services 197

Example 9-8 Generated InventoryDoc.java

package com.ibm.itso.ws.inventory;

import com.ibm.itso.ws.inventory.reply.InventoryReply;
import com.ibm.itso.ws.inventory.request.InventoryRequest;

public interface InventoryDoc extends java.rmi.Remote {
public InventoryReply getDeliveryDate(InventoryRequest inventoryRequest)

throws java.rmi.RemoteException;
public void updateInventory(InventoryRequest inventoryRequest)

throws java.rmi.RemoteException;
}

We also developed two additional classes, InventoryRequestBuilder and
InventoryReplyBuilder, as constructor helpers for request and reply
messages. See Example 9-9 for the source listing for
InventoryRequestBuilder. These classes provide a reusable and streamlined
interface for creating InventoryRequest and InventoryReply messages.

Example 9-9 InventoryReplyBuilder.java

package com.ibm.itso.ws.inventory;

import com.ibm.itso.ws.inventory.reply.InventoryReply;
import java.util.Calendar;
import java.util.Date;

public class InventoryReplyBuilder extends InventoryReply {

// message version number for Version element
private final int VERSION = 1;

public InventoryReplyBuilder(
String msgSource, String msgPartNumber, Date msgDeliveryDate) {

super();
com.ibm.itso.ws.inventory.reply.Header header =

new com.ibm.itso.ws.inventory.reply.Header();
header.setSourceName(msgSource);
header.setVersion(VERSION);
// set create date to the current date
header.setCreateDate(Calendar.getInstance());
super.setHeader(header);
com.ibm.itso.ws.inventory.reply.Body body =

new com.ibm.itso.ws.inventory.reply.Body();
body.setPartNumber(msgPartNumber);
body.setDeliveryDate(msgDeliveryDate);
super.setBody(body);
198 Patterns: Direct Connections for Intra- and Inter-enterprise

}
}

11.Add the new getDeliveryDate and updateInventory methods from
com.ibm.itso.ws.inventory.InventoryDoc to our target application EJB,
com.ibm.itso.ejb.inventory.InventoryBean. See Example 9-10 for the
source listing for getDeliveryDate.

Example 9-10 Document style Web service server code for getDeliveryDate

public InventoryReply getDeliveryDate(InventoryRequest reqMsg) {
InventoryReply repMsg = null;

String partNo = (reqMsg.getBody()).getPartNumber();

Date deliveryDate = getDeliveryDateObject(partNo);
repMsg = new InventoryReplyBuilder(APP_NAME, partNo, deliveryDate);
return repMsg;

}

12.Promote the new EJB methods to the EJB Remote interface and regenerate
the EJB deployment code.

13.Export the ITSOTargetApp project to an EAR file, then run the endptEnabler
command line tool to add an HTTP router module to the EAR file.

You can use the same procedure we used for our RPC style Web service.
See step 7 on page 165 to export the EAR file and step 8 on page 165 to run
the endptEnabler tool.

14.The HTTP router module also needs access to the XML schemas used, so
add InventoryReply.xsd and InventoryRequest.xsd to the WEB-INF/wsdl
folder in the ITSOTargetAppWeb module. You can do this using WebSphere
Studio or the WebSphere Application Assembly Tool.

The EAR file is now ready to deploy in the IBM WebSphere Application Server
V5.0.2 runtime.

Note: The WebSphere V5.0.2 Web service deployment tools will not append
new Web services to existing Web services deployment descriptors. If you
need to deploy more than one Web service in a module, you will need to
manually merge the Web service deployment descriptors.
 Chapter 9. Using document style Web services 199

9.4.2 Web service enabling the source application
See Figure 8-11 on page 167 for an overview of the Web service development
process for a source application. Let’s walk through this process for our source
application.

Web service-enabling our source application is simply a matter of obtaining the
WSDL and XML schema files for the target Web service, and running the
WSDL2Java tool to generate the required deployment descriptors and proxy
classes:

1. Copy the target application WSDL and XML schema files to the source
application Web module:

a. Using WebSphere Studio, switch to the J2EE Perspective and click the
Project Navigator tab.

b. Copy the target application WSDL and XML schema files,
InventoryDoc.wsdl, InventoryReply.xsd, and InventoryRequest.xsd
from the ITSOTargetAppEJB/ejbModule/META-INF/wsdl folder to the
ITSOSourceAppWeb/WebContent/WEB-INF/wsdl folder.

2. Open a command window.

3. Using the WSDL file created in step 1, generate the Web service client
deployment descriptors and classes using the WSDL2Java tool. We used the
command shown in Example 9-11.

Example 9-11 Generating client deployment descriptors and classes using WSDL2Java

C:\WebSphere\AppServer\bin\WSDL2Java -verbose -role client -container web
-output C:\workspace\ITSOSourceAppWeb\WebContent
C:\workspace\ITSOSourceAppWeb\WebContent\WEB-INF\wsdl\InventoryDoc.wsdl

WSWS3185I: Info: Parsing XML file: C:\...\wsdl\InventoryDoc.wsdl
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\UpdateInventory.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\UpdateInventory_Helper.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\UpdateInventory_Ser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\UpdateInventory_Deser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\InventoryReply.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\InventoryReply_Helper.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\InventoryReply_Ser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\InventoryReply_Deser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\Header.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\Header_Helper.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\Header_Ser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\Header_Deser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\Body.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\Body_Helper.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\Body_Ser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\Body_Deser.java.
200 Patterns: Direct Connections for Intra- and Inter-enterprise

WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\InventoryRequest.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\InventoryRequest_Helper.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\InventoryRequest_Ser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\InventoryRequest_Deser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\Header.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\Header_Helper.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\Header_Ser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\Header_Deser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\Body.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\Body_Helper.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\Body_Ser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\Body_Deser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\InventoryDocService.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\InventoryDocServiceLocator.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\InventoryDoc.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\InventoryDocSoapBindingStub.java.
WSWS3282I: Info: Generating C:\...\WEB-INF\webservicesclient.xml.
WSWS3282I: Info: Generating C:\...\WEB-INF\ibm-webservicesclient-bnd.xmi.
WSWS3282I: Info: Generating C:\...\WEB-INF\ibm-webservicesclient-ext.xmi.
WSWS3282I: Info: Generating C:\...\WEB-INF\InventoryDoc_mapping.xml.

4. In WebSphere Studio, move the generated Java source files from the Web
module’s WebContent folder to its JavaSource folder:

a. Right-click the ITSOSourceAppWeb project and select Refresh from the
pop-up menu. The generated files should now appear in the Studio
workspace.

b. Move the com.ibm.itso.ws.inventory package in the
ITSOSourceAppWeb\WebContent folder to the
ITSOSourceAppWeb\JavaSource folder.

The generated files are highlighted in Figure 9-6.

The webservicesclient.xml deployment descriptor defines the JNDI name for
accessing the Web service and the associated service endpoint interface to
be used.
 Chapter 9. Using document style Web services 201

Figure 9-6 Generated client binding files and deployment descriptors

5. Add client application code to invoke the Web service on the target
application.

To invoke getDeliveryDate on the target application, we added the code
shown in Example 9-12. We added this code to the
com.ibm.itso.command.WebServiceDocBean command bean in our
ITSOSourceAppWeb module.

Example 9-12 Web service client code for getDeliveryDate

public String getDeliveryDate(String partNumber) throws Exception {

String deliveryDate = null;
202 Patterns: Direct Connections for Intra- and Inter-enterprise

try {

Context ctx = new InitialContext();
InventoryDocService service = (InventoryDocService) ctx.lookup(

"java:comp/env/service/InventoryDocService");

// Request the Service Endpoint from the Service
InventoryDoc port = service.getInventoryDoc();

// Generate XML document for update inventory request
InventoryRequest reqMsg =

new InventoryRequestBuilder(APP_NAME, partNumber);

// Get the quote
InventoryReply repMsg = port.getDeliveryDate(reqMsg);

// Get the delivery date from the XML reply document
Date date = (repMsg.getBody()).getDeliveryDate();
SimpleDateFormat dateFormatter = new SimpleDateFormat(DATE_PATTERN);
deliveryDate = dateFormatter.format(date);

} catch (Exception e) {
//...

}

return deliveryDate;
}

6. Test the source and target applications in the IBM WebSphere Studio
Application Developer V5.1 test environment.

7. Deploy the source and target applications in your IBM WebSphere Application
Server V5.0.2 runtime environment to try the applications on separate
machines.

The document style SOAP request for getDeliveryDate is shown in
Example 9-13.

Example 9-13 SOAP request for getDeliveryDate

POST /ITSOTargetApp/services/InventoryDoc HTTP/1.0
Content-Type: text/xml; charset=utf-8
Accept: application/soap+xml, application/dime, multipart/related, text/*
User-Agent: IBM WebServices/1.0
Host: localhost
Cache-Control: no-cache
Pragma: no-cache
SOAPAction: ""
 Chapter 9. Using document style Web services 203

Content-Length: 649

<?xml version="1.0" encoding="UTF-8"?>
 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Body>
 <getDeliveryDate xmlns="http://inventory.ws.itso.ibm.com">
 <InventoryRequest xmlns="http://request.inventory.ws.itso.ibm.com">
 <Header>
 <SourceName>ITSOSourceApp</SourceName>
 <Version>1</Version>
 <CreateDate>2003-09-07T22:26:19.113Z</CreateDate>
 </Header>
 <Body>
 <PartNumber>12345</PartNumber>
 </Body>
 </InventoryRequest>
 </getDeliveryDate>
 </soapenv:Body>
 </soapenv:Envelope>

The SOAP response for getDeliveryDate is shown in Example 9-14.

Example 9-14 SOAP response for getDeliveryDate

HTTP/1.1 200 OK
Server: WebSphere Application Server/5.0
Content-Type: text/xml; charset=utf-8
Content-Language: en-US
Connection: close

<?xml version="1.0" encoding="UTF-8"?>
 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Body>
 <getDeliveryDateResponse xmlns="http://inventory.ws.itso.ibm.com">
 <InventoryReply xmlns="http://reply.inventory.ws.itso.ibm.com">
 <Header>
 <SourceName>ITSOTargetApp</SourceName>
 <Version>1</Version>
 <CreateDate>2003-09-07T22:26:20.946Z</CreateDate>
 </Header>
 <Body>
 <PartNumber>12345</PartNumber>
 <DeliveryDate>2003-09-14</DeliveryDate>
204 Patterns: Direct Connections for Intra- and Inter-enterprise

 </Body>
 </InventoryReply>
 </getDeliveryDateResponse>
 </soapenv:Body>
 </soapenv:Envelope>

9.5 Integration with .NET-based Web services
In this section we take a brief look at interoperability between WebSphere V5.0.2
and Microsoft .NET Web services, which use the wrapped document style.
Figure 9-7 shows a Runtime pattern and Product mapping providing connectivity
between IBM WebSphere Application Server V5.0.2 and Microsoft .NET using
the Direct Connection pattern.

Figure 9-7 Direct Connection::Call Connection: Web services to .NET Product mapping

You can find a number of .NET Web service providers on the Internet, with a
search on “web service directory” in popular search engines. One of the sites,
WebserviceX.NET provides a number of .NET Web services for general
consumption. You can access the WebserviceX.NET Web site at:

http://www.webservicex.net/

To demonstrate interoperability with .NET Web services, we downloaded the
WSDL for the WebserviceX.NET SendEmail service from:

http://www.webservicex.net/SendEmail.asmx?WSDL

Using this WSDL file, we generated the Web service client deployment
descriptors and classes using the WebSphere V5.0.2 WSDL2Java tool. We used
the command shown in Example 9-15.

Internal network

App Server/
Services

App Server/
Services

SOAP
/HTTP

WebSphere
Application Server

V5.0.2
JAX-RPC

.NET
Web Service
 Chapter 9. Using document style Web services 205

http://www.webservicex.net/
http://www.webservicex.net/SendEmail.asmx?WSDL

Example 9-15 Generating client deployment descriptors and classes using WSDL2Java

C:\WebSphere\AppServer\bin\WSDL2Java -verbose -role client -container web
-output C:\workspace\ITSOSourceAppWeb\WebContent
C:\workspace\ITSOSourceAppWeb\WebContent\WEB-INF\wsdl\SendEmail.wsdl

WSWS3185I: Info: Parsing XML file: C:\...\WEB-INF\wsdl\SendEmail.wsdl
WSWS3282I: Info: Generating C:\...\NET\webserviceX\www\SendEmailSoap.java.
WSWS3282I: Info: Generating C:\...\NET\webserviceX\www\SendEmailSoapStub.java.
WSWS3282I: Info: Generating C:\...\NET\webserviceX\www\SendEmail.java.
WSWS3282I: Info: Generating C:\...\NET\webserviceX\www\SendEmailLocator.java.
WSWS3282I: Info: Generating C:\...\WEB-INF\webservicesclient.xml.
WSWS3282I: Info: Generating C:\...\WEB-INF\ibm-webservicesclient-bnd.xmi.
WSWS3282I: Info: Generating C:\...\WEB-INF\ibm-webservicesclient-ext.xmi.
WSWS3282I: Info: Generating C:\...\WEB-INF\SendEmail_mapping.xml.

We then refreshed the ITSOSourceAppWeb project in WebSphere Studio and
moved the generated NET.webserviceX.www package in the
ITSOSourceAppWeb\WebContent folder to the
ITSOSourceAppWeb\JavaSource folder.

The generated files are highlighted in Figure 9-8.
206 Patterns: Direct Connections for Intra- and Inter-enterprise

Figure 9-8 Generated client binding files and deployment descriptors

Next we added client application code to invoke the Web service on the target
application. To create an e-mail message containing the part number for the
Update Inventory use case, we added the code shown in Example 9-16. We
added this code to the com.ibm.itso.command.WebServiceNetBean command
bean in our ITSOSourceAppWeb module.

Example 9-16 Web service client code for updateInventory using .NET service

public void updateInventory(String partNumber) throws Exception {

try {

// Send the order
Context ctx = new InitialContext();
String emailSender =

(String) ctx.lookup("java:comp/env/EmailSender");
String emailReceiver =

(String) ctx.lookup("java:comp/env/EmailReceiver");
 Chapter 9. Using document style Web services 207

SendEmail service =
(SendEmail) ctx.lookup("java:comp/env/service/SendEmail");

// Request the Port Object from it
SendEmailSoap endPoint = service.getSendEmailSoap();

endPoint.sendEmails(emailSender, emailReceiver, "ITSO Electronics
order",

"Please order: " + partNumber);

} catch (Exception e) {
//...

}

return;
}

We tested the source application in the IBM WebSphere Studio Application
Developer V5.1 test environment and in the IBM WebSphere Application Server
V5.0.2 runtime environment. The .NET SOAP request for updateInventory is
shown in Example 9-17.

Example 9-17 SOAP request for updateInventory

POST /SendEmail.asmx HTTP/1.0
Content-Type: text/xml; charset=utf-8
Accept: application/soap+xml, application/dime, multipart/related, text/*
User-Agent: IBM WebServices/1.0
Host: www.webservicex.net
Cache-Control: no-cache
Pragma: no-cache
SOAPAction: "http://www.webserviceX.NET/SendEmails"
Content-Length: 556

<?xml version="1.0" encoding="UTF-8"?>
 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Body>
 <SendEmails xmlns="http://www.webserviceX.NET">
 <ToEmailAddress>aaa@bbb.ccc</ToEmailAddress>
 <FromEmailAddress>aaa@bbb.ccc</FromEmailAddress>
 <Subject>ITSO Electronics order</Subject>
 <Body>Please order: 12345</Body>
 </SendEmails>
 </soapenv:Body>
 </soapenv:Envelope>
208 Patterns: Direct Connections for Intra- and Inter-enterprise

The .NET SOAP response for updateInventory is shown in Example 9-18.

Example 9-18 SOAP response for updateInventory

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Mon, 08 Sep 2003 01:22:16 GMT
Cache-Control: private, max-age=0
Content-Type: text/xml; charset=utf-8
Content-Length: 389

<?xml version="1.0" encoding="utf-8"?>
 <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <soap:Body>
 <SendEmailsResponse xmlns="http://www.webserviceX.NET">
 <SendEmailsResult>Your Message send successfully</SendEmailsResult>
 </SendEmailsResponse>
 </soap:Body>
 </soap:Envelope>

Example 9-19 shows the delivered e-mail.

Example 9-19 The e-mail delivered by the SendEmail service

From: aaa@bbb.ccc
To: aaa@bbb.ccc
Subject: ITSO Electronics order
Date: Sun, 7 Sep 2003 21:22:15 -0400

Please order: 12345

Unfortunately, we can’t guarantee that your WebSphere to .NET Web services
integration experience will be this smooth!

9.6 Quality of Service capabilities
In this section we discuss Quality of Service capabilities and considerations
specific to document style Web services. For further discussion on Quality of
Services for Web services in general, see 8.6, “Quality of Service capabilities” on
page 177.
 Chapter 9. Using document style Web services 209

9.6.1 Transactionality
As discussed in 8.6.6, “Transactionality” on page 180, standards for Web
services transactionality are still evolving at the time of writing. Document style
Web services can provide benefits in this area.

A complex business process may require a series of calls to finer-grained RPC
style Web services. It may be appropriate to use courser-grained document style
Web services instead, where the contents of an entire transaction can be passed
within one XML document. The business transaction can then be performed
within one service request. See also “Use document style when maintaining
application state” on page 211.

9.7 Best practices
The decision on using RPC style or document style Web services should be
based on the nature of underlying business process to be implemented. Since
document style involves extra development effort, it should be considered only
when RPC style imposes serious restrictions or the benefits of document style
justify the extra effort. In order to reach a decision, the following questions might
be helpful:

� Is the service accessed through an interface based on procedure calls, and
unlikely to be affected by future API changes?

� Does the service require a request/response architecture?

� Does the service exceed organization boundaries?

� Is there any state maintenance required?

� Is one of the parameters passed to the target application an XML document?

� Do the parameters represent complex structures that may benefit from an
XML document schema for validation?

Use document style to ease validation and use of documents
In cases where Web services need to pass or return XML documents (for
example, a high-level business document) or objects with a complex structure,
document style may be more appropriate. Passing the XML document as a string
parameter in an RPC call postpones the validation of the XML document to the
target application. This may cause valid calls with invalid parameters. Usage of
document style allows for publishing an XML document schema and validation
against that schema prior to calling the service. In the case of a high-level
business document, the document’s XML schema may be used to enforce
high-level business rules.
210 Patterns: Direct Connections for Intra- and Inter-enterprise

When dealing with complex structures, a remote procedure service may have to
deal with custom marshaling code while the application is still responsible for
meticulously validating each element of the structure. If document messaging is
used, then the application programmer can delegate validation to the document
designer using an XML schema, and no custom marshaling code is required.

Use document style when maintaining application state
Consider document style Web services when a particular sequence of multiple
procedure calls is involved to accomplish a complex business service. If a
service consists of multiple procedure calls, then the service normally is not
stateless and must maintain application state. Maintaining state between
successive Web service requests may be difficult since most client platforms do
not generate client stubs that support state information. In order to maintain state
information beyond the scope of the request, additional logic has to be
implemented in the source and target applications. This erodes the clear
separation between Web service requester and Web service provider.

Alternatively, when a document style Web service is used, the contents of an
entire transaction may be passed within one XML document. In this case the
service is responsible for ensuring the proper sequence of procedure calls. State
information only has to be maintained within the scope of this transaction.

It is also important to balance this approach against the need to keep the
business objects to a reasonable size.

Use document style when changes to target API are likely
The rules of good design dictate that the method signature of an RPC style Web
service interface should never change. In using document style there are less
rigid rules concerning enhancements and changes to the XML schema without
compromising the calling application. Therefore, document style provides more
flexibility if there needs to be future modification to the target application API.

Use document style when late binding is required
RPC style Web services require rigid type specification agreed upon at service
implementation. Document style Web services allow for run-time type
specification of the object to be passed via the call. This allows for variation of the
passed business object type depending on the context of the actual request.
Validation of a passed document against an XML schema may be done either
before or during the execution of a service request.

Use document style to publish external services
If a service implemented by an enterprise application is being published outside
of the organization, the publisher has very little control over who is relying on the
 Chapter 9. Using document style Web services 211

service. Since the consequences of any changes to the Web service interface
(that means changes to the WSDL file) are not traceable outside of the
organization, it may be better to use document style and support a common
exchange protocol such as ebXML. See the next section for further details.

9.8 Overview of ebXML
Discussion of document transfer automatically leads to the question of a
universal standard for transmitted documents. The most popular standard up to
now is the EDI standard. The disadvantage of EDI is that it is not an XML
document and therefore in a Web services scenario a special treatment is
needed. ebXML aims to address this problem.

ebXML stand for Electronic Business using XML. It provides a modular suite of
specifications that enables enterprises to conduct business over the Internet.
Using ebXML, companies now have a standard method to exchange business
messages, conduct trading relationships, communicate data in common terms
and define and register business processes.

It is a joint development effort between OASIS (Organization for the
Advancement of Structured Information Standards) and the UN/CEFACT (United
Nations Centre for Trade Facilitation and Electronic Business). OASIS (formerly
known as SGML group) has brought XML expertise while UN/CEFACT, who was
the main sponsor of Electronic Data Transmission (EDI) has brought business
expertise.

For further information see the ebXML Web site at:

http://www.ebxml.org/
212 Patterns: Direct Connections for Intra- and Inter-enterprise

http://www.ebxml.org/

Part 3 Application
Integration
scenarios
Part 3 provides detailed design, development, and runtime guidelines for
intra-enterprise integration solutions. It teaches you by example, using IBM
WebSphere Application Server V5.0 with Web services, J2EE Connectors, and
JMS.

Included in Part 3 are the following chapters:

� Chapter 8, “Using RPC style Web services” on page 147
� Chapter 9, “Using document style Web services” on page 183
� Chapter 10, “Using the Web Services Gateway” on page 215
� Chapter 11, “Using the Web Services Gateway with J2EE Connectors” on

page 237
� Chapter 12, “Using J2EE Connectors” on page 263
� Chapter 13, “Using Java Message Service” on page 279

Part 3
© Copyright IBM Corp. 2003. All rights reserved. 213

214 Patterns: Direct Connections for Intra- and Inter-enterprise

Chapter 10. Using the Web Services
Gateway

This chapter discusses using the Web Services Gateway in an intra-enterprise
integration scenario. We are using the Web Services Gateway packaged with
IBM WebSphere Application Server Network Deployment V5.0.2 in this scenario.

This chapter describes the following:

� Using the Web Services Gateway in the context of our ITSO Electronics
business scenario.

� An overview of the Web Services Gateway.

� The high-level design applied to our gateway scenario.

� Development guidelines for integrating a Web service provider and requester
using the Web Services Gateway.

� Quality of Service capabilities for the Web Services Gateway.

10
© Copyright IBM Corp. 2003. All rights reserved. 215

10.1 Business scenario
In this scenario, we focus on the intra-enterprise interaction between the Retail
and Wholesale departments. Introducing the IBM Web Services Gateway
provides ITSO Electronics with a number of advantages:

� Central access point for all services inside the enterprise

The gateway provides a single, well-known point to access Web services
within the enterprise.

� Decoupling the deployment of Web services from clients

The gateway isolates any changes in the deployment of services within the
enterprise from consumers of the services. The location of services also
becomes transparent to clients of the service.

� Central security control point

Access control can be applied to Web services so only authorized clients are
allowed to access services.

� Protocol conversion between Web service requesters and providers

Access to the services of applications that use protocols other then HTTP is
planned for the near future. Therefore, access to the Web services has to be
open for different protocols.

We also look at using the Web Services Gateway in an inter-enterprise
integration scenario in Chapter 14, “Using inter-enterprise Web services” on
page 299.

10.2 IBM Web Services Gateway
The IBM Web Services Gateway is a runtime component that provides
configurable mapping between Web service providers and requesters. Services
defined with WSDL can be mapped to available transport channels. The Web
Services Gateway is included with IBM WebSphere Application Server Network
Deployment V5.0.2.

The basic gateway components are:

� Channels that define the entry-points into the gateway and carry the Web
service request and response through the gateway.

� Filters that are used to intercept service invocations which come into the
gateway and act upon the services.

� Services that are described with the help of a Web Services Description
Language (WSDL) document.
216 Patterns: Direct Connections for Intra- and Inter-enterprise

� UDDI references to manage the publishing of an exposed Web service to a
private or public UDDI registry.

Figure 10-1 shows the relationship between the first three components. The
entry point to the gateway is defined by a channel. A channel is a piece of
software that defines the protocol you can use to access the gateway. The
incoming message is assessed on arrival through the channel to determine
which service is required. Each service (defined in a WSDL document) has to be
bound to one or more channels. One or more filters can be bound to a service for
manipulating both request and response messages. The WSDL service
definition specifies the provider service interface and implementation used to
access the target service.

Figure 10-1 IBM Web Services Gateway

A request to the Web Services Gateway arrives through a channel and is
translated into an internal representation of the service. With the help of filters for
the request, a request can be logged, intercepted, or generally manipulated.
After filtering the request, an appropriate provider is used to communicate with
the target service. The provider in the gateway acts as a client for the target Web
service.

The response from the target service flows along the exact same path back to
the provider. There is no extra channel for an immediate response. In this sense
the layout of the gateway is asymmetric. However, one or more response filters
can be deployed independently of the request filters.

The process of deploying a target service into a gateway channel generates two
different external WSDL files; an implementation definition and an interface
definition. These new WSDL files can be exported for use by client applications,
and are the externalization of the service capabilities offered by the internal
target service. The implementation WSDL definition is used to simplify the
connection process for a client, particularly when dynamic invocation is being

IBM Web Services Gateway

FilterFilter

Target
ApplicationChannel ProviderServiceSource

Application
 Chapter 10. Using the Web Services Gateway 217

used. Having obtained the implementation definition, the client can then access
the WSDL interface definition produced by gateway, which provides full
information about the target service (as presented externally by the gateway).

The Web Services Gateway uses the Web Services Invocation Framework
(WSIF) API from Apache to decouple invocation from deployment within the
gateway. Over time, the location of the Web service target application and the
bindings may change, but these details are handled by the gateway. The Web
Services Gateway separates the actual implementation of a service from how it
is accessed by another service for:

� Inbound requests: To Web services created and deployed within the
organization.

� Outbound requests: To Web services created and deployed outside the
organization.

� Process abstraction: The service invocation approach must be flexible
enough to cope with events such as switching frequently between external
providers of a similar service without requiring changes to the application.

� Flexibility: As a service provider, you need the flexibility to change your
deployment infrastructure without notifying all the service requestors. For
example, consider a Web service deployed in a machine that later fails during
operation. There needs to be a process to route the invocations to an
alternate service in your infrastructure.

WSIF is used within Web Services Gateway as shown in Figure 10-2. It
demonstrates the WSIF transformation from a SOAP message to a target
service:

1. The SOAP message arrives at the gateway and the channel listener accepts
the message.

2. The channel converts the SOAP message into a WSIF message format.

3. Elements within the message are used to locate the appropriate target
service, which is bound to the channel within the gateway.

4. The target WSDL associated with the gateway service is then processed by
WSIF.

5. WSIF dynamically generates a Java proxy class.

6. The target Web service is called.
218 Patterns: Direct Connections for Intra- and Inter-enterprise

Figure 10-2 WSIF transformation

Refer to the following IBM developerWorks articles for further details:

� Applying the Web services invocation framework

http://www.ibm.com/developerworks/webservices/library/ws-appwsif.html

� An introduction to Web Services Gateway

http://www.ibm.com/developerworks/webservices/library/ws-gateway/

� Business process integration with IBM CrossWorlds, Part 3: Automatically
externalize Web services with WebSphere Business Connection

http://www.ibm.com/developerworks/ibm/library/i-cross3

10.3 Design guidelines
Figure 10-3 shows the Runtime pattern and Product mapping used in this
scenario. It is based on IBM WebSphere Application Server V5.0.2 and the Direct
Connection application pattern. It also includes the Web Services Gateway
packaged with IBM WebSphere Application Server Network Deployment V5.0.2.

SOAP message

Channel

Gateway Service

Target WSDL

WSIF

Java proxy class

Target Service

1

2

3

4

5

6

 Chapter 10. Using the Web Services Gateway 219

http://www.ibm.com/developerworks/ibm/library/i-cross3
http://www.ibm.com/developerworks/webservices/library/ws-appwsif.html
http://www.ibm.com/developerworks/webservices/library/ws-gateway/

Figure 10-3 Direct Connection::Call Connection: Web Services Gateway Product
mapping 1

This pattern models the connector between the source application node on the
left and the gateway node in the middle, and the connector between the gateway
and target application node on the right, as simple lines. Both connectors could
also be modeled using coupling adapter connectors if further detail is need,
similar to the basic Web services product mapping shown in Figure 9-1 on
page 185.

10.4 Development guidelines
In this section, we start with a brief look at installing and configuring the Web
Services Gateway. After that we walk through the process of implementing a
gateway solution, based on three simple steps:

� Deploying the Web Services Gateway service

� Exporting the WSDL service implementation file

� Creating the Web service client

10.4.1 Installing and configuring the Web Services Gateway
Web Services Gateway is essentially a J2EE application installed in the
WebSphere Application Server runtime. For this scenario, we installed the
gateway on a stand-alone IBM WebSphere Application Server base V5.0.2
server. Details for completing the installation can be found in the WebSphere
InfoCenter article, Installing the gateway into a stand-alone application server at:

http://www.ibm.com/software/webservers/appserv/infocenter.html

Internal network

ConnectorApp Server/
Services

App Server/
Services

SOAP
/HTTP

SOAP
/HTTP

WebSphere
Application Server

V5.0.2
JAX-RPC

WebSphere V5.0.2
Network Deployment

Web Services
Gateway

WebSphere
Application Server

V5.0.2
JAX-RPC
220 Patterns: Direct Connections for Intra- and Inter-enterprise

http://www.ibm.com/software/webservers/appserv/infocenter.html

Configuring the gateway
After the gateway has been installed and started it must be configured. To
configure the Web Services Gateway:

1. Open the IBM Web Services Gateway systems administration console, shown
in Figure 10-4. For the default installation on server1, the URL for accessing
the console will be:

http://<hostname>:9080/wsgw/admin/

Figure 10-4 IBM Web Services Gateway systems administration console

2. Click Gateway → Configure in the navigation panel on the left to configure
the gateway.
 Chapter 10. Using the Web Services Gateway 221

3. In the Configure Gateway window, set the following properties:

– Namespace URI for services

The gateway namespace URI will appear in WSDL files exported from the
gateway. Keep in mind that Java clients generated from the WSDL need to
convert the gateway namespace to a Java package.

– WSDL URI for exported definitions

This is the URI that Web service clients will use to access the WSDL file
and the exposed Web service.

Our gateway configuration settings are shown in Figure 10-5.

Figure 10-5 Configuring the Web Services Gateway

4. Click Apply Changes to configure the gateway.

Deploying a channel
There are two types of channels provided with the Web Services Gateway:

� Apache SOAP Channel

� SOAP/HTTP Channel

Note: Take care when specifying the namespace URI for services. If
you need to change the namespace URI, you will need to redeploy all of
your deployed services.
222 Patterns: Direct Connections for Intra- and Inter-enterprise

Both channel types support SOAP 1.1 compatible Web services that use the
RPC SOAP messaging style. The SOAP/HTTP Channel adds support for
document messaging style, and for passing attachments in a MIME message.

Two versions of each channel type are supplied with the gateway, so you can set
up separate channels for inbound and outbound requests. This also provides a
simple way to grant different access rights to users within your organization from
those outside your organization.

In our scenario, we are using the SOAP/HTTP Channel because we are using
the document style SOAP message format.

To deploy a SOAP/HTTP Channel:

1. Click Channels → Deploy in the navigation panel on the left to deploy a
channel.

2. In the Deploy Channel window, the following fields are required:

– Channel Name: SOAPHTTPChannel1

– Home Location: SOAPHTTPChannel1Bean

– End Point Address: http://<hostname>[:<port>]/wsgwsoaphttp1

– Async Reply Context Name: leave blank (not supported)

– Async Reply Context Value: leave blank (not supported)

See the InfoCenter article, Web services gateway - Channel deployment
details if you need channel settings for other channel types, or for clustered
environments.

Our channel settings are shown in Figure 10-6.

Figure 10-6 Deploying a gateway channel
 Chapter 10. Using the Web Services Gateway 223

3. Click OK to deploy the channel.

10.4.2 Deploying the Web Services Gateway service
Once the gateway is configured and the required channel deployed, you can
deploy the service. There are two steps involved:

� Provide gateway access to the WSDL file (and any files it imports) for the
target Web service you want to deploy.

� Use the gateway systems administration console to deploy the service.

Accessing the target WSDL from the gateway
The WSDL file for the service you want to deploy needs to be accessible by the
gateway. The gateway and Web service client applications will also need access
to any WSDL files or XML schemas imported by the service WSDL.

If your service WSDL includes imports, our recommendation is to make the
WSDL and any imports available via an HTTP URL. This way both the gateway
and clients can access the required files from the same location. Ideally, these
HTTP URLs should point to documents on a related Web server.

If your service WSDL doesn’t import other files, you can place the WSDL on the
local file system of the gateway node, since clients will be able to access all the
required service definitions via the gateway.

For this example, we use the InventoryDoc service we created in Chapter 9,
“Using document style Web services” on page 183. It imports two XML schema
files. To provide access to the InventoryDoc service description:

1. Create a new folder called wsdl under the
<WAS_HOME>\installedApps\<node_name>\wsgw.server1.<node_name>.e
ar\wsgw.war folder on your Web Services Gateway node.

2. Locate the following files in the
ITSOTargetAppEJB\ejbModule\META-INF\wsdl folder under your WebSphere
Studio workspace for the ITSO Electronics sample:

– InventoryDoc.wsdl

– InventoryReply.xsd

– InventoryRequest.xsd

3. Copy these files to the new wsdl folder on your gateway node. In our case, the
WSDL file will now be accessible in the gateway administrative console Web
module with the following URL:

http://wsgw1.itso.ral.ibm.com:9080/wsgw/wsdl/InventoryDoc.wsdl
224 Patterns: Direct Connections for Intra- and Inter-enterprise

4. Edit the WSDL to make sure any imports will be accessible from client
applications. As shown in Example 10-1, our InventoryDoc.wsdl contains two
relative imports that need to be updated. We changed:

– schemaLocation="InventoryReply.xsd" to
"http://wsgw1.itso.ral.ibm.com:9080/wsgw/wsdl/InventoryReply.xsd"

– schemaLocation="InventoryRequest.xsd" to
"http://wsgw1.itso.ral.ibm.com:9080/wsgw/wsdl/InventoryRequest.xsd"

Example 10-1 InventoryDoc.wsdl before changes to import schemaLocations

...
<wsdl:types>
 <xsd:schema elementFormDefault="qualified"

targetNamespace="http://inventory.ws.itso.ibm.com"
xmlns:reply="http://reply.inventory.ws.itso.ibm.com"
xmlns:request="http://request.inventory.ws.itso.ibm.com">

<xsd:import namespace="http://reply.inventory.ws.itso.ibm.com"
schemaLocation="InventoryReply.xsd"/>

 <xsd:import namespace="http://request.inventory.ws.itso.ibm.com"
schemaLocation="InventoryRequest.xsd"/>

 <xsd:element name="getDeliveryDate">
...

5. Save your changes.

Deploying the gateway service
To deploy InventoryDoc.wsdl as a gateway service:

1. Open the Web Services Gateway systems administration console and click
Services → Deploy in the navigation panel on the left.

2. In the Deploy Gateway Service window, we set the following fields:

– Gateway Service Name: InventoryDocWsgw

– Channels: click to select SOAPHTTPChannel1

– WSDL Location:
http://wsgw1.itso.ral.ibm.com:9080/wsgw/wsdl/InventoryDoc.wsdl

– Location Type: URL

We accepted the defaults for the remaining fields. Our gateway service
settings are shown in Figure 10-6.

Note: We deployed our service WSDL and XML schema files to the gateway
administrative console Web module for simplicity only. In a production
environment, it would make more sense to deploy these files to an appropriate
Web server.
 Chapter 10. Using the Web Services Gateway 225

Figure 10-7 Deploying a gateway service

3. Click OK to deploy the service.

10.4.3 Exporting the WSDL file
When the service is deployed, the gateway generates new WSDL files that can
be shared with clients of your Web service. The gateway-generated WSDL
implementation definition file has the gateway as the service end-point, and it
226 Patterns: Direct Connections for Intra- and Inter-enterprise

imports the WSDL interface definition file that contains bindings and portType
information.

To export the WSDL file generated by the Web Services Gateway:

1. Open the Web Services Gateway systems administration console and click
Services → List in the navigation panel on the left.

2. In the List of Gateway Services window, click the required service,
InventoryDocWsgw in our case.

3. In the Service: InventoryDocWsgw window:

a. Scroll down to the Exported WSDL definitions section.

b. Right-click External WSDL implementation definition (WSDL only) and
select Save Target As... from the pop-up menu, as shown in Figure 10-8.

c. Save the WSDL file to the required location. We saved the file as
InventoryDocWsgw.wsdl under the
ITSOSourceAppWeb\WebContent\WEB-INF\wsdl folder in our WebSphere
Studio workspace.

Figure 10-8 Exporting the WSDL implementation definition file

We are now ready to Web service-enable our source application using the
gateway-generated WSDL implementation definition file for our target service.

Restriction: The WebSphere V5.0.2 Web Services Gateway does not support
XML schema-type elements that use the ref attribute. To work around this
restriction, you can re-factor any WSDL or XML schema files that use the ref
attribute to use nested elements or the type attribute instead.
 Chapter 10. Using the Web Services Gateway 227

10.4.4 Web service-enabling the source application
See Figure 8-11 on page 167 for an overview of the Web service development
process for a source application. Let’s walk through this process for our source
application.

To Web service-enable the source application using the gateway-generated
WSDL implementation definition file:

4. Open a command window.

5. Using the gateway WSDL file exported in 10.4.3, “Exporting the WSDL file” on
page 226, generate the Web service client deployment descriptors and
classes using the WSDL2Java tool. We used the command shown in
Example 10-2.

Example 10-2 Generating client deployment descriptors and classes using WSDL2Java

C:\WebSphere\AppServer\bin\WSDL2Java -verbose -role client -container web
-output C:\workspace\ITSOSourceAppWeb\WebContent
C:\workspace\ITSOSourceAppWeb\WebContent\WEB-INF\wsdl\InventoryDocWsgw.wsdl

WSWS3185I: Info: Parsing XML file: C:\...\WEB-INF\wsdl\InventoryDocWsgw.wsdl
Retrieving document at
'http://wsgw1.itso.ral.ibm.com:9080/wsgw/ServiceInterface?name=InventoryDocWsgw', relative to
'C:\workspace\ITSOSourceAppWeb\WebContent\WEB-INF\wsdl\InventoryDocWsgw.wsdl'.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\InventoryRequest.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\InventoryRequest_Helper.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\InventoryRequest_Ser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\InventoryRequest_Deser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\InventoryReply.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\InventoryReply_Helper.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\InventoryReply_Ser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\InventoryReply_Deser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\UpdateInventory.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\UpdateInventory_Helper.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\UpdateInventory_Ser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\UpdateInventory_Deser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\Header.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\Header_Helper.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\Header_Ser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\Header_Deser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\Body.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\Body_Helper.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\Body_Ser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\reply\Body_Deser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\Header.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\Header_Helper.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\Header_Ser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\Header_Deser.java.
228 Patterns: Direct Connections for Intra- and Inter-enterprise

WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\Body.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\Body_Helper.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\Body_Ser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\request\Body_Deser.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\InventoryDoc.java.
WSWS3282I: Info: Generating C:\...\itso\ws\inventory\InventoryDocSOAPHTTPBindingStub.java.
WSWS3282I: Info: Generating C:\...\ral\itso\wsgw1\InventoryDocWsgw.java.
WSWS3282I: Info: Generating C:\...\ral\itso\wsgw1\InventoryDocWsgwLocator.java.
WSWS3282I: Info: Generating C:\...\WEB-INF\webservicesclient.xml.
WSWS3282I: Info: Generating C:\...\WEB-INF\ibm-webservicesclient-bnd.xmi.
WSWS3282I: Info: Generating C:\...\WEB-INF\ibm-webservicesclient-ext.xmi.
WSWS3282I: Info: Generating C:\...\WEB-INF\InventoryDocWsgw_mapping.xml.

6. In WebSphere Studio, move the generated Java source files from the Web
module’s WebContent folder to its JavaSource folder:

a. Right click the ITSOSourceAppWeb project and select Refresh from the
pop-up menu. The generated files should now appear in the Studio
workspace.

b. Move the com.ibm.itso.ws.inventory and com.ibm.ral.itso.wsgw1
packages in the ITSOSourceAppWeb\WebContent folder to the
ITSOSourceAppWeb\JavaSource folder.

7. Add client application code to invoke the Web service on the target
application.

To invoke getDeliveryDate on the target application, we added the code
shown in Example 10-3. We added this code to the
com.ibm.itso.command.GatewayBean command bean in our
ITSOSourceAppWeb module.

Example 10-3 Web service client code for getDeliveryDate

public String getDeliveryDate(String partNumber) throws Exception {

String deliveryDate = null;

try {

Context ctx = new InitialContext();
InventoryDocWsgw service = (InventoryDocWsgw) ctx.lookup(

"java:comp/env/service/InventoryDocWsgw");

// Request the Service Endpoint from the Service
InventoryDoc port = service.getInventoryDocSOAPHTTPBindingPort();

// Generate XML document for update inventory request
InventoryRequest reqMsg =

new InventoryRequestBuilder(APP_NAME, partNumber);
 Chapter 10. Using the Web Services Gateway 229

// Get the quote
InventoryReply repMsg = port.getDeliveryDate(reqMsg);

// Get the delivery date from the XML reply document
Date date = (repMsg.getBody()).getDeliveryDate();
SimpleDateFormat dateFormatter = new SimpleDateFormat(DATE_PATTERN);
deliveryDate = dateFormatter.format(date);

} catch (Exception e) {
//...

}

return deliveryDate;
}

8. Test, then deploy the source and target applications in your IBM WebSphere
Application Server V5.0.2 runtime environment.

The document style SOAP request between the source application and the
gateway for getDeliveryDate is shown in Example 10-4.

Example 10-4 SOAP request for getDeliveryDate: source to gateway

POST
/wsgwsoaphttp1/soaphttpengine/urn%3Awsgw1.itso.ral.ibm.com%23InventoryDocWsgw
HTTP/1.0
Content-Type: text/xml; charset=utf-8
Accept: application/soap+xml, application/dime, multipart/related, text/*
User-Agent: IBM WebServices/1.0
Host: localhost
Cache-Control: no-cache
Pragma: no-cache
SOAPAction: ""
Content-Length: 618

<?xml version="1.0" encoding="UTF-8"?>
 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Body>
 <getDeliveryDate xmlns="http://inventory.ws.itso.ibm.com">
 <InventoryRequest>
 <Header xmlns="">
 <SourceName>ITSOSourceApp</SourceName>
 <Version>1</Version>
 <CreateDate>2003-09-09T00:33:20.981Z</CreateDate>
 </Header>
230 Patterns: Direct Connections for Intra- and Inter-enterprise

 <Body xmlns="">
 <PartNumber>12345</PartNumber>
 </Body>
 </InventoryRequest>
 </getDeliveryDate>
 </soapenv:Body>
 </soapenv:Envelope>

The SOAP response between the gateway and the source application for
getDeliveryDate is shown in Example 10-5.

Example 10-5 SOAP response for getDeliveryDate: gateway to source

HTTP/1.1 200 OK
Server: WebSphere Application Server/5.0
Content-Type: text/xml; charset=utf-8
Content-Language: en-US
Connection: close

<?xml version="1.0" encoding="UTF-8"?>
 <Envelope xmlns="http://schemas.xmlsoap.org/soap/envelope/">
 <Body>
 <getDeliveryDateResponse xmlns="http://inventory.ws.itso.ibm.com"

xmlns:ns-445461426="http://inventory.ws.itso.ibm.com"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <InventoryReply>
 <Header xmlns="">
 <SourceName>ITSOTargetApp</SourceName>
 <Version>1</Version>
 <CreateDate>2003-09-09T00:33:28.842Z</CreateDate>
 </Header>
 <Body xmlns="">
 <PartNumber>12345</PartNumber>
 <DeliveryDate>2003-09-15</DeliveryDate>
 </Body>
 </InventoryReply>
 </getDeliveryDateResponse>
 </Body>
 </Envelope>

The document style SOAP request between the gateway and the target
application for getDeliveryDate is shown in Example 10-6.
 Chapter 10. Using the Web Services Gateway 231

Example 10-6 SOAP request for getDeliveryDate: gateway to target

POST /ITSOTargetApp/services/InventoryDoc HTTP/1.0
Content-Type: text/xml; charset=utf-8
Accept: application/soap+xml, application/dime, multipart/related, text/*
User-Agent: IBM WebServices/1.0
Host: localhost
Cache-Control: no-cache
Pragma: no-cache
SOAPAction: ""
Content-Length: 676

<?xml version="1.0" encoding="UTF-8"?>
 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Body>
 <getDeliveryDate xmlns="http://inventory.ws.itso.ibm.com"

xmlns:ns-445461426="http://inventory.ws.itso.ibm.com">
 <InventoryRequest>
 <Header xmlns="">
 <SourceName>ITSOSourceApp</SourceName>
 <Version>1</Version>
 <CreateDate>2003-09-09T00:33:20.981Z</CreateDate>
 </Header>
 <Body xmlns="">
 <PartNumber>12345</PartNumber>
 </Body>
 </InventoryRequest>
 </getDeliveryDate>
 </soapenv:Body>
 </soapenv:Envelope>

The SOAP response between the target application and the gateway for
getDeliveryDate is shown in Example 10-7.

Example 10-7 SOAP response for getDeliveryDate: target to gateway

HTTP/1.1 200 OK
Server: WebSphere Application Server/5.0
Content-Type: text/xml; charset=utf-8
Content-Language: en-US
Connection: close

<?xml version="1.0" encoding="UTF-8"?>
 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
232 Patterns: Direct Connections for Intra- and Inter-enterprise

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <getDeliveryDateResponse xmlns="http://inventory.ws.itso.ibm.com">
 <InventoryReply>
 <Header xmlns="">
 <SourceName>ITSOTargetApp</SourceName>
 <Version>1</Version>
 <CreateDate>2003-09-09T00:33:28.842Z</CreateDate>
 </Header>
 <Body xmlns="">
 <PartNumber>12345</PartNumber>
 <DeliveryDate>2003-09-15</DeliveryDate>
 </Body>
 </InventoryReply>
 </getDeliveryDateResponse>
 </soapenv:Body>
 </soapenv:Envelope>

10.5 Quality of Service capabilities
In this section we discuss Quality of Service capabilities and considerations
specific to the Web services Gateway. For further discussion on Quality of
Services for Web services in general, see 8.6, “Quality of Service capabilities” on
page 177. For document style Web services see 9.6, “Quality of Service
capabilities” on page 209.

10.5.1 Autonomic
Log and trace facilities are important for fault monitoring and isolation.
WebSphere Application Server provides a number of log files. JVM logs are
located in the <WAS_HOME>/logs/<applicationServerName> directory, and by
default are named SystemOut.log and SystemErr.log.

The Diagnostic Trace Service can be used to enable tracing of application server
components. The following trace specification can be used when diagnosing
Web Services Gateway problems:

com.ibm.wsgw.*=all=enabled:
org.apache.wsif.*=all=enabled:
com.ibm.ws.webservices.*=all=enabled
 Chapter 10. Using the Web Services Gateway 233

The following tools can also be helpful when analyzing problems:

� TCPMon

The TCPMon tool described in 8.5.3, “Monitoring SOAP messages” on
page 172 allows you to view the contents of the SOAP messages being
generated by the interaction between the source application, gateway, and
target application.

� Tivoli® Performance Viewer

The Tivoli Performance Viewer packaged with IBM WebSphere Application
Server V5.0 can monitor Web Services Gateway requests and responses.
When the gateway is installed in WebSphere V5.0, counters are added
automatically to the Performance Monitoring Service. Gateway monitoring
can be enabled by simply starting performance monitoring. See the redbook
for details on specific procedures for enabling monitoring:

– IBM WebSphere Application Server V5.0 System Management and Configuration:
WebSphere Handbook Series, SG24-6195

Once monitoring is enabled on the WebSphere Application Server, open the
Tivoli Performance Monitor and navigate to the Web Services Gateway. The
Viewer monitors both synchronous and asynchronous requests and
responses. The output can be viewed in either table or graph format. It can
also be logged and played back when needed. Figure 10-9 shows the Tivoli
Performance Viewer monitoring gateway requests and responses.

Figure 10-9 Tivoli Performance Viewer
234 Patterns: Direct Connections for Intra- and Inter-enterprise

� Microsoft Network Monitor

Microsoft Network Monitor captures network traffic on local area networks for
real-time or post-capture analysis. The Network Monitor captures frames from
the network that can be filtered to present only relevant material. It can also
be configured to detect specific network conditions and generate events as
needed. Figure 10-10 shows the Microsoft Network Monitor. Details
concerning the configuration and use of the monitor can be found from
Windows Help.

Of particular interest to the gateway is the Network Monitor’s ability to monitor
TCP/IP packets from a particular target and source. In this manner, traffic to
and from the gateway can be traced from its origin to its destination.

Figure 10-10 Microsoft Network Monitor

10.5.2 Security
The Web Services Gateway provides a basic authentication and authorization
mechanism based upon the security features of WebSphere Application Server.
Security can be applied at two levels:

� Gateway-level authentication
� Operation-level authorization
 Chapter 10. Using the Web Services Gateway 235

Gateway-level authentication
For gateway-level authentication, you set up a role and realm for the gateway on
WebSphere’s Web server and servlet container, and define the user ID and
password that is used by the gateway to access the role and realm. You also
modify the gateway’s channel applications so that they only give access to the
gateway to service requestors that supply the correct user ID and password for
that role and realm.

Operation-level authentication
For operation-level authorization, you apply security to individual methods in a
Web service. To do this, create an enterprise bean with methods matching the
Web service operations. These EJB methods perform no operation and are just
dummy entities for applying security. Existing WebSphere Application Server
authentication mechanisms can be applied to the enterprise bean. Before any
Web service operation is invoked, a call is made to the EJB method. If
authorization is granted, the Web service is invoked.
236 Patterns: Direct Connections for Intra- and Inter-enterprise

Chapter 11. Using the Web Services
Gateway with J2EE
Connectors

This chapter discusses using the Web Services Gateway in an intra-enterprise
integration scenario. We are using the Web Services Gateway packaged with
IBM WebSphere Application Server Network Deployment V5.0.2 in this scenario.

This chapter extends the scenario covered in the previous chapter by looking at
the protocol and message conversion capabilities of the Web Services Gateway.
We examine how the gateway can provide Web service access to a CICS
application using the CICS ECI J2EE Connector.

11
© Copyright IBM Corp. 2003. All rights reserved. 237

11.1 Business scenario
In this scenario, ITSO Electronics has a legacy system running some of its core
business processes. The intention is not to replace or re-engineer this system,
but to allow more modern and flexible business applications to reuse the
important business processes that this core system hosts. The goal is to
leverage the legacy system in a way that enables ITSO Electronics to be
responsive to their customer’s needs.

The integration functionality to be implemented is explained in 6.2.2, “Stage II:
Internal ordering on demand with delivery date” on page 119. The retail system
must access, in real time, an existing wholesale system to check the availability
of a product and obtain its estimated delivery date. For the scenario covered in
this chapter, the legacy wholesale system is a CICS server located on the
internal network.

An important requirement is to provide a standards-based interface to the
system. The aim of this requirement is to allow interoperability with different
technologies now and in the future. A solution meeting this requirement is
vendor-independent, and easier to maintain and test using standard tools and
procedures.

If possible, it is preferable to use off-the-shelf products to provide connectivity
among different technologies and protocols because they are usually faster to
implement, and have wider support and lower costs.

11.2 Design guidelines
In this scenario, the source application needs to invoke services provided by a
target CICS system, as shown in Figure 11-1. Using the Web Services Gateway
as an adapter connector makes it possible to decouple the source application
from the target application, with all protocol and message conversion handled by
the gateway.
238 Patterns: Direct Connections for Intra- and Inter-enterprise

Figure 11-1 Direct Connection::Call Connection: Web Services Gateway Product
mapping 2

The IBM Web Services Gateway allows our source application to access the
target CICS service as an HTTP Web service. An important reason for using the
gateway is that it allows a number of different technologies to be accessed as
Web services.

This pattern models the connector between the source application node on the
left and the gateway node in the middle, and the connector between the gateway
and target application node on the right, as simple lines.

If further detail is need, the source application node to gateway node connector
can be modeled using coupling adapter connectors. The gateway node to target
application node connector can be modeled using an adapter connector.
Figure 11-2 shows we are using the WebSphere SOAP provider as coupling
adapter connectors from the source, and the CICS Transaction Gateway as
adapter connectors to the target.

Internal network

Call
Connector

App Server/
Services

App Server/
Services

CICS
TG TCP

SOAP
/HTTP

WebSphere
Application Server

V5.0.2
JAX-RPC

CICS Transaction
Gateway V5.0

CICS Transaction
Server V2.2

WebSphere V5.0.2
Network Deployment
Web Services G/W

WSIF/J2C
 Chapter 11. Using the Web Services Gateway with J2EE Connectors 239

Figure 11-2 Detailed design with product mappings

The IBM CICS Transaction Gateway and the Enterprise Services toolkit in
WebSphere Studio Application Developer Integration Edition enable J2EE
application integration with CICS applications. More information on J2EE
Connectors and the Enterprise Services toolkit can be found in 12.3,
“Development guidelines” on page 269.

In Figure 11-3, the structure of the gateway connector adapter is specified in
more detail, highlighting four main components:

� IBM WebSphere Application Server V5.0, which provides the J2EE platform
implementation.

� IBM Web Services Gateway, which enables Web services connectivity
between applications.

� CICS ECI J2EE Connector, which allows J2EE applications to access CICS
applications.

Internal network

Call
Connector

App Server/
Services

App Server/
Services

WebSphere
Application Server

V5.0.2
JAX-RPC

CICS Transaction
Gateway V5.0

CICS Transaction
Server V2.2

WebSphere V5.0.2
Network Deployment
Web Services G/W

WSIF/J2C

Call
Connector

App Server/
Services

App Server/
Services

CICS
TG TCP

z/OS Release 1.3

CICS TG CICS TS

WebSphere V5.0.2 ND
Web Services G/W

WSIF/J2C

WebSphere
Application Server

V5.0.2

WebSphere V5.0.2
Network Deployment

SOAP
/HTTP

Call
Connector

App Server/
Services

Call
Connector

App Server/
Services

SOAP ProviderJAX-RPC WSGWSOAP Provider
240 Patterns: Direct Connections for Intra- and Inter-enterprise

� Deployed proxy and data types, which are developed using the Enterprise
Services toolkit in IBM WebSphere Studio Application Developer Integration
Edition V5.0.

Figure 11-3 Solution architecture overview

This solution provides a Java-based interface and a Web service interface to the
target CICS service. This solution can be used to provide a wide range of client
platforms with access to the target CICS service, in both intra-enterprise and
inter-enterprise integration scenarios. The adoption of a Web service interface
provides an open standards-based way of accessing the system.

In the development phase, wizards provided in WebSphere Studio Application
Developer Integration Edition can be used to develop the connector solution
without requiring you to write code.

11.3 Development guidelines
The main steps for building the integration solution presented in Figure 11-3 are:

1. Create an enterprise service using WebSphere Studio Application Developer
Integration Edition V5.0.

2. Test the enterprise service in the WebSphere Studio Application Developer
Integration Edition V5.0.

3. Deploy generated Java classes into IBM WebSphere Application Server
Enterprise V5.0.

4. Configure a J2EE Connector connection factory in IBM WebSphere
Application Server Enterprise V5.0.

5. Configure the service in the IBM Web Services Gateway V5.0.2.

Target CICS
Service

SOAP/HTTP

CICS TG
TCP

gateway

IBM Websphere Application Server

target
application

Client
application

CICS
Transaction

Gateway

IBM Web Services
 Gateway

Deployed proxy
and data types

CICS ECI J2C
Adapter

source
application

z/OS
 Chapter 11. Using the Web Services Gateway with J2EE Connectors 241

6. Web service-enable your client application.

The configuration of the IBM CICS Transaction Gateway is beyond the scope of
this redbook. For further details on the CICS Transaction Gateway and J2EE
Connectors refer to the following redbooks:

� CICS Transaction Gateway V5 The WebSphere Connector for CICS,
SG24-6133

� Patterns: Self-Service Application Solutions Using WebSphere Application
Server V5, SG24-6591

11.3.1 Creating a CICS enterprise service
This section explains how to use the IBM WebSphere Studio Application
Developer Integration Edition V5.0 to create an enterprise service for an existing
CICS program. The enterprise service and its deployment classes can be used
by applications running in IBM WebSphere Application Server Enterprise V5.0.

The main steps to develop the enterprise service are:

1. Import the resource adapter into the workspace.

2. Create the enterprise service WSDL description.

3. Create the proxy and data types.

4. Generate WSDL description of the proxy.

Import the resource adapter into the workspace
It is only necessary to import the CICS ECI Connector once per workspace. To
check if the connector is already present, switch to the J2EE Hierarchy view in
the Business Integration perspective. The ECIResourceAdapter should be listed
in the Connector Modules folder, as shown in Figure 11-4.

Note: Our sample implementation code is available on the Web; see
Appendix B, “Additional material” on page 335 for details. The application
deployed to the gateway is packaged in ITSOConnectorApp.ear. The client
application implementation is included in the ITSOSourceApp project.
242 Patterns: Direct Connections for Intra- and Inter-enterprise

Figure 11-4 CICS ECI Connector in the J2EE Hierarchy

If you need to import the CICS ECI Connector:

1. Select File → Import... → RAR file and click Next.

2. Browse to the cicseci.rar file in the <STUDIO_HOME>\resource adapters
folder. <STUDIO_HOME> is the installation path of WebSphere Studio
Application Developer Integration Edition.

Select cicseci.rar and click Open.

3. Check Standalone connector project, and select the New connector project
option.

4. Enter the New project name. We used CICS ECI Connector.

5. Click Finish.

The CICS ECI Connector should now be correctly listed in the J2EE Hierarchy
view of the Business Integration perspective, as shown in Figure 11-4.

Create the enterprise service WSDL description
To create the enterprise service WSDL description, first create a new enterprise
application and Web module:

1. To create a new enterprise application project and Web module project, select
File → New → Project... → J2EE → Enterprise Application Project, then click
Next.

a. Select Create J2EE 1.3 Enterprise Application project and click Next.

b. In the Enterprise Application Project window set the following fields:

• Enterprise application project name: ITSOConnectorApp.

• Uncheck Application client module and EJB module.
 Chapter 11. Using the Web Services Gateway with J2EE Connectors 243

Click Finish.

2. To set the Context Root of the new Web module to ITSOConnectorApp,
open the J2EE Navigator view of the J2EE Perspective, right-click the
ITSOConnectorAppWeb project and select Properties → Web.

3. Add a new package to the Web module by right-clicking the Java Source
folder in the ITSOConnectorAppWeb project and selecting New →Package.
Set the new package name to com.ibm.itso.es.inventory.

4. Import the source file defining the interface for the CICS service:

a. Right-click the com.ibm.itso.es.inventory package, select Import... → File
System, then click Next.

b. Browse to the source file, getdate.c in our case, and click Finish.

The getdate.c source file actually contains the full source code for our
backend CICS application. To set up this application on CICS, we compiled
and linked the source on z/OS, placed the load module in a CICS RPL library,
and installed the program definition to CICS.

You are now ready to create the enterprise service. To create the enterprise
service:

1. Right-click the com.ibm.itso.es.inventory package, select New → Other... →
Business Integration → Service built from... and click Next.

2. In the New Service window select CICS ECI in the left panel and click Next.

3. In the Connection Properties window, shown in Figure 11-5, enter the details
for your CICS Transaction Gateway.

For our example, the JNDI lookup name should be eis/CICSECI. This is the
JNDI reference to the J2C connection factory needed in the application server
environment.

Click Next.
244 Patterns: Direct Connections for Intra- and Inter-enterprise

Figure 11-5 Connection Properties

4. In the Service Binding window specify the package and the interface file
name, as shown in Figure 11-6. The other fields will be automatically filled.

Click Finish.
 Chapter 11. Using the Web Services Gateway with J2EE Connectors 245

Figure 11-6 Service Binding

Notice that three WSDL files are now present in com.ibm.itso.es.inventory
package:

� InventoryCics.wsdl

� InventoryCicsCICSECIBinding.wsdl

� InventoryCicsCICESCIService.wsdl

Create the binding operations using the following steps:

1. Double-click InventoryCicsCICESCIBinding.wsdl to open it in WSDL editor.
Select the Bindings tab.
246 Patterns: Direct Connections for Intra- and Inter-enterprise

2. In the Port Type and Binding Operations section click New to add a new
operation.

3. In the Operation Binding window, set the Operation name to getDeliveryDate
and click Next.

4. In the CICS ECI Connector Operation Binding Properties window, set the
functionName to GETDATE (uppercase). This is the name of the CICS program
that will be invoked for the service. Accept the defaults for the other fields and
click Next.

5. In the Operation Binding window click Import... in the Input message section.

6. Navigate to the interface source file, getdate.c, in the
ITSOConnectorAppWeb/Java Source/com/ibm/itso/es/inventory folder, and
click Next.

7. In the C Import Properties window, set the platform properties for the
environment hosting the CICS service. In our case, we set the Floating point
format to IBM 390 Hexadecimal and the Code page selection to Cp037.

Click Next.

8. In the following window, click Next again.

9. In the C Importer window, choose COMM_AREA as structure definition. In the
XSD type name, set the name for the generated Java class. We used
InventoryData.

Click Finish.

10.Back in the Operation Binding window, check Use input message for output
and click Finish.

The WSDL definition of the enterprise service is complete, and the J2EE
Navigator view should look similar to Figure 11-7.
 Chapter 11. Using the Web Services Gateway with J2EE Connectors 247

Figure 11-7 J2EE Navigator view after creating the enterprise service WSDL files

The three WSDL files generated provide a complete description of the service,
how it is accessed, its methods (getDeliveryDate), and data types
(InventoryData). WebSphere Studio’s enterprise services toolkit uses the Web
Services Description Language as the model for describing any kind of service.
Using the toolkit it is possible to build an object for accessing the service from the
WSDL description.

Create the proxy and data types
Since the actual implementation of our service exists in a CICS server, we need
to build a class to connect to this service, acting as a proxy. The enterprise
services toolkit provides a number of options for deploying services, including:

� SOAP

� EJB

� JMS

� JavaBean proxy

For this scenario, we selected a JavaBean proxy, primarily because it is the
simplest choice. Our simple scenario does not require the remote access,
transaction, and security management capabilities provided by EJBs, so there is
really no need to introduce them here.

To build a Java proxy class:

1. Right-click the InventoryCicsCICSECIService.wsdl file and choose
Enterprise Services → Generate Service Proxy....
248 Patterns: Direct Connections for Intra- and Inter-enterprise

2. In the first window, accept the default options by clicking Next.

3. In the second window, select the operations to be included in the proxy. In this
case, select getDeliveryDate and click Finish.

As shown in Figure 11-8, the following Java files have been created:

� InventoryCicsProxy.java is the proxy class.

� InventoryData.java represents the data type used by the proxy.

� InventoryDataFormatHandler.java provides the binding from the Java
representation of the data type to the native format.

Figure 11-8 J2EE Navigator view after creating the service proxy classes

Generate WSDL description of the proxy
The InventoryCicsProxy.java class provides access to the CICS Transaction
Gateway and invokes the GETDATE CICS function. To publish this class as a
Web service on the Web Services Gateway, it is necessary to obtain a WSDL
description of it by following these steps:

1. Right-click the InventoryCicsProxy.java class in the Java Source folder of
the ITSOConnectorAppWeb project and select Web Services → Generate
WSDL files.

2. In the Web Service Deployment Settings window, click Next.

3. In the Web Service Java Bean Selection window, select
com.ibm.itso.es.inventory.InventoryCicsProxy as Bean and click Next.
 Chapter 11. Using the Web Services Gateway with J2EE Connectors 249

4. In the Web Service Java Bean Identity window, abbreviate the Web service
URI and default paths for the generated files, as we did, as shown in
Figure 11-9. Click Next.

Figure 11-9 Web Service Java Bean Identity

5. In the Web Service Java Bean Methods window, check only the method
com.ibm.itso.es.inventory.InventoryData getDeliveryDate() and uncheck
all the others. Click Finish.

The Web Content folder of the ITSOConnectorAppWeb now contains two
sub-folders:

� wsdl contains the WSDL service definitions needed to deploy the service in
the Web Services Gateway.
250 Patterns: Direct Connections for Intra- and Inter-enterprise

� admin contains some JSPs for administering Web services deployed directly
to WebSphere Application Server. We are using the Web Services Gateway,
so these files are not needed and this folder can be deleted.

Next, we need to make some changes so the generated WSDL can be accessed
by the gateway and by our client application:

6. Move the InventoryData.xsd file from the Web
Content\wsdl\com\ibm\itso\es\inventory folder to the Web Content\wsdl folder.
Then delete the Web Content\wsdl\com folder and its sub-folders.

7. Edit InventoryCicsProxy.wsdl in the Web Content\wsdl folder and change
the location attribute of the following import statement (near the start):

<import location="com/ibm/itso/es/inventory/InventoryData.xsd" ...
<import location="InventoryCicsProxy.wsdl" ...

Replace the com/ibm/itso/es/inventory/ prefix with the following prefix:

http://wsgw2.itso.ral.ibm.com:9080/ITSOConnectorApp/wsdl/

8. Save and close the file.

9. Edit InventoryCicsProxyJava.wsdl in the Web Content\wsdl folder and
change the location attribute of the following two import statements (near the
start):

<import location="com/ibm/itso/es/inventory/InventoryData.xsd" ...
<import location="InventoryCicsProxy.wsdl" ...

Delete the com/ibm/itso/es/inventory/ prefix from the first import, then add the
following prefix to both import locations:

http://wsgw2.itso.ral.ibm.com:9080/ITSOConnectorApp/wsdl/

10.Save and close the file.

The WSDL definition of the service proxy is complete.

11.3.2 Testing the enterprise service
In this section, we create a simple JSP to test the generated Java proxy. We also
explain how to configure the WebSphere Studio test environment to test the
application. Our test JSP (TestProxy.jsp) uses the generated InventoryCicsProxy
class to invoke the GETDATE CICS function and display the result.

Creating a JSP to test the enterprise service
To create a JSP to test the deployed enterprise service:

1. Right-click the Web Content folder of the ITSOConnectorAppWeb project
and select New → JSP File. In the New JSP File window, set the File Name to
TestProxy.jsp and click Finish.
 Chapter 11. Using the Web Services Gateway with J2EE Connectors 251

2. Add the required code to the test JSP. The listing for our TestProxy.jsp file is
shown in Example 11-1. It contains a very simple example of how the service
proxy class can be used.

Example 11-1 TestProxy.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<HEAD>
<%@ page
language="java"
contentType="text/html; charset=ISO-8859-1"
pageEncoding="ISO-8859-1"
%>
<META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<META name="GENERATOR" content="IBM WebSphere Studio">
<TITLE>TestProxy.jsp</TITLE>
</HEAD>
<BODY>
<h1>Test proxy jsp: ITSOConnectorApp</h1>
<%

com.ibm.itso.es.inventory.InventoryData indata =
new com.ibm.itso.es.inventory.InventoryData();

indata.setPartNumber("1");

com.ibm.itso.es.inventory.InventoryData outdata = null;

com.ibm.itso.es.inventory.InventoryCicsProxy proxy =
new com.ibm.itso.es.inventory.InventoryCicsProxy();

outdata = proxy.getDeliveryDate(indata);

out.println("The expect delivery date of part number "
+indata.getPartNumber()
+" is "
+outdata.getDeliveryDate());

%>
</BODY>
</HTML>

The enterprise service application is complete, and the J2EE Navigator view
should look similar to Figure 11-10.
252 Patterns: Direct Connections for Intra- and Inter-enterprise

Figure 11-10 J2EE Navigator view after creating the test JSP

Configuring the test environment
It is necessary to define a J2C configuration factory, as shown in Figure 11-11, to
configure the WebSphere Studio test environment. Use the following steps to do
this:

1. Switch to the J2EE Hierarchy view in the J2EE Perspective.

2. Expand the Servers folder and double-click the required server. We are using
WebSphere v5.0 Test Environment.

3. When the server configuration editor opens, select the J2C tab.

4. In the Node Settings, J2C Resource Adapters section, click Add.

5. Select CICS ECI Connector for the Resource Adapter Name and click OK.

6. Select the CICS ECI Connector in the J2C Resource Adapters table and
click Add in the J2C Connection Factories section.

7. In the Create Connection Factory window, set the Name to CICSECI, set the
JNDI name to eis/CICSECI, and click OK.

8. In the Resource Properties section, enter the details for your CICS
Transaction Gateway. These settings should be the same as those used
when creating the enterprise service (see Figure 11-5 on page 245).
 Chapter 11. Using the Web Services Gateway with J2EE Connectors 253

9. Save and close the server configuration.

Figure 11-11 J2C settings for the WebSphere Studio test environment

Run TestProxy.jsp
To run the test JSP, right-click TestProxy.jsp and select Run on Server.... The
result should look similar to Figure 11-12.
254 Patterns: Direct Connections for Intra- and Inter-enterprise

Figure 11-12 TestProxy.jsp successful test result

This test checks that the generated Java proxy can invoke the CICS service via
the CICS Transaction Gateway and that the data types involved are handled
correctly.

11.3.3 Deploying generated Java classes to WebSphere Enterprise
The generated Java proxy classes must be deployed to the application server to
put our solution into production. In this section we produce two different
packages:

� A JAR file containing Java classes that must be included in the WebSphere
Application Server classpath. The Web Services Gateway needs a package
to find the proxy and data types classes for invoking the CICS service.

� An EAR file of the ITSOConnectorApp J2EE project. This package contains
the WSDL definitions and the test JSP.

To create the required packages:

1. Open the J2EE Perspective.

2. Right-click ITSOConnectorApp J2EE project and select Export... → EAR
file. Export the project to ITSOConnectorApp.ear.

3. Right-click the Java Source folder of the ITSOConnectorAppWeb project and
select Export... → JAR file. Export the folder to ITSOConnectorApp.jar.

4. Deploy the exported EAR file in the IBM WebSphere Application Server
Enterprise V5.0 runtime.

5. Copy the exported JAR file to somewhere in the WebSphere Application
Server classpath, such as the <WAS_HOME>\lib\app folder.
 Chapter 11. Using the Web Services Gateway with J2EE Connectors 255

11.3.4 Configuring a J2C connection factory in WebSphere
In this section we describe the steps needed to set up a CICS J2C connection
factory in WebSphere Application Server for accessing the CICS Transaction
Gateway.

Adding the cicsecitools.jar
The WebSphere Studio Integration Edition environment uses a slightly different
version of CICS ECI Resource Adapter from the one provided with the CICS
Transaction Gateway. The Studio version contains the cicsecitool.jar file that
provides the Web Services Invocation Framework support.

To enable the WSIF support in WebSphere Application Server, copy the
cicsecitools.jar file from the CICS ECI Connector\connectorModule folder in your
Studio workspace to the <WAS_HOME>\lib directory on the application server.

Installing the CICS ECI Resource Adapter
The cicseci.rar file is included in IBM CICS Transaction Gateway, which is
installed during the WebSphere Studio installation. It can be found in the
<CTG_HOME>\deployable folder, where <CTG_HOME> is the install path of the
CICS Transaction Gateway.

To install the CICS ECI Resource Adapter on the production server machine:

1. Start the WebSphere Administrative Console.

2. In the navigation frame on the left, navigate to Resources → Resource
Adapters.

3. Click Install RAR in the Resource Adapters form on the right.

4. Browse to the cicseci.rar file and click Next.

5. In the Configuration form, click OK to accept the default settings.

Adding a connection factory
To add a J2C connection factory using the CICS ECI adapter:

1. In the WebSphere Administrative Console navigation frame, navigate to
Resources → Resource Adapters.

2. Click the newly created resource adapter, ECIResourceAdapter in our case,
in the Resource Adapters form on the right.

3. Scroll down the right form and click the J2C Connection Factories link.

4. In the J2C Connection Factories form, click New.

5. In the J2C Connection Factory form, set the Name to CICSECI, set the JNDI
name to eis/CICSECI, and click OK.
256 Patterns: Direct Connections for Intra- and Inter-enterprise

6. Back in the J2C Connection Factories form, click the newly created CICSECI
connection factory.

7. Scroll down the right form and click the Custom Properties link.

8. In the Custom Properties form, enter the details for your CICS Transaction
Gateway. These settings should be the same as those used when creating
the enterprise service (see Figure 11-5 on page 245).

9. Save your changes and restart the application server.

10.Test application server CICS connectivity using the TestProxy.jsp:

http://localhost:9080/ITSOConnectorApp/TestProxy.jsp

11.3.5 Configuring the service in Web Services Gateway
After developing and deploying the enterprise service, we are ready to deploy the
Web Services Gateway service that will expose our enterprise service as a Web
service. Notice that the application developed is not a Web service, but only a
Java class. The Web Services Gateway creates the actual implementation of the
Web service using the Java class to process client requests.

Deploying the gateway service
To deploy InventoryCicsProxy.wsdl as a gateway service:

1. Configure the gateway and deploy the SOAPHTTPChannel1, as described in
10.4.1, “Installing and configuring the Web Services Gateway” on page 220.

When configuring the gateway, we used the following settings:

– Namespace URI for services: urn:wsgw2.itso.ral.ibm.com

– WSDL URI for exported definitions:
http://wsgw2.itso.ral.ibm.com:9080/wsgw

2. Open the Web Services Gateway systems administration console and click
Services → Deploy in the navigation panel on the left.

3. In the Deploy Gateway Service window, we set the following fields:

– Gateway Service Name: InventoryCicsWsgw

– Message part representation: Deployed Java classes

– Channels: click to select SOAPHTTPChannel1

– WSDL Location:
http://wsgw2.itso.ral.ibm.com:9080/ITSOConnectorApp/wsdl/Inventor
yCicsProxyJava.wsdl

– Location Type: URL
 Chapter 11. Using the Web Services Gateway with J2EE Connectors 257

We accepted the defaults for the remaining fields. Our gateway service
settings are shown in Figure 11-13.

Figure 11-13 Deploying a gateway service

4. Click OK to deploy the service.

Exporting the WSDL file
When the service is deployed, the gateway generates new WSDL files that can
be shared with clients of the enterprise service. The gateway-generated WSDL
258 Patterns: Direct Connections for Intra- and Inter-enterprise

implementation definition file has the gateway as the service end-point, and it
imports the WSDL interface definition file that contains bindings and portType
information.

To export the WSDL file generated by the Web Services Gateway:

1. Open the Web Services Gateway systems administration console and click
Services → List in the navigation panel on the left.

2. In the List of Gateway Services window, click the required service,
InventoryDocWsgw in our case.

3. In the Service: InventoryDocWsgw window:

a. Scroll down to the Exported WSDL definitions section.

b. Right-click External WSDL implementation definition (WSDL only) and
select Save Target As... from the pop-up menu.

c. Save the WSDL file to the required location. We saved the file as
InventoryDocWsgw.wsdl under the
ITSOSourceAppWeb\WebContent\WEB-INF\wsdl folder in our
WebSphere Studio workspace.

You are now ready to Web service-enable your source application using the
gateway-generated WSDL implementation definition file for your target service.

11.3.6 Web service enabling the source application
See Figure 8-11 on page 167 for an overview of the Web service development
process for a source application. Let’s walk through this process for our source
application.

To Web service enable the source application using the gateway generated
WSDL implementation definition file:

1. Open a command window.

2. Using the gateway WSDL file exported in “Exporting the WSDL file” on
page 258, generate the Web service client deployment descriptors and
classes using the WSDL2Java tool. We used the command shown in
Example 11-2.

Example 11-2 Generating client deployment descriptors and classes using WSDL2Java

C:\WebSphere\AppServer\bin\WSDL2Java -verbose -role client -container web
-NStoPkg http://wsdl/InventoryCicsProxyJava/=com.ibm.itso.es.inventory
-NStoPkg http://wsdl/InventoryCicsProxy/=com.ibm.itso.es.inventory
-output C:\workspace\ITSOSourceAppWeb\WebContent
C:\workspace\ITSOSourceAppWeb\WebContent\WEB-INF\wsdl\InventoryCicsWsgw.wsdl
 Chapter 11. Using the Web Services Gateway with J2EE Connectors 259

WSWS3185I: Info: Parsing XML file: C:\...\WEB-INF\wsdl\InventoryCicsWsgw.wsdl
Retrieving document at
'http://wsgw2.itso.ral.ibm.com:9080/wsgw/ServiceInterface?name=InventoryCicsWsgw', relative to
'C:\...\WEB-INF\wsdl\InventoryCicsWsgw.wsdl'.
Retrieving document at
'http://wsgw2.itso.ral.ibm.com:9080/wsgw/ServiceImport?name=InventoryCicsWsgw&uri=http%3A%2F%2F
wsgw2.itso.ral.ibm.com%3A9080%2FITSOConnectorApp%2Fwsdl%2FInventoryData.xsd', relative to
'http://wsgw2.itso.ral.ibm.com:9080/wsgw/ServiceInterface?name=InventoryCicsWsgw'.
Retrieving document at
'http://wsgw2.itso.ral.ibm.com:9080/wsgw/ServiceImport?name=InventoryCicsWsgw&uri=http%3A%2F%2F
wsgw2.itso.ral.ibm.com%3A9080%2FITSOConnectorApp%2Fwsdl%2FInventoryCicsProxy.wsdl', relative to
'http://wsgw2.itso.ral.ibm.com:9080/wsgw/ServiceInterface?name=InventoryCicsWsgw'.
WSWS3204E: Error: {http://inventory.es.itso.ibm.com/}InventoryData already exists.
WSWS3282I: Info: Generating C:\...\itso\es\inventory\InventoryData.java.
WSWS3282I: Info: Generating C:\...\itso\es\inventory\InventoryData_Helper.java.
WSWS3282I: Info: Generating C:\...\itso\es\inventory\InventoryData_Ser.java.
WSWS3282I: Info: Generating C:\...\itso\es\inventory\InventoryData_Deser.java.
WSWS3282I: Info: Generating C:\...\ral\itso\wsgw2\InventoryCicsWsgw.java.
WSWS3282I: Info: Generating C:\...\ral\itso\wsgw2\InventoryCicsWsgwLocator.java.
WSWS3282I: Info: Generating C:\...\itso\es\inventory\InventoryCicsProxy.java.
WSWS3282I: Info: Generating C:\...\es\inventory\InventoryCicsProxySOAPHTTPBindingStub.java.
WSWS3282I: Info: Generating C:\...\WEB-INF\webservicesclient.xml.
WSWS3282I: Info: Generating C:\...\WEB-INF\ibm-webservicesclient-bnd.xmi.
WSWS3282I: Info: Generating C:\...\WEB-INF\ibm-webservicesclient-ext.xmi.
WSWS3282I: Info: Generating C:\...\WEB-INF\InventoryCicsWsgw_mapping.xml.

3. In WebSphere Studio, move the generated Java source files from the Web
module’s WebContent folder to its JavaSource folder:

a. Right click the ITSOSourceAppWeb project and select Refresh from the
pop-up menu. The generated files should now appear in the Studio
workspace.

b. Move the com.ibm.itso.es.inventory and com.ibm.ral.itso.wsgw2
packages in the ITSOSourceAppWeb\WebContent folder to the
ITSOSourceAppWeb\JavaSource folder.

4. Add client application code to invoke the Web service on the target
application.

To invoke GETDATE CICS function via the Web Services Gateway, we added
the com.ibm.itso.command.GatewayCicsBean command bean in our
ITSOSourceAppWeb module.

5. Test, then deploy the source application in your IBM WebSphere Application
Server V5.0.2 runtime environment.
260 Patterns: Direct Connections for Intra- and Inter-enterprise

11.4 Quality of Service capabilities
The components used in this scenario are covered individually in other chapters.
The QoS capabilities of the solution presented are therefore closely related to
those presented in other chapters.

For QoS capabilities of Web services in general, see 8.6, “Quality of Service
capabilities” on page 177.

For QoS related to the IBM Web Services Gateway, see 10.5, “Quality of Service
capabilities” on page 233.

For QoS details regarding J2EE Connectors, see 12.4, “Quality of Service
capabilities” on page 272.
 Chapter 11. Using the Web Services Gateway with J2EE Connectors 261

262 Patterns: Direct Connections for Intra- and Inter-enterprise

Chapter 12. Using J2EE Connectors

This chapter discusses using J2EE Connectors in an intra-enterprise integration
scenario. We are using the J2EE Connector support provided with IBM
WebSphere Application Server base V5.0 and IBM CICS Transaction Gateway
V5.0 in this scenario.

This chapter describes the following:

� Using J2EE Connectors in the context of our ITSO Electronics business
scenario.

� Design guidelines for using J2EE Connectors and CICS.

� Development guidelines for using J2EE Connectors and CICS.

� Quality of Service capabilities for J2EE Connectors and CICS.

� Best practices for J2EE Connectors and CICS.

This chapter is based on the J2EE Connector scenario described in redbook
Patterns: Self-Service Application Solutions Using WebSphere Application
Server V5, SG24-6591.

12
© Copyright IBM Corp. 2003. All rights reserved. 263

12.1 Business scenario
In this scenario, ITSO Electronics has a legacy system running some of its core
business processes. The intention is not to replace or re-engineer this system,
but to allow more modern and flexible J2EE applications to reuse the important
business processes that this core system hosts. The goal is to leverage legacy
systems in a way that enables ITSO Electronics to be responsive to their
customer’s needs.

The integration functionality to be implemented is explained in 6.2.2, “Stage II:
Internal ordering on demand with delivery date” on page 119. The retail system
must access, in real time, an existing wholesale system to check the availability
of a product and obtain its estimated delivery date. For the scenario covered in
this chapter, the legacy wholesale system is a CICS server located on the
internal network.

If possible, it is preferable to use off-the-shelf products to provide connectivity
between the J2EE application server and CICS because they are usually faster
to implement, and have wider support and lower costs.

12.2 Design guidelines
Figure 12-1 shows the Runtime pattern and Product mapping for the Call
Connection variation of the Direct Connection application pattern within the
business domain of an organization, using a J2EE Connector.

Note: We didn’t implement this solution in the ITSO Electronics sample
application provided with this redbook. For a sample J2EE Connector to CICS
implementation, see the redbook Patterns: Self-Service Application Solutions
Using WebSphere Application Server V5, SG24-6591.
264 Patterns: Direct Connections for Intra- and Inter-enterprise

Figure 12-1 Direct Connection::Call Connection: J2EE Connector Product mapping

This product mapping uses the CICS Transaction Gateway TCP protocol to
communicate with the CICS Transaction Gateway on the zSeries enterprise
system. The source J2EE application uses the CICS ECI J2EE Connector to
access the existing CICS enterprise application via the CICS Transaction
Gateway.

The following sections outline design guidelines for application integration using
the J2EE Connector Architecture. We discuss the Common Connector Interface
(CCI) API, the CICS resource adapters, and the IBM WebSphere Application
Server V5.0 J2EE Connector environment.

12.2.1 Components of J2EE Connector Architecture
As shown in Figure 12-2 on page 266, Version 1.0 of the J2EE Connector
Architecture defines a number of components and interfaces that make up this
architecture:

� Common Client Interface (CCI)

The CCI defines a common API for interacting with resource adapters. It is
independent of a specific EIS. A Java developer communicates to the
resource adapter using this API.

� System contracts

A set of system-level contracts between an application server and EIS. These
extend the application server to provide:

– Connection management
– Transaction management
– Security management

Internal network

Call
Connector

App Server/
Services

App Server/
Services

WebSphere
Application Server

V5.0
J2C

CICS
TG TCP

z/OS Release 1.3

CICS Transaction
Gateway V5.0

CICS Transaction
Server V2.2
 Chapter 12. Using J2EE Connectors 265

These system contracts are transparent to the application developer, meaning
that they do not implement these services themselves.

� Resource adapter deployment and packaging

A resource adapter provider develops a set of Java interfaces/classes as part
of its implementation of a resource adapter. The Java interfaces/classes are
packaged together with a deployment descriptor to create a Resource
Adapter Archive (represented by a file with an extension of .rar). This
Resource Adapter Archive is used to deploy the resource adapter into the
application server.

Figure 12-2 J2EE Connector Architecture components

12.2.2 Design considerations
A number of factors affect the design of systems using J2EE Connectors. In this
section we discuss some of the issues that should be considered when building
an application.

Managed and non-managed environments
There are two different types of environments that a Java application using J2EE
Connectors can run in:

� Managed environment: Management of connections, transactions, and
security is provided by an application server. The Java application developer
does not have to code this management manually.

To use the managed environment, you need to define a J2C connection
factory in the J2EE application server. At deployment time you can then map

System Level
Contracts

Transaction
 Management

Connection
 Management

Security
 Management

EIS-Specific
Interface

Common
Client
Interface

Container-Component
Contract

J2EE
Application Server

Connection
Pooling

Transaction
Manager

Security
Manager

Resource
Adapter

Enterprise
Information System

Application
Component
266 Patterns: Direct Connections for Intra- and Inter-enterprise

a resource reference in your J2EE application to the JNDI name of the J2C
connection factory.

� Non-managed environment: The Java application directly uses the resource
adapter to access an EIS. Management of connections, transactions, and
security must be handled manually by the application.

You can find further details in the WebSphere Developer Domain article Using
J2EE Resource Adapters in a Non-managed Environment at:

http://www7b.boulder.ibm.com/wsdd/library/techarticles/0109_kelle/0109_kell
e.html

CICS resource adapters
The CICS Transaction Gateway (CTG) is a set of client and server software
components that allow a Java application to invoke services in a CICS region.
The Java application can be an applet, a servlet, an enterprise bean, or any other
Java application.

Two J2EE Connector CICS resource adapters are provided with the IBM CICS
Transaction Gateway (CTG):

� ECI (External Call Interface) is a call interface to COMMAREA-based CICS
applications. The J2EE Connector RAR file is cicseci.rar.

� EPI (External Presentation Interface) is an API to invoke 3270-based
transactions. The J2EE Connector RAR file is cicsepi.rar.

Selecting a CICS resource adapter
Characteristics of the two CICS resource adapters and the situations in which
each would be selected are:

� External Call Interface: ECI uses COMMAREA as an interface to a CICS
enterprise application. If the enterprise application is not using COMMAREA
as an interface, it needs to be modified to use COMMAREA. ECI has a simple
calling type interface rather than the screen-oriented, conversational type
interface of EPI. For this reason, we recommend that ECI be used for new
enterprise applications that will be Web-enabled.

� External Presentation Interface: EPI uses 3270 data stream as an interface to
a 3270 CICS application. If the enterprise application is a 3270 CICS
application, EPI should be used for the resource adapter. There is no need to
change the enterprise 3270 application at all. Using J2EE Connector
Architecture CCI, the EPI application can use the same interface as ECI, but
the underlying interface is conversational.

Table 12-1 summarizes the characteristics of ECI and EPI.
 Chapter 12. Using J2EE Connectors 267

http://www7b.boulder.ibm.com/wsdd/library/techarticles/0109_kelle/0109_kelle.html

Table 12-1 CICS ECI and EPI characteristics

Synchronous versus asynchronous calls
You can avoid a blocking call when you invoke an enterprise application using
asynchronous CCI calls. This allows your Java application to call a CICS
program without blocking while waiting for the response from CICS.

A non-blocking call type option can be specified for the CCI InteractionSpec
using setInteractionVerb as follows:

myInteractionSpec.setInteractionVerb(ECIInteractionSpec.SYNC_SEND);

Synchronous calls can be specified as follows:

myInteractionSpec.setInteractionVerb(ECIInteractionSpec.SYNC_SEND_RECEIVE);

CICS ECI design considerations
Some application design considerations when selecting the CICS ECI resource
adapter are:

� If your legacy CICS application does not use COMMAREA interface, it must
be changed to use COMMAREA.

� The COMMAREA size and interaction complexity. For performance reasons,
the size of COMMAREA and the number of interactions between the Web
application and enterprise application should be minimized. The maximum
COMMAREA size is 32 KB.

� DPL considerations. In the CICS world, ECI calls are treated as Distributed
Program Link (DPL) calls. Refer to CICS Application Programming Guide,
SC33-1687 for details on DPL considerations.

ECI EPI

Protocol type Remote call Conversational

Interface COMMAREA 3270 data stream

Max data length 32 KB Screen size (eg 24x80)
plus control characters

CTG JCA support Distributed or z/OS Distributed only

Recommendation Use with new applications
or existing COMMAREA
based applications

Use with existing 3270
applications only
268 Patterns: Direct Connections for Intra- and Inter-enterprise

12.3 Development guidelines
In this section we take a look at development guidelines for J2EE Connectors.
Using IBM WebSphere Studio Application Developer V5.0, there are two ways to
develop J2EE Connector applications:

� Using CCI: An application component uses CCI (Common Client Interface),
which is provided by a resource adapter. This is a standard way of developing
J2EE Connector applications, regardless of the development tools.

� Using the Enterprise services toolkit: Using WebSphere Studio Integration
Edition or WebSphere Studio Enterprise Developer, you can develop a J2EE
Connector application as an Enterprise Service.

12.3.1 Creating a J2EE Connector application using native CCI
You can implement J2EE Connector connectivity using native CCI in your
application with the following steps:

1. Configure your J2EE Connector resource adapter and connection factory in
your integrated development environment.

2. Create an input and output Record class.

These records implement javax.resource.cci.Record and perform the input
and output conversions between application Java data structures and
enterprise tier data structures. You can manually code classes using the CCI
record framework or you can use a tool such as the VisualAge for Java
Enterprise Access Builder. The Enterprise Access Builder allows you to
create a CCI record from an existing C or COBOL structure.

3. Get an instance of the required J2EE Connector ConnectionFactory (usually
through a JNDI lookup).

4. Get an instance of J2EE Connector Connection from the connection factory.

5. Create an instance of input and output Record using classes developed in
step 2.

6. Create an Interaction instance from the Connection.

7. Create an InteractionSpec and set the required properties.

Note: The basic configuration of WebSphere Studio Application Developer
does not provide a tool to import a C or COBOL structure into a CCI
record. With the Enterprise Services toolkit in WebSphere Studio
Application Developer Integration Edition, you can import a C or COBOL
structure into an enterprise service definition.
 Chapter 12. Using J2EE Connectors 269

8. Execute the Interaction, passing the InteractionSpec, input Record, and
output Record.

9. Close the Interaction and Connection.

12.3.2 Enterprise Services toolkit
WebSphere Studio Application Developer Integration Edition includes a set of
tools and wizards, collectively referred to as the Enterprise Services toolkit. The
Enterprise Services toolkit is a fully service-oriented development environment
for business and enterprise application integration.

At the heart of the Enterprise Services toolkit programming model are Enterprise
Services, or Services for short. Services are used to model different kinds of
service providers in a consistent way. Figure 12-3 shows the currently supported
providers. Note that in the Enterprise Services world a Web service is just one
form of service provider. J2EE Connectors are another.

Figure 12-3 Services supported by WebSphere Studio Integration Edition

The Web Services Invocation Framework (WSIF) provides a standard API to
invoke services, no matter how or where the service is provided, as long it is
described in WSDL. This API is used by tools such as WebSphere Studio
Integration Edition, and runtimes such as IBM WebSphere Application Server
V5.0, to construct and manipulate services defined in WSDL documents. The
architecture allows new bindings to be added at runtime.

The J2EE Connector Tool Plug-in makes it possible to plug a J2EE
Connector-compliant EIS resource adapter, such as the CICS ECI adapter, into
the Enterprise Services toolkit provided with WebSphere Studio Integration
Edition.

Using the Enterprise Services toolkit, there’s no need to write any J2EE
Connector code because the Service Definition wizard in WebSphere Studio
Integration Edition guides you through the service definition. The wizard
generates a WSDL file providing the WSIF with all the information needed to
connect to the enterprise tier and to invoke the enterprise application.

Transform
(XSLT)SOAP JCA Bean EJB Flow

Service ServiceServiceServiceServiceService

n

1

270 Patterns: Direct Connections for Intra- and Inter-enterprise

12.3.3 Using Enterprise Services toolkit
You can implement J2EE Connector connectivity in your application using the
Enterprise Services toolkit (provided in WebSphere Studio Integration Edition)
with the following steps:

1. Create a J2EE Connector service definition from the corresponding resource
adapter in the Service Provider Browser. In the Service Definition wizard you
define the following:

– Port and portType
– Operation
– Binding
– Input and output message(s)

A message corresponds to a J2EE Connector Record. You can import the
message definition from an existing C or COBOL structure.

2. Deploy the J2EE Connector service. The Service Deployment wizard allows
you to deploy services into WebSphere. By default, the wizard deploys the
service as a session EJB. It can also deploy the service as a SOAP service.

3. Build your application client for accessing the J2EE Connector service.
Create an application EJB or servlet, for example, to access the deployed
J2EE Connector enterprise service.

12.3.4 Migration to other J2EE Connector resource adapters
The J2EE Connector Architecture CCI provides a common programing interface
to application component developers. When you migrate the application
component to a different adapter, you only need to change the method calls that
are specific to that resource adapter. The classes that are specific to a resource
adapter are:

� Input and output record classes
� ConnectionSpec
� InteractionSpec

For example, IMSConnectionSpec has getGroupName and setGroupName,
which are unique to the IMS resource adapter for specifying the IMS Group.
Refer to the resource adapter documentation for details.

When you are developing an enterprise service using WebSphere Studio
Integration Edition, all the code is generated by the tool. Regenerate the code
using a new resource adapter to migrate your application.
 Chapter 12. Using J2EE Connectors 271

12.4 Quality of Service capabilities
In this section we discuss Quality of Service capabilities and considerations
specific to J2EE Connectors and CICS.

12.4.1 Autonomic
This section briefly discusses some of the tools important for fault monitoring and
isolation.

Tivoli Performance Viewer
The Tivoli Performance Viewer is a graphical performance monitor for IBM
WebSphere Application Server V5.0. You can use the Performance Viewer to
retrieve performance data from application servers. Data is collected
continuously by application servers and retrieved as needed from within the
Viewer.

The JCA Connection Pools resource category provides information about J2EE
Connectors, such as the number of managed connections
(ManagedConnections) and the number of connections handles (Connections).

Logging and tracing
It is often helpful to examine log and trace files when your application
experiences J2EE Connector errors or problems:

� Application logging: It is always important for applications to record their
activity to a logging facility. When you write a log to the standard output file or
standard error file, the application server will record it to the corresponding log
files.

� Connection factory trace: Connection factory classes can be traced using the
WebSphere Application Server trace service. The trace level can also be set
as a connection factory property in WebSphere Administrative Console.
Connection factory tracing is often not particularly helpful when debugging
the CICS interaction. CTG tracing is usually the better option.

� CICS Transaction Gateway (CTG) trace: CTG trace records detailed activities
of the CTG gateway process, such as processing of ECI requests from
clients. Of the four levels of CTG tracing, JNI tracing between the CTG and
the native client is usually the most useful. The application can enable CTG
tracing programmatically. It can also be enabled dynamically in the Gateway
daemon using the TCPAdmin protocol handler, or statically as a start option.
CTG trace is recorded in the standard output file or standard error file.

� External CICS Interface (EXCI) trace: The EXCI provides a programming
interface for the non-CICS address space to invoke CICS programs. CTG
272 Patterns: Direct Connections for Intra- and Inter-enterprise

utilizes EXCI to communicate with CICS program. The CTG writes trace
entries to the EXCI trace when it issues an EXCI request. The trace entries in
a dump can be printed using standard z/OS utilities (GTF).

� CICS trace: CICS Transaction Server provides a facility for recording CICS
activity. In CICS for MVS™, there are three destinations for trace entries:
internal trace, auxiliary trace, and generalized trace facility (GTF).

12.4.2 Availability
The approaches discussed in “Scalability and availability considerations” on
page 274 also provide the node redundancy and failover capabilities needed to
eliminate single-point-of-failure for end-to-end production systems.

12.4.3 Performance
The connection management contract defined by the J2EE Connector
Architecture gives an application component a connection to an EIS. To deliver
performance and scalability, the connection management contract should
support connection pooling and management.

The J2EE Connector Architecture Specification V1.0 explains in detail how the
connection contact is implemented by various connection management
components of the application server and the resource adapter.

There are several parameters you can set to optimize connection pooling
properties using WebSphere Administrative Console:

� Connection timeout
� Maximum connections
� Minimum connections
� Reap time
� Unused timeout

See the WebSphere InfoCenter for further details.

The CICS ECI resource adapter supports connection pooling of the connections
(and underlying objects) from the J2EE application server to the CICS
Transaction Gateway daemon.
 Chapter 12. Using J2EE Connectors 273

Scalability and availability considerations
As shown in Figure 12-4 on page 275, there are several scalability and
availability options when using J2EE Connectors to access CICS enterprise
applications:

� EJB workload management, as provided by WebSphere Application Server.

EJBs deployed in IBM WebSphere Application Server Network Deployment
V5.0 can automatically take advantage of the WebSphere workload
management (WLM) facility for EJBs. Refer to the redbook IBM WebSphere
V5.0 Applications: Ensuring High Performance and Scalability, SG24-6198 for
details.

� Inbound CTG requests (TCP or HTTP) can be workload managed using
various methods. CTG for z/OS options for workload managing requests
across LPARs include:

– IBM Load Balancer (a component of IBM WebSphere Edge Server) can
be used to perform load balance inbound requests to CTG for z/OS.

– Sysplex distributor uses a cluster IP address to provide enhanced WLM
across the LPARs in a sysplex.

TCP/IP port sharing provides a simple way of workload balancing HTTP
requests across multiple regions within an LPAR.

� CICS requests (ECI or EPI) can be workload managed using CICS scalability
technologies. Workload management functions that are applicable when
CICS Transaction Gateway resides in zSeries include:

– External CICS Interface (EXCI) allows basic workload balancing by
including a simple CICS availability check in the CTG DFHXCURM
module.

– CICS multi-region operation (MRO) is a widely used technique that is a
central part of CICS scalability.

– CICS distributed program link (DPL) requests from the CTG can be routed
to a CICS program that resides in any CICS region in a sysplex.
274 Patterns: Direct Connections for Intra- and Inter-enterprise

Figure 12-4 Scalability options

12.4.4 Security
The J2EE Connector Architecture security contract extends the J2EE security
model to provide secure connections to EIS. To create a connection to an EIS,
there must be some form of signing on to the EIS, to authenticate the connection
requester. Re-authentication can also take place if supported by the EIS. This
occurs when the security context is changed after a connection is made. (For
example, connection pooling could cause a re-authentication when the
connection is redistributed.)

The application component has the following two choices related to EIS sign-on:

� Container managed sign-on: The deployer sets up the resource principal and
EIS sign-on information. For example, the deployer sets the user name and
password for establishing a connection to an EIS instance.

� Component managed sign-on: Application code in the component performs
the sign-on to an EIS by explicitly specifying the security information for a
resource principal.

If you choose component managed sign-on, you need to specify user name and
password at an instance of ConnectionSpec.

WebSphere V5.0 supports container managed sign-on with the use of a user ID
and password credential (Option A in the J2EE Connector Architecture
Specification) and component managed sign-on (Option C in the J2EE
Connector Architecture Specification).

Web
Presentation

Server

Web
Browser

Servlet

CICS ECI
Resource
Adapter

App Server

CICS ECI
Resource
Adapter

CICS ECI
Resource
Adapter

:

CICS
Transaction

Gateway

CICS
Transaction

Gateway

CICS
Transaction

Gateway

:

CICS TS

CICS
Program

:

RMI/IIOP TCP/HTTP EXCI/MRO

1 2 32

JSP

CICS TS

CICS
Program

CICS TS

CICS
Program

App Server

App Server
 Chapter 12. Using J2EE Connectors 275

WebSphere V5.0 for z/OS can also flow an authenticated user credential through
the CICS Transaction Gateway into CICS server when using container managed
sign-on.

Signing on to the enterprise tier
Authentication can be performed against the Resource Access Control Facility
(RACF®) using user ID and password authentication in the CTG for z/OS, by
setting the variable AUTH_USERID_PASSWORD=YES in the ctgenvvar script.

If the CTG runs on a distributed platform, it is possible to use the ESIRequest to
verify user IDs and passwords with the destination CICS region. On all platforms,
it is also possible to use SSL client certificates to authenticate the CTG.

SSL encryption support
The client application must specify a CTG network protocol when it connects to
the gateway daemon. There are basically two types of connections:

� TCP/IP sockets (TCP)
� HTTP sessions (HTTP)

For each of these, there is a secure version using SSL, namely SSL and HTTPS.

CICS security
CICS uses the z/OS System Authorization Facility (SAF) to route authorization
requests to an external security manager (ESM) to perform all its security
checks. Any suitable ESM could be used, but because the IBM Resource Access
Control Facility (RACF) product is the most commonly used ESM, we refer to
RACF when discussing CICS external security.

For more details on CICS security, refer to the following IBM publications:

� CICS RACF Security Guide, SC33-1701
� Securing Web Access to CICS, SG24-5756

12.4.5 Standards compliance
Resource adapters that are compliant with the J2EE Connector Specification 1.0
are portable across J2EE 1.3 application servers. This makes it easier for
vendors to provide resource adapters that support multiple J2EE-compliant
application servers.

Note: The local protocol can be used if the CICS Transaction Gateway and
WebSphere Application Server are on the same machine. This bypasses the
Gateway daemon and is also a performance optimizer.
276 Patterns: Direct Connections for Intra- and Inter-enterprise

Using the standard Common Client Interface defined by J2EE Connector
Specification 1.0 also simplifies application integration with diverse EISs. This
common interface makes it easy to plug third-party or home-grown resource
adapters into your applications.

12.4.6 Transactionality
In a non-managed environment, the Java application is responsible for managing
transactions through the local transaction interface (provided that the resource
adapter supports this). By using the managed environment, the programmer
does not even need to think about managing the transaction, because the
transaction manager provides this quality of service.

A resource manager consists of the resource adapter and underlying EIS. It may
participate in transactions that are externally controlled by a transaction
manager. A transaction manager controls and coordinates transactions across
multiple resource managers.

A resource manager has three options for supporting transactions:

� No support: The resource manager does not support transactions.

� Local transactions: These are transactions that are managed internally by the
resource manager. The coordination of such transactions involves no external
transaction manager.

� Global transactions: There are multiple resource managers involved, and an
external transaction manager must be used to coordinate the transaction
using two-phase commit.

In a managed environment, there are two options to decide where to control the
scope and the behavior of global transactions:

� Component managed transaction demarcation: The transaction is explicitly
managed by the application component accessing the enterprise tier.

� Container managed transaction demarcation: The transaction is implicitly
managed by the container of an enterprise bean accessing the enterprise tier.

The local transaction optimization forces the use of one-phase commit in the
situation when two-phase commit is not needed for a global transaction. This is
when only one resource manager was referenced, so two-phase commit is an
unnecessary overhead.

The CICS ECI resource adapter implements the LocalTransaction interface, and
supports local transactions. If you use an application server that supports
last-resource optimization, such as IBM WebSphere Application Server
Enterprise V5.0, the resource adapter can participate in a global transaction
 Chapter 12. Using J2EE Connectors 277

provided that it is the only local transaction resource in the global transaction.
This is called “Last Participant Support” in WebSphere Enterprise.

12.5 Best practices
Some best practices for J2EE Connector application developers are:

� Use J2EE Connectors in a managed environment.

From an application developer’s perspective, the greatest benefit of utilizing
J2EE Connectors is the Quality of Services (QoS) provided by the system
contracts. Choosing the managed environment simplifies the development of
scalable, secure, and transactional resource adapters for a wide range of EIS.

� Minimize the resource adapter-specific calls.

Do not use the resource adapter-specific calls directly if the function is
provided by CCI. Encapsulate resource adapter-specific CCI classes—such
as ConnectionSpec, InteractionSpec, or the other resource adapter-specific
calls—to make the client application more independent of the resource
adapters.

� Cache the connection factory to minimize JNDI lookups.

Looking up the naming context and connection factory from JNDI for each
interaction can be expensive. You can improve performance by caching the
connection factory.
278 Patterns: Direct Connections for Intra- and Inter-enterprise

Chapter 13. Using Java Message Service

This chapter discusses using Java Message Service (JMS) in an intra-enterprise
integration scenario. We are using the JMS support provided with IBM
WebSphere Application Server base V5.0 and IBM WebSphere MQ V5.3 in this
scenario.

This chapter describes the following:

� Using JMS in the context of our ITSO Electronics business scenario.

� Design guidelines for using JMS and WebSphere MQ.

� Development guidelines for using JMS and WebSphere MQ.

� Quality of Service capabilities for JMS and WebSphere MQ.

� Best practices for JMS.

This chapter is based on the Java Message Service scenario described in the
redbook Patterns: Self-Service Application Solutions Using WebSphere
Application Server V5, SG24-6591.

13
© Copyright IBM Corp. 2003. All rights reserved. 279

13.1 Business scenario
In this scenario, ITSO Electronics has a legacy system running some of its core
business processes that is accessible using existing messaging middleware
infrastructure. The intention is not to replace or re-engineer this system, but to
allow more modern and flexible J2EE applications to reuse the important
business processes that this core system hosts. The goal is to leverage legacy
systems in a way that enables ITSO Electronics to be responsive to their
customer’s needs.

The integration functionality to be implemented is explained in 6.2.1, “Stage I:
Internal ordering on demand” on page 116. The internal retail ordering system
needs to be integrated with the internal wholesale system to update inventory as
replenishment orders are placed. For the scenario covered in this chapter, the
legacy wholesale system is accessible on the internal network using existing IBM
WebSphere MQ infrastructure.

If possible, it is preferable to use off-the-shelf products to provide connectivity
between the J2EE application server and the wholesale system because they
are usually faster to implement, and have wider support and lower costs.

13.2 Design guidelines
Figure 13-1 shows the Runtime pattern and Product mapping for the Message
Connection variation of the Direct Connection application pattern within the
business domain of an organization, using the Java Message Service.

Note: We didn’t implement this solution in the ITSO Electronics sample
application provided with this redbook. For a sample JMS and WebSphere MQ
implementation, see the redbook Patterns: Self-Service Application Solutions
Using WebSphere Application Server V5, SG24-6591.
280 Patterns: Direct Connections for Intra- and Inter-enterprise

Figure 13-1 Direct Connection::Message Connection: JMS Product mapping

This product mapping uses WebSphere MQ as the transport mechanism for JMS
messages. The product mapping uses a WebSphere MQ queue manager on
each server to transport the messages. The source application uses JMS to
place messages on a local queue. WebSphere MQ is then responsible for
ensured delivery of this message to the proper destination, in our case, the
WebSphere MQ queue manager on the target application server.

The following sections outline design guidelines for application integration using
JMS. We start with an introduction to JMS, then discuss JMS messaging styles,
messaging patterns, and provider considerations in the IBM WebSphere
Application Server V5.0 JMS environment.

13.2.1 Java Message Service
The Java Message Service (JMS) API enables a Java programmer to access
message-oriented middleware such as WebSphere MQ from the Java
programming model. JMS has two messaging styles:

� Point-to-point model using queues
� Publish/subscribe model using topics

Communications are asynchronous, so clients can receive messages without
making a request and send messages without waiting for a reply.
Communications are loosely coupled. The sender and receiver do not have to be
active or aware of each other, as the messaging system handles the delivery of
messages.

JMS is only a specification. Each enterprise messaging system vendor must
provide classes that implement the specification for their specific messaging
system.

Internal network

Message
Connector

App Server/
Services

App Server/
Services

WebSphere
Application Server

V5.0
JMS send

WebSphere MQ
V5.3

WebSphere
Application Server

V5.0
JMS receive
 Chapter 13. Using Java Message Service 281

As shown in Figure 13-2, the JMS architecture has the following components:

� An administration tool for creating JMS connection factories and destinations
(or administered objects) in the JNDI namespace.

� A JMS provider that is a messaging system implementing the JMS interfaces.
J2EE 1.3 application servers, such as WebSphere V5.0, must include a JMS
provider.

� JMS clients produce and consume messages. They use JNDI to look up
connection factories and destinations so they can connect to the JMS
provider to send and receive messages.

Figure 13-2 JMS components

13.2.2 Design considerations
A number of factors affect the design of systems using JMS. In this section we
discuss some of the issues you should consider when building an application.

JMS point-to-point model
As shown in Figure 13-3, point-to-point messaging involves working with queues
of messages. One or more clients might send messages to a queue, but a
message is taken out by only one client. Messages remain in the queue until they
are removed, so the availability of the receiver client does not affect the ability to
deliver a message. In a point-to-point system, a client can be a sender (message
producer), a receiver (message consumer), or both. In JMS, point-to-point types
are prefixed with “Queue.”

Lookup

Connect
JMS

Client
JMS

Provider

JNDI
namespaceAdmin tool

Bind

CF D
282 Patterns: Direct Connections for Intra- and Inter-enterprise

Figure 13-3 JMS point-to-point model

In point-to-point messaging, there are generally three messaging patterns:

� Message producer or send-and-forget
� Message consumer
� Request/reply

We look at these messaging patterns in more detail in “Synchronous versus
asynchronous design considerations” on page 284.

JMS publish/subscribe model
In contrast to the point-to-point model of communication, the publish/subscribe
model, shown in Figure 13-4, enables the delivery of a message to multiple
recipients. A sending client publishes the message to a topic to which multiple
clients can be subscribed. A durable subscription stores messages when the
consumer is not connected, whereas a non-durable subscription discards
messages when the consumer is not connected. In a publish/subscribe system,
a client can be a publisher (message producer), a subscriber (message
consumer), or both. In JMS, pub/sub types are prefixed with “Topic.”

Figure 13-4 Publish/subscribe model

We look at the pub/sub pattern in more detail in “Synchronous versus
asynchronous design considerations” on page 284.

JMS Client
Sends

Sender

Consumes

Receiver

Queue
Msg Msg

JMS Client

Subscribes Subscriber

JMS Client

JMS Client

JMS Client
Publishes

Publisher

Topic
 Chapter 13. Using Java Message Service 283

JMS messages
Another design choice is the JMS message type to use. JMS provides the
following message types:

� BytesMessage
� StreamMessage
� ObjectMessage
� MapMessage
� TextMessage

Each message type contains specific interfaces pertaining to its content and
allows specific operations on the messages.

JMS messages are composed of the following parts:

� Header: Contains information to identify and route messages.

� Properties: Custom values that can optionally be added to messages.
Properties can be:

– Application-specific: Properties used by JMS applications.

– Standard: JMS properties.

– Provider-specific: Properties that are specific to a messaging provider.

� Body: The message data.

A couple of message properties are also important to look at:

� Delivery mode: When delivery must be assured by the business
requirements, persistent messages are needed. But when this is not needed,
performance can be gained by the use of non-persistent messages.

� Message expiration: When using non-persistent messages, message
expiration can be used to discard messages that have remained on a queue
or topic for longer than required. This prevents unprocessed messages from
building up over time.

Synchronous versus asynchronous design considerations
In the Web application environment, choosing an asynchronous or synchronous
approach to JMS communication will significantly affect the design of the
application. The effects could ripple as far as the user interface interaction (or
user experience) or they could be felt only in the low-level design and behavior of
the underlying application. In this section we look at both the user interaction
differences and the system design considerations.

For the purpose of discussion, let’s consider an example Web application that
provides Web banking and needs to connect to an enterprise application that is
hosting the bank account data.
284 Patterns: Direct Connections for Intra- and Inter-enterprise

First, it is important to go over some basic Web application principles. The Web is
a stateless environment; typically a request is received and the reply sent back
immediately within the same client session. A Web server is not normally able to
initiate a connection to a Web client out of the blue. Information about the
requesting client is retained while the request is being serviced and not lost until
a reply is sent back. The Web is a typical request/reply model. Most Web
applications are built using this model and this style of user interaction, where the
user can expect a reply back from the server that will be the result of making a
request.

Using our Web banking example, let’s assume a Web request requires
information from the enterprise application about the bank balance. The JMS
interaction between the Web application and the enterprise application can be
achieved using:

� Request/reply pattern
� Send-and-forget pattern
� Message consumer pattern
� Publish/subscribe pattern

Request/reply pattern
Using this approach, we fit the standard Web model by providing a complete
round trip for the client request that results in a reply. Users do not have to visit
another results page to see the results of their request.

As shown in Figure 13-5, the Web application sends a request message, then
waits for a reply. The response message needs to be linked to the request
message using the request message ID as the correlation ID of the response
message.

Figure 13-5 Request/reply pattern

Database MQ

WebSphere Application Server

Servlet

EJB

Unit of Work

122
 Chapter 13. Using Java Message Service 285

The overriding factor in a request/reply pattern is the time delay before a reply
gets back. You should remember that request/reply is a synchronous
communication over an asynchronous transport. For request/reply, two queues
are needed: one for the sender to send messages and one for receiving the
responses back. The request/reply consists of two units of work.

� Putting the message on a queue.

� Receiving the response, and for example, inserting the message in a
database.

These actions can never be one unit of work because the real put of the
message only takes place after the commit. No message will be sent without a
commit, and when no request message is sent, no reply will arrive!

An example of a request/reply scenario is getting your account balance. A
message is first sent with the account ID, then the application waits until a
response message is sent back with the balance of the account, with the results
logged to an application database.

Request/reply design considerations include:

� Applications should not be designed without appropriate timeout or re-try
capability. Non-persistent messages and message expiration can help with
management of reply messages not received within the timeout window.

� If the message producer is implemented as a session EJB, then in the
request/reply JMS model, the EJB must wait (or block) until the enterprise
application has replied before it can continue processing. Blocking in an EJB
is not generally recommended because it restricts the EJB container’s ability
to effectively manage its resources. Care must be taken to ensure that the
EJB is not waiting indefinitely and that there is a timeout in place.

Send-and-forget pattern
In send-and-forget (or fire and forget), shown in Figure 13-6, the Web application
will initiate the request to the enterprise application using a JMS destination, but
it will not wait for the outcome. This design has important repercussions on the
user interaction. A message consumer pattern could be used for receiving the
reply from the enterprise application. The user must at some point go to a result
page to see their bank balance when it has been retrieved from the enterprise
application.

From an implementation point of view, the blocking EJB dilemma is avoided.
However, a new page is required to allow the customer to come back to check
their last balance request from the local database. This design alleviates the
need for a blocking EJB, but the user experience is drastically different from the
request/reply model.
286 Patterns: Direct Connections for Intra- and Inter-enterprise

Figure 13-6 Send-and-forget pattern

Send-and-forget design considerations include:

� Non-persistent messages can be processed much quicker by the JMS
provider because they do not incur any disk I/O (for persistence). The
decision to use persistent or non-persistent messages will generally be
governed by the business requirements.

In the case of getting a balance, no funds transfer occurs; as such, a lost
message has little impact and may not warrant persistent messages.

Message consumer pattern
Message consumers can be implemented by message-driven beans that are
invoked by the container when a message arrives on a destination. When a
message arrives, the EJB container passes the message to an instance of a
user-developed message-driven bean.

This pattern can be used by a catalogue application receiving updates for
changes in the online catalogue. In this scenario, a message-driven bean
receives an incoming message and updates a database, as shown in
Figure 13-7. The pattern is typically useful in a business-to-business situation
where no user interaction is needed.

Database MQ

WebSphere Application Server

Servlet

EJB

Unit of Work

1

 Chapter 13. Using Java Message Service 287

Figure 13-7 Message consumer

Message consumer design considerations include:

� Use message-driven beans only for handling the message. Move the
business logic to another bean, which will be invoked by the message-driven
bean. This way it is also possible to call the business logic out of another
channel, like a servlet, which has been activated by a user.

� Message-driven beans can’t throw exceptions to the user, so exceptions have
to be logged in an error report.

Publish/subscribe pattern
Using this approach, we can provide the user with an immediate reply without
them having to explicitly go to a separate Web page to see the results. However,
this can only be achieved if a local copy of data is used.

The source application will register interest in information from the target
application upon startup. Periodically, the target application will publish
information to the subscribers (source application). The message consumer
pattern can be implemented at the subscriber site to receive the publications of
the target application. The source application will store this information in a local
database and use it when a Web request is being serviced.

Using this approach, the source application can operate in its native modes
(stateless and request/reply) and the user can see the results of their request
within the same user transaction. However, the information may be slightly
outdated.

Publish/subscribe design considerations include:

� Never cache a non-durable subscription, use durable subscriptions instead.

Database MQ

WebSphere Application Server

Servlet

EJB

Unit of Work

11
288 Patterns: Direct Connections for Intra- and Inter-enterprise

For further information about how IBM WebSphere MQ can be used in the
pub/sub model, refer to the redbook MQSeries Publish/Subscribe Applications,
SG24-6282.

Selecting a messaging pattern
It is not inherently incorrect to select any of the messaging patterns discussed,
provided the selection is implemented correctly. The user’s requirements and
experience will dictate which decision is the correct one.

A request/reply JMS communication model is ideal in a Web environment.
However, if EJBs are to be the implementers of the enterprise access, care
needs to be taken during implementation to prevent blocking calls from EJBs. If
the user is willing to accept a different user interaction model, then asynchronous
fire-and-forget is also an acceptable option. The middle ground could be
achieved using full publish and subscribe; however, the accuracy of the
information may be at stake.

For further information, refer to:

http://java.sun.com/products/jms/tutorial/1_3_1-fcs/doc/jmsj2ee.html

Where to implement message producers and consumers
There are a number of options for where to implement your JMS message
producers and consumers in the J2EE application architecture. These options
include:

� Producers

If the Model-View-Controller (MVC) pattern is invoked, then the model is
typically where the producer would be implemented. In J2EE application
architecture, this is likely to be a session EJB.

However, it is possible to implement the message producer almost anywhere.
A simple JavaBean could also implement the message producer and fit in
with the MVC pattern.

Note: The request/reply blocking stateless EJB must be implemented such
that appropriate timeout and re-try conditions are applied.

The EJB 2.0 specification does point out that only one client will have access
to an instance of a stateless EJB while it is servicing a client-invoked method.
If, however, a blocking wait occurs for an indefinite period, the container may
run short of available instances of the specific EJB to service other clients and
thus slow down the overall performance of the application.
 Chapter 13. Using Java Message Service 289

http://java.sun.com/products/jms/tutorial/1_3_1-fcs/doc/jmsj2ee.html

If the producer is participating in a transaction of some kind, then session
EJBs may be a better implementation choice. Transaction creation and
management is gained almost for free within EJBs, whereas it would have to
be explicitly created and managed within other implementation choices such
as JavaBeans.

Servlets can also be used as message producers. They offer a simpler
programming model than EJBs. Servlets, however, are usually implementers
of the controller aspect of the MVC pattern, and do not take advantage of the
EJB container facilities.

� Consumers

Just as there are for producers, there are a number of implementation choices
for consumers. When consumers are used in request-reply scenarios, you
then have the choice to implement this in a servlet or an EJB. Implementing
the consumer as an EJB has the advantage of container transaction
management and security management. But the disadvantage is that an EJB
will be blocked until a response arrives. Some extra programming is needed
to disregard a response when it takes too much time.

Another option for consumers is a message-driven bean. The request and
reply will be loosely coupled when using a message-driven bean, which
makes it more complex. A message-driven bean is a good solution for
subscription and message consumer patterns.

Embedded JMS provider versus WebSphere MQ
In line with the J2EE 1.3 specification, IBM WebSphere Application Server V5.0
has an embedded JMS provider, or messaging service, included in the
application server. This internal JMS provider can be used for asynchronous JMS
communications with other WebSphere applications. The internal messaging
service cannot be used for messaging with other messaging systems, such as
WebSphere MQ. If you need to communicate with other systems using
WebSphere MQ, then you need to install WebSphere MQ as a JMS provider on
WebSphere Application Server.

IBM WebSphere MQ client or server?
With most middleware-oriented software, there are client and server
components. The client is usually a smaller piece of software that provides local
access to the remote server. The server implements all of the functionality and
the client provides a relatively light facade for accessing the server’s function.

The WebSphere MQ client provides access to all of the WebSphere MQ API and
is typically used where there are limited hardware or system administration
requirements. The WebSphere MQ client is also able to connect to multiple
queue managers on different platforms.
290 Patterns: Direct Connections for Intra- and Inter-enterprise

The server provides richer administration functionality to take advantage of the
full suite of MQ functionality, such as failover support or scalability configuration
options.

During development, the client option is useful where machine resources are
limited. Any complex changes to the WebSphere MQ configuration will, however,
require the server version. The embedded WebSphere JMS provider available in
the WebSphere Studio test environment can also be used during development.

13.3 Development guidelines
In this section we consider the steps necessary to add JMS connectivity to your
application. To create the Java application:

1. Configure your JMS provider and destinations in your Integrated Development
Environment (IDE). For development you can use the internal JMS provider
that is included in IBM WebSphere Studio Application Developer.

2. Get an instance of JMS javax.jms.ConnectionFactory (usually through a JNDI
lookup).

3. Get an instance of JMS Connection from the ConnectionFactory.

4. Start the JMS Connection.

5. Get a JMS Session from the Connection object.

6. Using the Session object, create either a producer (QueueReceiver) or
consumer (QueueSender) on a specified destination (IBM WebSphere MQ
queue).

7. Use this producer or consumer to access the Destination.

8. Close the message consumer, session, and connection. Closing the
connection will close the session and the message producers and consumers
associated with it.

Detailed development steps for a sample JMS scenario are in Patterns:
Self-Service Application Solutions Using WebSphere Application Server V5,
SG24-6591.

13.4 Quality of Service capabilities
In this section we discuss Quality of Service capabilities and considerations
specific to JMS and WebSphere MQ.
 Chapter 13. Using Java Message Service 291

13.4.1 Autonomic
This section briefly discusses some of the tools important for fault monitoring and
isolation.

WebSphere MQ monitoring
There are two Windows Service snap-ins that use WebSphere MQ
instrumentation to present the user with a GUI event and monitoring tool:

� WebSphere MQ Alert Monitor (Windows)

The WebSphere MQ Alert Monitor is an error detection tool that identifies and
records problems with WebSphere MQ on a local machine. It displays
information about the current status of the local installation of a WebSphere
MQ server.

� Performance Monitor (Windows)

The Performance Monitor is a standard component of Windows. It enables
you to select and display a variety of data about the performance of the
Windows environment as tabular reports or graphs. You can use it to monitor
the depth of messages on WebSphere MQ queues, and the rates of message
arrival and removal.

WebSphere MQ restart and recovery
WebSphere MQ ensures that messages are not lost by maintaining records
(logs) of the activities of the queue managers that handle the receipt,
transmission, and delivery of messages. It uses these logs for three types of
recovery:

� Restart recovery, when you stop WebSphere MQ in a planned way
� Crash recovery, when WebSphere MQ is stopped by an unexpected failure
� Media recovery, to restore damaged objects

In all cases, the recovery restores the queue manager to the state it was in when
the queue manager stopped, except that any in-flight transactions are rolled
back, removing from the queues any messages that were not committed at the
time the queue manager stopped. Recovery restores all persistent messages;
non-persistent messages are lost during the process.

Logging and tracing
It is often helpful to examine application server log and trace files when your
application experiences JMS errors or problems. It is always important for
applications to record their activity to a logging facility. When you write a log to
the standard output file or standard error file, the application server will record it
to the corresponding log files.
292 Patterns: Direct Connections for Intra- and Inter-enterprise

13.4.2 Availability
The approaches discussed in “IBM WebSphere MQ clustering” on page 294 also
provide the node redundancy and failover capabilities needed to eliminate
single-point-of-failure for production messaging systems.

13.4.3 Performance
Some issues that play a role in JMS messaging performance are:

� WebSphere MQ client versus bindings mode connection

Using a bindings mode connection to a queue manager situated on the same
machine as the application server will speed up communication. In addition to
the performance gain, it also makes it possible to join a global transaction.

� Generic versus specific message structure

Making the message structure more generic requires more translation and
interpretation time at the sender and receiver ends. Making a message too
specific will reduce flexibility for even small changes in the message structure.

� Message persistence

Using persistent messages in MQ requires writing the messages to disk,
which takes time and reduces performance.

� Request/reply scenario

In a request/reply scenario, EJBs should only be used with appropriate
request/reply timeouts and re-tries.

� Message-driven bean

Minimize the time spent in a message-driven bean processing the message.
Let the pool of message-driven beans depend on the number of messages
that arrive at the queue.

� Optimization with connection

Start the connection when appropriate, so consumers are ready to consume
messages before the producers are started. Process messages concurrently
using a server session pool and close the connection when you are finished.
 Chapter 13. Using Java Message Service 293

IBM WebSphere MQ clustering
WebSphere MQ offers the ability to create clusters. MQ clusters provide a
number of benefits that are silently utilized by JMS applications. Clusters offer:

� Simpler administration of logically related queue managers

Clustering allows communication between queue managers to promote
information about the queues they offer. Once in a cluster, queues on remote
queue managers are visible to all queue managers if the queues are defined
as cluster queues. The number of explicit definitions within IBM WebSphere
MQ administration is reduced with the use of clusters.

� Workload and failover management

Adding queue managers to clusters allows access to WebSphere MQ
workload and failover features.

As shown in Figure 13-8, QM3 is able to load balance across the queue
named ReplyQ, since it is available on both QM1 and QM2. Similarly, if QM1
is disabled, all messages for ReplyQ are routed to QM2.

Figure 13-8 Cluster workload management

None of these features can be controlled through the JMS interfaces. However,
MQ will automatically utilize the workload and failover under JMS.

These and other features of MQ offer significant benefits and demonstrate that
IBM WebSphere MQ is a reliable, scalable, and mature JMS Provider.

13.4.4 Security
The JMS specification does not specify any features for controlling message
integrity or authentication. It is expected that a JMS provider will provide these
services. Security is considered to be a JMS provider-specific feature that is
configured by an administrator rather than controlled via the JMS API by clients.

CLUSTER_1

ReplyQ

QM1

ReplyQ

QM2

QM3
294 Patterns: Direct Connections for Intra- and Inter-enterprise

Messages arriving at a message-driven bean listener port have no client
credentials associated with them. The messages are anonymous. However,
some security can be provided if the JMS listener assumes the application server
processes credentials when invoking the message-driven bean.

WebSphere MQ provides security for its administrative functions and for access
to WebSphere MQ objects. This security relies on authentication being
performed by the security system of the underlying operating system.
Authorization of the users or groups to MQ resources is performed through the
use of an access control list (ACL) maintained through the WebSphere MQ
Object Authority Manager (OAM) command interface.

For more information see the InfoCenter article, Asynchronous messaging -
security considerations at:

http://www.ibm.com/software/webservers/appserv/infocenter.html

13.4.5 Standards compliance
The JMS enterprise messaging API has achieved wide cross-industry support. It
allows Java applications to leverage existing, enterprise-proven messaging
systems, such as WebSphere MQ. It provides application designers and
developers with standard messaging concepts and conventions that apply across
a wide range of enterprise messaging systems.

13.4.6 Transactionality
JMS providers may support transactions, but only between the client and the
messaging system, not to the target application. Once the client has sent the
message to the messaging system, the client no longer has control of its
propagation.

The WebSphere MQ JMS provider includes the JMS XA interfaces. These
interfaces allow MQ JMS to participate in two-phase commit transactions that are
coordinated by a transaction manager that complies with the Java Transaction
API (JTA).
 Chapter 13. Using Java Message Service 295

http://www.ibm.com/software/webservers/appserv/infocenter.html

13.5 Best practices
Some best practices for JMS and WebSphere MQ are:

� Use message timeouts.

Using message timeouts avoids large numbers of messages remaining on a
queue, thus reducing performance overheads. It also allows the relevance of
messages to be evaluated. For example, a message may not be relevant after
a certain period of time because the information has been superseded.

� Use message selectors.

Message selectors allow the underlying provider (through JMS) to browse
messages before they are retrieved with little application code.

� Persistent versus non-persistent.

Only use durable messages when necessary. This option needs to be
explicitly set to non-persistent, as the default in JMS is persistent.

� Clusters.

The use of IBM WebSphere MQ clusters allows simple administration, and
automatic workload management and failover.

� Message producers.

EJB message producers: In a request/reply scenario, it is important that the
issue of blocking calls is dealt with correctly. Essentially, EJBs should only be
used with appropriate request/reply timeouts and retries.

� Message consumers.

Message-driven beans: Business logic should not be implemented in the
message-driven bean. Implement the business logic in another component,
such as a session bean, and use message-driven beans only for receiving the
message. Never throw application exceptions in the onMessage method.

� Consider using XML-based messages for inter-application integration.

XML is commonly used as a messaging structure that allows for a more
portable inter-application integration model. Although it does add some
overhead to the message payload size and requires XML parsers, it is quickly
becoming a standard for inter-operability.
296 Patterns: Direct Connections for Intra- and Inter-enterprise

Part 4 Extended
Enterprise
scenarios

Part 4 provides detailed design, development, and runtime guidelines for
inter-enterprise integration solutions. It teaches you by example using IBM
WebSphere Application Server V5.0 with Web services.

Included in Part 4 are the following chapters:

� Chapter 14, “Using inter-enterprise Web services” on page 299
� Chapter 15, “Using WebSphere Data Interchange” on page 315

Part 4
© Copyright IBM Corp. 2003. All rights reserved. 297

298 Patterns: Direct Connections for Intra- and Inter-enterprise

Chapter 14. Using inter-enterprise Web
services

This chapter discusses using Web services in an inter-enterprise integration
scenario. We are using Web services for J2EE as provided with IBM WebSphere
Application Server base V5.0.2 in this scenario.

This chapter describes the following:

� Using inter-enterprise Web services in the context of our ITSO Electronics
business scenario.

� The high-level designs applied to our inter-enterprise Web services
scenarios, and examination of some asynchronous Web service approaches.

� Brief development guidelines for integrating Web service providers and
requesters across enterprise boundaries.

� Additional Quality of Service capabilities, focusing on security capabilities that
are critical in inter-enterprise integration scenarios.

14
© Copyright IBM Corp. 2003. All rights reserved. 299

14.1 Business scenario
As described in 6.3, “Inter-enterprise scenarios” on page 121, ITSO Electronics
wishes to enable their external resellers to place orders to the wholesale group.
Currently, the resellers fill out an order form and mail it to the wholesale
organization. Difficulties arise when orders cannot be filled because of latency in
the manual process and outdated inventory.

The Extended Enterprise business pattern applies to this situation. This pattern
can be applied for inter-enterprise integration activities. It will enable ITSO
Electronics to integrate their business processes with processes and information
that exist at partner organizations.

When an external reseller needs to notify the wholesale department that a part
must be ordered, the Message variation of the Exposed Direct Connection
application pattern can be applied. This Application pattern is suitable because
the external reseller will be notifying the wholesale department that a part must
be ordered, but the reseller does not require any response as part of this
process.

When the external reseller needs to know the expected delivery date for a part
on order, the Call variation of the Exposed Direct Connection application pattern
can be applied. In this instance, the external reseller requires a response from
the wholesale department, advising them of the expected delivery date for the
part in question.

The Web service can be applied to both processes. Web services used with the
HTTP transport allow integration between business partners via the Internet.
Web services also have the advantages of providing heterogeneous platform
support and loose coupling between the two systems.

This chapter extends, for inter-enterprise use, the intra-enterprise Web services
scenarios from previous chapters, specifically:

� Chapter 8, “Using RPC style Web services” on page 147
� Chapter 9, “Using document style Web services” on page 183
� Chapter 10, “Using the Web Services Gateway” on page 215

14.2 Design guidelines
This section presents the Runtime patterns and Product mappings we used to
demonstrate the Exposed Direct Connection application pattern using:

� Web services
� Web Services Gateway
300 Patterns: Direct Connections for Intra- and Inter-enterprise

Web services solution overview
Figure 14-1 shows the Runtime pattern and Product mapping we used to
demonstrate the Exposed Direct Connection application pattern, using Web
services technology across enterprise boundaries. The Partner A Secure Zone
uses the same nodes and products as the source application for the
intra-enterprise Direct Connection pattern in Figure 8-3 on page 153 (and
Figure 9-1 on page 185). The path connector from Partner A Secure Zone
includes firewalls, DMZ, and the Internet. Partner B’s infrastructure is
unspecified.

Figure 14-1 Exposed Direct Connection::Message Connection: Web services Product mapping

Web Services Gateway solution overview
Figure 14-2 shows another Runtime pattern and Product mapping used in this
scenario. It is based on IBM WebSphere Application Server V5.0.2 and the Direct
Connection application pattern. It also includes the Web Services Gateway
packaged with IBM WebSphere Application Server Network Deployment V5.0.2.

Partner A
Secure Zone

Demilitarized
Zone

Partner BInter-
enterprise

Zone

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

l

Network
Infra-

structure
Partner

Infrastructure

SOAP
/HTTP

ConnectorApp Server/
Services

WebSphere
Application Server

V5.0.2

JAX-RPC SOAP Provider Internet
 Chapter 14. Using inter-enterprise Web services 301

Figure 14-2 Exposed Direct Connection::Message Connection: Web Services Gateway Product mapping

The Partner A Secure Zone uses the same nodes and products as the source
application for the intra-enterprise Direct Connection pattern in Figure 10-3 on
page 220. As in Figure 14-1, the path connector from Partner A Secure Zone
includes firewalls, DMZ, and the Internet. Partner B’s infrastructure is
unspecified.

14.2.1 Design considerations
A number of factors affect the design of a Web service. In this section we discuss
some of the factors we considered when using Web services in our
inter-enterprise sample application.

This section extends, for inter-enterprise use, the intra-enterprise Web services
design considerations from the following sections:

� 8.4.1, “Design considerations” on page 153 for RPC style Web services
� 9.3.1, “Design considerations” on page 186 for document style Web services

We recommend reading the intra-enterprise Web services design considerations
first.

Asynchronous Web services
One risk for a source application communicating via the Internet with a target
application in another enterprise is the source application can be blocked
because of problems in the Internet communication channel. You can minimize
this risk by decoupling both applications as much as possible. One possibility is
to use asynchronous messaging style communications, where the source and
target applications don’t need to be aware of each other or active at the same.

Partner A
Secure Zone

Demilitarized
Zone

Partner BInter-
enterprise

Zone

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

l

Network
Infra-

structure
Partner

InfrastructureConnectorApp Server/
Services

SOAP
/HTTP

SOAP
/HTTP

WebSphere
Application Server

V5.0.2
JAX-RPC

WebSphere V5.0.2
Network Deployment

Web Services
Gateway

Internet
302 Patterns: Direct Connections for Intra- and Inter-enterprise

In our business scenario we describe two use cases, Update Inventory and Get
Delivery Date. The Update Inventory use case does not require a response from
the target application, so it can be implemented with a loosely coupled one-way
request, as described in Chapter 8, “Using RPC style Web services” on
page 147.

The Get Delivery Date use case is more complex because an in-parameter and a
return value are needed. On first view this use case is a typical example of the
Call variation of the Exposed Direct Connection application pattern, which has a
more natural fit with a synchronous communication channel. If we assume that
asynchronous communication between the source and target application is
required in order to reduce coupling between partner applications, we can
decompose this interaction into a one-way request and a separate one-way
response.

In this scenario the target application could provide a RequestDeliveryDate
service and the source application could provide a ResponseDeliveryDate
service, which is used to communicate the response back to the source
application.

Advantages of asynchronous communication
In asynchronous communications using messaging systems, the source
application sends the message to message-oriented middleware. The source
application sends the message and control returns immediately back to the
source application. Now the message-oriented middleware is responsible for
delivering the message to the target application. Therefore, the source
application is decoupled from the target application, and the communication
channel, during the interaction.

Disadvantages of asynchronous communication
If the source application needs a result from the target application in a later stage
of the business process, then the source application must be known to the target
application. This effort must take place either during the request or as an initial
effort before the first interaction. The first solution results in a message overhead
and the second requires a more complex infrastructure. Furthermore, the
response has to be synchronized with the corresponding request.

Asynchronous Web services approaches
In this section we describe approaches for implementing asynchronous
communication with Web services between the source and target application.
Common requirements of the approaches discussed include:

� Both partner applications can determine the end point URL for each other.
 Chapter 14. Using inter-enterprise Web services 303

� The request interaction doesn’t require an immediate response, except for a
request acknowledgement.

The first two approaches have to be implemented during the application
development phase of the source and target applications. The last approach
uses an asynchronous transport protocol that is transparent to the application
developer.

In the approaches presented we are focusing on the topic of decoupling the
request channel from the source to the target application. The channel from the
target application to the source can be de-synchronized with the same
techniques if you reverse the roles in the figures.

A difficulty arises when a significant part of the transport channel between the
source and target applications requires synchronized communications. These
links will not have the same relaxed flexibility offered by asynchronous
communications. A way to solve the problem is to introduce an asynchronous
component into the channel, which is configured to present a synchronous
interface to the synchronous connection. This “de-synchronized” link effectively
acts as a “proxy” or “buffer” between the asynchronous and synchronous
communications.

One-way invocation
In this approach we assume that the transport protocol used between the
enterprises is HTTP. Therefore, the communication is in principle synchronous,
because HTTP is a synchronous protocol. We de-synchronize the
communication at the application level within the Partner A enterprise, which is
initiating the communication.

With our Update Inventory use case, the Web service does not require an output
message so the request is defined as only having input parameters and the Web
service invocation is one-way and non-blocking. The critical path is marked with
a dotted ellipse in Figure 14-3 on page 305.
304 Patterns: Direct Connections for Intra- and Inter-enterprise

Figure 14-3 Using one-way Web service invocations

Advantages of one-way invocation include:

� The source application is decoupled from the behavior of the channel
between the enterprises.

� The source application is decoupled from the behavior of the target
application in the partner enterprise.

� The source application is decoupled from any intermediary (such as a
gateway) which is used as an exit point from the enterprise.

Some disadvantages of one-way invocation are:

� Services provided by target applications must only implement one-way
transmission style.

� The delivery of the request message is not reliable.

Using a de-synchronization node
Similar to the first approach, we assume that a synchronous transport protocol
such as HTTP is used. In this approach, we try to give the source application an
interface that is more service oriented. The service that the target application is
offering to the source application should be asynchronous without any additional
effort for the source application developer. Therefore, the critical path for
de-synchronizing the source and target application is within the target enterprise,
as shown in Figure 14-4 on page 306.

Partner A

SOAP
Adapter

App Server/
Services

Request

Fi
re

w
al

l
Fi

re
w

al
l

Fi
re

w
al

l
Fi

re
w

al
l App Server/

Services

SOAP
Adapter

App Server/
Services

Response

Fi
re

w
al

l
Fi

re
w

al
l

Fi
re

w
al

l
Fi

re
w

al
l App Server/

Services

Critical Path

Partner B

Enterprise
Boundaries

Asynchronous
Synchronous
 Chapter 14. Using inter-enterprise Web services 305

Figure 14-4 Using the Distributed Event-Based Architecture for de-synchronization

One approach is to open a separate thread in the target application to execute
the request. Meanwhile, the request channel can be closed by sending back an
empty response. However, such an approach may impact application server
performance and scalability and is usually not recommended.

The Distributed Event-Based Architecture (DEBA) framework, which is available
from IBM alphaWorks®, provides another approach. The Distributed
Event-Based Architecture for Web services is basically an implementation of the
Observer pattern. From a high-level view, DEBA is simply implementing the
components of this pattern within the Web services context.

DEBA helps to introduce a multi-port communication in a Web services world
simply by using a framework. You can find out more about the full power of this
framework at:

http://www.alphaworks.ibm.com/tech/DEBA4WS?Open&ca=daw-flnt-022702

For a brief introduction, a good starting point is:

http://www.ibm.com/developerworks/webservices/library/ws-dbarch/

Each service requester is an observer that is interested in a state or result of the
service provider. The service provider is the subject of the observation. In
standard Web services scenarios today, the requester connects to the provider
and receives a response immediately. Following this tactic means that the
observer has frequently to ask if there is any new information on the subject that

Partner A

SOAP
Adapter

App Server/
Services

Request

Fi
re

w
al

l
Fi

re
w

al
l

Fi
re

w
al

l
Fi

re
w

al
l

SOAP
Adapter

App Server/
Services

Response

Fi
re

w
al

l
Fi

re
w

al
l

Fi
re

w
al

l
Fi

re
w

al
l App Server/

Services

Partner B

Enterprise
Boundaries

App Server/
Services

D
EB

A

Critical Path
306 Patterns: Direct Connections for Intra- and Inter-enterprise

http://www.alphaworks.ibm.com/tech/DEBA4WS?Open&ca=daw-flnt-022702
http://www.ibm.com/developerworks/webservices/library/ws-dbarch/

the observer is interested in. For our scenario, the Observer pattern is a good
solution. The observer (requester) attaches itself to the subject (provider) via a
Web service invocation, and sends its own URL for the update response. For the
update response, the subject initiates a separate Web service invocation to the
observer.

Note that the requester and provider roles are temporary in the Observer pattern;
they only indicate which component initiates the communication. This application
of the Observer pattern shows how Web services can provide highly
decentralized and distributed solutions, even when using SOAP to establish a
direct connection between just two partners.

If you reduce the number of observers to one you can implement the Message
variation of the Exposed Direct Connection application pattern. Keep in mind that
this doesn't necessarily mean that the interaction from requester to provider is
asynchronous at the implementation level. This depends on the communication
protocol you are using between requester and provider. If you are using HTTP,
then the communication is synchronous, even when you don't expect any return
value.

Advantages of using de-synchronization include:

� The asynchronous mechanism is transparent to the source application.

� A receive acknowledge comes from the Partner B enterprise which is hosting
the target application.

Some disadvantages of using de-synchronization include:

� The source application is not decoupled from the behavior of the transport
channel, such as the Internet.

� Application development effort is required in the target application in the
Partner B enterprise.

Using an asynchronous transport protocol
The architectural overview diagram for this approach is similar to the diagram for
the one-way invocation in Figure 14-3 on page 305. In fact it is the same figure,
but the transport protocol used is different.

The main disadvantage of previous approaches is that the asynchronous
mechanism is not transparent for the source application or the target application
at the implementation level. These approaches are not flexible for future
migration to new transport technologies. For example, when applications switch
to a new asynchronous transport protocol (such as from HTTP to JMS), then the
asynchronous mechanism will be implemented twice.
 Chapter 14. Using inter-enterprise Web services 307

Therefore, we want to briefly discuss locating the asynchronous mechanism in
an asynchronous transport protocol, like Java Message Service (JMS).

In Figure 14-3 on page 305, we de-synchronized the communication from the
source application to the target application. The channel back from the target
application doesn’t need to be the same channel or even the same transport
protocol. It is also conceivable that the response is communicated to a different
application and not to the initial source application.

In both cases, we simply use JMS to delegate the task of delivering the message
to the target application to the message-oriented middleware. Using this
approach give us the following advantages:

� The asynchronous mechanism is transparent to the application level.

� It is possible to switch to other transport protocols without affecting the
application.

� Using message-oriented middleware has the additional value of a reliable
message exchange.

The price for this approach is more complex infrastructure.

One approach can be IBM WebSphere MQ with the MQ SupportPac™, MS81:
WebSphere MQ internet pass-thru. Provided both partners are using WebSphere
MQ, this SupportPac can be used to implement messaging solutions between
remote applications across the Internet. For details, see:

http://www.ibm.com/software/integration/support/supportpacs/individual/ms81
.html

The WS-ReliableMessaging draft standard is being developed to address the
issue of interoperability between different reliable transport infrastructures. For
further information on WS-ReliableMessaging, refer to:

http://www.ibm.com/developerworks/webservices/library/ws-rm/

IBM Web Services Gateway considerations
Chapter 10, “Using the Web Services Gateway” on page 215 describes use of
the Web Services Gateway in intra-enterprise scenarios. The gateway operates
by adding a layer of abstraction that separates deployment from invocation.
While this is important in an intranet environment, it is even more important in an
Extended Enterprise environment because of the diversity of applications,
environments, and users who will be interacting with the exposed service.

In inter-enterprise scenarios, the Web Services Gateway can be used to:

� Secure your Web services using the gateway access control mechanisms
308 Patterns: Direct Connections for Intra- and Inter-enterprise

http://www.ibm.com/software/integration/support/supportpacs/individual/ms81.html
http://www.ibm.com/developerworks/webservices/library/ws-rm/

� Act as an reverse proxy providing indirect access to your internal Web
services

� Provide a common access point for partners needing access to your
infrastructure

� Provide protocol transformation, so a HTTP/SOAP client can access a
JMS/SOAP service, for example

As shown in the Web Services Gateway product mapping in Figure 14-2 on
page 302, you may also want to access external Web services from inside your
enterprise. In this case, the gateway:

� Provides a single point for controlling access to external services.
� Hides changes to the external Web services from your internal client

applications.

The Product mapping in Figure 14-2 on page 302 places the gateway on the
secure internal network behind the DMZ. The advantage of this configuration is
the gateway can provide access services using protocols that are not as
firewall-friendly as HTTP. For example, the gateway can enable Web service
clients to access EJB, JMS, and JavaBean applications.

The gateway could also be located in the DMZ. All the firewalls in our example
are configured for network address translation, so SOAP over HTTP can be used
to pass through the firewalls. This may not work if the gateway is using RMI to
access an EJB on the secure network, for example.

The performance overhead of introducing an additional node, such as the
gateway, should also be considered. There may be performance impacts due to:

� Extending the path length.

� Converting into an internal data representation.

14.3 Development guidelines
To test the Extended Enterprise Web services patterns presented in this chapter,
we simply introduced the firewalls and a simulated Internet between the source
and target application scenarios from:

� Chapter 8, “Using RPC style Web services” on page 147
� Chapter 9, “Using document style Web services” on page 183
� Chapter 10, “Using the Web Services Gateway” on page 215

Our target application Web services and our source application Web service
clients were unchanged. We just modified the end point DNS entries where
needed and opened the required firewall ports. You could also update the
 Chapter 14. Using inter-enterprise Web services 309

end-point SOAP address location in the client WSDL, then redeploy the client
application to WebSphere, selecting the Deploy WebServices option (see
Figure 8-14 on page 172).

When using the Web Services Gateway between the source and target
applications, that gateway service can be redeployed to use an external Web
service provider with no change required to the source application. See 10.4.2,
“Deploying the Web Services Gateway service” on page 224

See Appendix A, “Scenarios lab environment” on page 329 for a description of
our lab environment.

14.4 Quality of Service capabilities
In this section we discuss Quality of Service capabilities and considerations
specific to inter-enterprise Web services. For further discussion on Quality of
Services for Web services in general, see 8.6, “Quality of Service capabilities” on
page 177. For document style Web services see 9.6, “Quality of Service
capabilities” on page 209. For the Web Services Gateway see 10.5, “Quality of
Service capabilities” on page 233.

One of the main challenges when developing applications in an inter-enterprise
environment is the uncertainty about the connection between the enterprises and
the partner enterprise infrastructure.

14.4.1 Security
Security is one of the crucial QoS aspects which needs to be addressed when an
enterprise plans to expose their internal applications to partner organizations.
For the whole context and its consequences, see:

� Security in a Web Services World: A Proposed Architecture and Roadmap, an
IBM white paper available at:

http://www.ibm.com/developerworks/webservices/library/ws-secmap/

� The OASIS Web Services Security (WSS) Technical Committee home page
at:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

To address the security risks in an inter-enterprise scenario with Web services, it
is critical to understand the how the Web services security context is defined.
Web services defines an end-to-end security context as shown in Figure 14-5 on
page 311. Furthermore, it is necessary to recognize that this not necessarily
congruent with the security context of the underlying transport protocol.
310 Patterns: Direct Connections for Intra- and Inter-enterprise

http://www.ibm.com/developerworks/webservices/library/ws-secmap/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

Figure 14-5 End-to-end Web services security context

A good example of this is the HTTP transport protocol, commonly used in Web
services scenarios. As shown in Figure 14-6, HTTP itself defines a security
context from point to point. In reality, an HTTP request passes through several
intermediaries (for example, routers and Web server in a DMZ) before the
request reaches the endpoint.

Figure 14-6 Point-to-point security context in a Web services scenario

Consequently, each intermediary that is working on the application level with the
SOAP message is a potential security risk. This is true even when you use
HTTPS instead of HTTP.

We have to apply security at a higher level because securing the message at the
transport protocol level is not sufficient. As described in 8.6.4, “Security” on
page 179, WS-Security describes how to secure the message using XML
encryption and XML digital signature. WS-Security defines how to integrate
these specifications into a SOAP message.

Non-repudiation is also more significant in an inter-enterprise scenario than in an
intra-enterprise scenario. This requirement can be fulfilled with a combination of
sender authentication and message signature.

Using firewalls
In the case of inter-enterprise communication, data is often exchanged over a
public network such as the Internet. The exposed interface for communications is

Intermediary Web ServiceRequester

Security Context

Intermediary Web ServiceRequester

Security
Context

Security
Context
 Chapter 14. Using inter-enterprise Web services 311

visible to everyone on the Internet. Communication channels and data must be
secure because there are unknown Internet users with unknown intentions. In
the simplest scenario a firewall as entry point to the enterprise infrastructure may
be sufficient.

But the higher the value of the services an enterprise offers, the more the
channels must be secured. In such cases it may be necessary to implement a
demilitarized zone (DMZ) with several security levels. Figure 14-7 shows a
possible scenario.

Figure 14-7 Securing the enterprise infrastructure with a two-level DMZ

In this scenario we introduce multiple levels to secure the enterprise
infrastructure. Each level is protected by a separate firewall which performs
network address translation and only allows traffic through explicitly enabled
ports. In the first level we introduce a reverse proxy to hide the internal network
structure. Using a router in the second level decouples the intranet from the
Internet. The router may also introduce several subnets, which gives you
additional security because the requests have to be routed to cross the subnet
boundaries. This means you have better control because you can decide which
request has to go to a specific port and which ports are allowed.

It is clear that infrastructure increasing security on the transportation level also
has its drawbacks. The most important disadvantage is the increased path length
from the source to the target application. Therefore, you have to take into account
the increased execution time of requests. A good load balancing approach is also
crucial for high traffic servers.

In addition to securing the communication channel and message exchange, it is
important to:

� Avoid the risk of malformed messages from outside, for example, using the
Web services engine to validate messages before invoking the application.

App Server/
Services

IP Translation
Port Selection

Fi
re

w
al

l
Fi

re
w

al
l Reverse

Proxy

Fi
re

w
al

l
Fi

re
w

al
l

Fi
re

w
al

l
Fi

re
w

al
l

Router
App Server/

Services

DMZ Level 1 DMZ Level 2
312 Patterns: Direct Connections for Intra- and Inter-enterprise

� Avoid denial-attacks, for example, using dedicated Web services servers.

� Increase the control of Web services interactions, for example, using separate
ports in the firewalls.
 Chapter 14. Using inter-enterprise Web services 313

314 Patterns: Direct Connections for Intra- and Inter-enterprise

Chapter 15. Using WebSphere Data
Interchange

This chapter discusses using WebSphere Data Interchange in an inter-enterprise
integration scenario. We are using WebSphere Data Interchange V3.2 and iSoft
Peer-to-Peer Agent V3.1.2 in this scenario.

This chapter describes the following:

� Using WebSphere Data Interchange in the context of our ITSO Electronics
business scenario.

� Design guidelines for using WebSphere Data Interchange.

� Development guidelines for using WebSphere Data Interchange.

This chapter is based on the following IBM Redpapers:

� WebSphere Data Interchange Installation and Configuration, REDP3600

� Implementation of iSoft and Integration with an EAI solution, REDP3625

15
© Copyright IBM Corp. 2003. All rights reserved. 315

15.1 Business scenario
As described in our inter-enterprise Web services scenario in 14.1, “Business
scenario” on page 300, ITSO Electronics wishes to enable their external resellers
to place orders to the wholesale group. Currently, the resellers fill out an order
form and mail it to the wholesale organization. Difficulties arise when orders
cannot be filled because of latency in the manual process and outdated
inventory.

In this scenario we examine an Electronic Data Interchange (EDI) solution. The
ITSO Electronics wholesale organization needs to integrate with diverse external
resellers. Each reseller may have their own internal representation of the data
required in the order process. The EDI solution needs to translate internal order
data of each partner into an agreed EDI-compatible format. It also needs to be
capable of exchanging documents between partners over the Internet in a secure
and reliable way.

15.2 Design guidelines
Figure 15-1 shows the Runtime pattern and Product mapping for the Message
Connection variation of the Exposed Direct Connection application pattern
across enterprise boundaries, using WebSphere Data Interchange for
Multiplatforms.

Note: We didn’t implement this solution in the ITSO Electronics sample
application provided with this redbook. For sample implementations using
WebSphere Data Interchange, see the redpapers listed at the start of this
chapter.
316 Patterns: Direct Connections for Intra- and Inter-enterprise

Figure 15-1 Exposed Direct Connection::Message Connection: WebSphere Data Interchange Product
mapping

This product mapping uses IBM WebSphere MQ V5.3.1 as the transport
mechanism between WebSphere Application Server, WebSphere Data
Interchange, and iSoft Peer-to-Peer Agent.

WebSphere Data Interchange V3.2 with CSD1 is used to adapt each type of
message/document to partner requirements. The product mapping uses iSoft
Peer-to-Peer Agent V3.1.2 to adapt MQ messages and documents to the AS2
EDI protocol for secure and reliable transport of messages and documents with
business partners via the Internet.

15.2.1 Electronic Data Interchange
Electronic Data Interchange (EDI) is widely accepted by companies all over the
world as the way to electronically exchange business data. Business documents
such as purchase orders, invoices, shipping notices, and price catalogs are
exchanged between companies in a structured and computer-processable
format.

Organizations are recognizing the value of many years of investments in EDI.
Rather than replacing existing solutions, they are extending and evolving their
EDI transactions. These existing EDI solutions are considered an integral part of
a multi-modal B2B gateway or hub alongside XML, Web solutions, and portals.
By integrating B2B and EDI technologies, event-driven or process-driven
integration models can be supported using the existing EDI solution.

Partner A
Secure Zone

Demilitarized
Zone

Partner BInter-
enterprise

Zone

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

l

Network
Infra-

structure
Partner

Infrastructure
Message

Connector
App Server/

Services

AS2
/HTTP

MQ

WebSphere
Application Server

V5.0.2
JMS

WebSphere Data
Interchange V3.2
iSoft P2P Agent

V3.1.2

Internet
 Chapter 15. Using WebSphere Data Interchange 317

Advantages of EDI
The market is driving every business to act smarter and quicker and to be more
visible. Much of this can be achieved using EDI. Even better, EDI can give
companies a better knowledge of their markets, because it opens up possibilities
to collect and analyze information from the EDI transactions they are generating.

Among the most visible benefits of adopting EDI are:

� Reduction of data entry errors
� Reduced cycle time
� Minimization of paper use
� Improved relationships with your business partners
� Information in electronic form is more easily shared throughout the

organization
� Improved inventory management

EDI transmission
EDI is a concept. It does not define any techniques or point to any specified
product or service. An EDI transmission can basically be divided into two logical
parts: the message itself and the communication.

Message standards
Since the idea of EDI is to have a standardized message, a number of different
standards have been developed and established over the years. The most
commonly used message standards are:

� ANSI ASC X12 - US standard

� EDIFACT - standard recommended by the United Nations, used mainly in
Europe

� UNTDI - UK retail standard

� ODETTE - European automotive industry

� Others, such as HIPAA, VICS, VDA, UCS, and so forth

Communication
Transportation of the EDI file over a network can be done in many ways. Any
network and any protocol can be used as long as it fits the needs. Three types of
communication are:

� Value Added Networks (VAN) communication

Using a value added network for the transmission of files is traditionally seen
as the most secure way of communication. Apart from doing pure
communication, a VAN also provides value adds such as built-in security,
restart and recovery facilities, archive capability, 24x7 availability, and
notification of message arrivals.
318 Patterns: Direct Connections for Intra- and Inter-enterprise

� EDI over the Internet

The initiative to move toward securely transmitted EDI messages over the
Internet is known as EDI INT. Presently there are two main EDI INT initiatives,
known as applicability statements AS1 and AS2, which describe how current
Internet standards can be used to achieve VAN functionality.

– AS1 uses MIME (Multipurpose Internet Mail Extensions) and SMTP
(Simple Mail Transfer Protocol).

– AS2 uses MIME and HTTP (Hypertext Transfer Protocol) for
process-to-process real-time EDI.

The Internet solutions are often considered much cheaper than traditional
VANs, but Internet solutions often leave it to the user to add functionality to
achieve adequate security, reliability, and other features that are included in a
VAN.

IBM Business Exchange Services - Internet transfer is an example of Internet
communication.

� Message queuing

Message queueing (MQ) connects commercial systems in today’s business. It
provides assured, once-only delivery of data in any format.

IBM WebSphere MQ is an example of this.

While the use of EDI technology is widespread, technology changes and
evolution have resulted in the use of many types of B2B communication
infrastructures. Besides the traditional VAN-based EDI communication, AS1 and
AS2 Internet protocols are still tied more or less to traditional EDI
communications. More recently, Web services-based technologies also became
available for use in the B2B area. While this technology is still maturing, it is clear
that a flexible B2B solution should handle multiple communication techniques.

The Internet is widely perceived as being much less expensive than a VAN, but
this is not necessarily the case. VANs generally provide valuable services, such
as TPA management, service-level administration, security, and
store-and-forward capability. The Internet requires you to manage these
elements yourself, which means the total costs are not always lower than a VAN.
 Chapter 15. Using WebSphere Data Interchange 319

Elements of an EDI solution
As well as obvious components of an EDI solution, such as application programs
and systems, VANs, and trading partners, a complete and flexible solution should
include the following important elements:

� Translators

A universal problem in integration of applications is the conversion of shared
data from one format to another. Common data fields—such as names,
addresses, and numbers—often have different formats across disparate
systems. The traditional approach to EDI implementation is to place the
function that converts application data to the EDI standard directly into the
business application. This approach is less effective because a separate
program is required for each transaction as well as for each trading partner. In
addition, it is difficult to keep up with new versions of standards because
programs must be modified every time a trading partner adopts a newer
standard or version of the standard.

This approach has changed with the introduction of third-party translation
software, also known as mappers. The translator is responsible for mapping
application data to the specific EDI format and vice versa. This translation
software is implemented in either a centralized engine or in an adapter. It
must handle primary EDI standards as well as different and evolving versions
of each standard.

� Batch enveloper/de-enveloper

Typically, because VAN charges are based on each transaction sent,
enterprises have been driven to find ways to reduce the number of
transactions and to compress more information into each. Consequently, EDI
messages are sent in large batches, which can then be grouped from, or split
out to, several divisions or areas of an enterprise.

Enveloping batch messages involves placing the EDI standard header and
trailer around transactions in preparation for sending. When the envelope is
complete, the package can then be sent to a trading partner through a VAN.
Similarly, batch transactions must be de-enveloped when they are received
from the VAN.

� Message router

Once the EDI message is de-enveloped, it can be divided into function
groups. Each function group may relate to a different division or area of the
business. A mechanism is needed to sort messages destined for different
groups and deliver them to the appropriate target applications. This means
there is a requirement to fan in and fan out messages. Message
transformation may also be required to get the message into the correct
format for the end applications.
320 Patterns: Direct Connections for Intra- and Inter-enterprise

� Trading Partner Agreements (TPA)

A TPA is an agreement related to the exchange of information in electronic
transactions. The term includes a particular agreed-upon standard for
business documents, as well as communications and business protocols, the
service-level agreement, and more. TPAs can also be extended to include
business events. For example, if an event occurs in one organization that
might affect processes in a second organization, the TPA can specify that the
second organization be alerted to the event.

15.2.2 WebSphere Data Interchange
IBM WebSphere Data Interchange for Multiplatforms fulfills the core role of EDI
Broker in the IBM EDI solution, shown in Figure 15-2.

Figure 15-2 The IBM EDI solution

In the context of a typical enterprise integration architecture, WebSphere Data
Interchange performs the specialist EDI validation, transformation, and exchange
functions, and propagates the resulting transformed information either internally
or externally. Internal propagation of transformed information may be via a
message broker, a process broker, direct to the business applications, or any
combination of those depending on the needs of the enterprise. External
propagation of transformed information or receipt of information may be via a
specialized dedicated VAN gateway, an Internet B2B gateway, directly to a
trading partner, or any combination of those interfaces depending on the nature
of the trading relationship between the enterprise and its trading partner.

Logistics:
Accounting:

Manufacturing:

Business
Applications

B2B GatewayEDI
Broker

Process
Broker

Message
Broker

Database

Information
Exchange

Connection
Software

 Business
Exchange

Services - Internet
Transfer Feature

Exchange for
WebSphere MQ

Direct
Connection
 Chapter 15. Using WebSphere Data Interchange 321

See also 5.2.5, “WebSphere Data Interchange” on page 106 in Chapter 5, “Node
types and Product descriptions”.

15.2.3 The iSoft Peer-to-Peer Agent
iSoft’s Peer-to-Peer Agent (P2PAgent) allows you to exchange documents
between trading partners over the Internet in a secure and reliable way. The
P2PAgent program can accept data from internal applications in a number of
ways.

A traditional way of passing data to the agent is by delivering files to a given
directory. The agent can filter through these files using a number of selection
criteria to determine what to do with a given file. Also, when a file has been sent,
you can choose to rename the file or to delete it. Simply preserving the file may
result in the file being sent multiple times. The file system can also be used to
store received files. You can configure the agent in such a way that the original
file name (as it was named by the sender) is preserved, or that the file name is
generated. This last option can avoid files being accidentally overwritten.

A more recent addition to the product is support for WebSphere MQ. The
P2PAgent can retrieve messages from an inbox queue. It considers each
message as a separate entity that should be sent to the correct destination
trading partner. Also, when the agent receives documents from trading partners,
it can store the received document as a single message in a queue. By default,
such a message will be prefixed with an MQRFH2 header that contains
meta-data information, such as the trading partner that had sent the document
and the target trading partner ID. The MQRFH2 header is constructed in such a
way that this information is also available to JMS clients in the form of message
properties.

Further internal data delivery mechanisms include support for SMTP and HTTP.
A received document or a received receipt can be delivered as an e-mail to a
configured e-mail address via an SMTP server. HTTP communication for
sending documents is used, for example, in a multi-machine setup of iSoft’s
P2PAgent. But if your internal applications can hand over EDI documents via
HTTP, then they can hook into the P2PAgent directly.

Since the P2PAgent program is an AS2 client program, it is no surprise that the
agent supports HTTP and HTTPS for sending and receiving documents via the
Internet. The agent is also an AS1 client, which means that it needs to support
SMTP for sending and receiving documents as an e-mail attachment.

Figure 15-3 summarizes the support for the different techniques to move data to
and from the agent.
322 Patterns: Direct Connections for Intra- and Inter-enterprise

Figure 15-3 Inbound and outbound communication options

15.2.4 Integrating iSoft with WebSphere Data Interchange
Figure 15-4 shows the source application can pass outbound data to the EDI
translation engine and WebSphere Data Interchange via a queue, using JMS (or
the standard MQ API) with WebSphere MQ V5.3.1. Based on the setup of
WebSphere Data Interchange, the translation engine then generates an EDI
document in a queue, where it is picked up by the iSoft P2PAgent.

Figure 15-4 Integrating iSoft with WebSphere Data Interchange

For inbound communication, the iSoft P2PAgent drops the EDI document in a
queue, where the translation engine retrieves it. The translation engine then
produces a new document in an internal format and stores it as a message in a
queue. The source application retrieves the inbound message using JMS.

Internet
HTTP(s)

SMTP
P2P Agent

WebSphere
MQ

File System

HTTP

e-mail

Partner A
Secure Zone

EDI_OUT

iSoft
WDI

Transaction
XML-EDI

XML_IN

FF
ii
rr
ee
ww
aa
ll
ll

Source
Application

AS2/
HTTPMQMQ
 Chapter 15. Using WebSphere Data Interchange 323

15.3 Development guidelines
When installing and configuring a WebSphere Data Interchange environment, we
need to make a distinction between a development environment and a runtime
environment. In the development environment, users will create maps and
profiles. The runtime environment is the environment where the translation and
distribution of EDI messages will occur. The runtime platform may be different
from the development environment platform.

15.3.1 Development environment
The development environment consists of the WebSphere Data Interchange
Client on a number of Windows machines and a DB2 database accessed via
ODBC, as shown in Figure 15-5. The database itself can be local or remote. It
can even be on a non-Windows platform, such as AIX.

Figure 15-5 WebSphere Data Interchange development environment

Development machines that need access to the WebSphere Data Interchange
database will need the DB2 Connect™ product to be able to connect to the
database.

ODBC
link

WDI Database (DB2)

WDI Client - Windows 2000, Windows NT
(remote) (local)

DB2 Connect V7.2

ODBC
link
324 Patterns: Direct Connections for Intra- and Inter-enterprise

The WebSphere Data Interchange Client environment is also used to configure
several aspects of the runtime environment that are not directly related to
building maps. Settings such as partner profiles, queue profiles, and locations
and names of files are all set via the WebSphere Data Interchange Client. This
functionality of the client might have an impact on an installation and how
database access and security is configured.

Given the possibilities for using the WebSphere Data Interchange Client, the
installation and configuration of a WebSphere Data Interchange development
environment will involve configuration work at the database level and possibly at
the WebSphere MQ level.

15.3.2 Runtime environment
The runtime environment for a WebSphere Data Interchange solution can be
quite broad, with many complex interactions between WebSphere Data
Interchange itself and other applications, as shown in Figure 15-6 on page 326.
But in general, WebSphere Data Interchange operates in two modes:

� Batch mode

� Launching the WDIAdapter program

In batch mode, an automation product launches the ediservr program. This
program receives instructions from a command file that contains so-called
PERFORM and other commands. The WebSphere Data Interchange Server will
then execute these commands, which will usually result in sending, receiving,
and translating a number of EDI documents that are ready to process. One
reason for doing this in a batch mode is to save costs. Combining several EDI
documents into a single EDI transmission document is often cheaper than
sending each individual document separately.

When EDI documents are being sent over the Internet, there is no reason to
delay transmission. Communication costs for the Internet are normally not
measured on a transaction basis. Therefore, a company that uses an Internet
connection for EDI communication wants to send EDI documents as soon as
they become available. In this situation, the second method of using WebSphere
Data Interchange is launching the WDIAdapter program. This program is
designed to be started by WebSphere MQ’s trigger monitor. As shown in
Figure 15-6, when a message arrives in queue from enterprise applications, the
trigger monitor will start the WDIAdapter program, which will translate it
according to the definitions in the WebSphere Data Interchange database. The
translated message is then written on another queue for transmission by an
Internet gateway product, such as iSoft or CrossWorldsTPI, or by WebSphere
MQ itself.
 Chapter 15. Using WebSphere Data Interchange 325

Figure 15-6 WebSphere Data Interchange runtime environment

Given the possible scenarios in a runtime environment, the configuration and
installation of the WebSphere Data Interchange Server will usually include
database tasks as well as WebSphere MQ tasks.

Command File

ediservr<
command.file

WDI
Engine MQ Trigger

Monitor

Queue Manager

TPI

iSoft

Business
Applications

InterChange
Server

WMQI

WDI DB2
Database

AS/2
Internet

WDI
Adapter
326 Patterns: Direct Connections for Intra- and Inter-enterprise

Part 5 Appendixes

Part 5
© Copyright IBM Corp. 2003. All rights reserved. 327

328 Patterns: Direct Connections for Intra- and Inter-enterprise

Appendix A. Scenarios lab environment

In this appendix we describe the lab setup we used when deploying our Direct
Connection Web services scenarios.

We then explain how to set up the ITSO Electronics sample in the IBM
WebSphere Studio Application Developer development/test environment.

A

© Copyright IBM Corp. 2003. All rights reserved. 329

Lab setup
Figure A-1 shows the Windows lab environment we used when deploying the
Direct Connection Web services scenarios described in Part 3, “Application
Integration scenarios” on page 213 and in Part 4, “Extended Enterprise
scenarios” on page 297.

The scenarios are:

1. Application Integration using RPC and document style Web services:

– Chapter 8, “Using RPC style Web services” on page 147

– Chapter 9, “Using document style Web services” on page 183

2. Application Integration using Web services and the Web Services Gateway:

– Chapter 10, “Using the Web Services Gateway” on page 215

3. Extended Enterprise using Web services and the Web Services Gateway:

– Chapter 14, “Using inter-enterprise Web services” on page 299

4. Application Integration using the Web Services Gateway to access a CICS
application:

– Chapter 11, “Using the Web Services Gateway with J2EE Connectors” on
page 237

5. Application Integration using Web services to access a .NET application:

– 9.5, “Integration with .NET-based Web services” on page 205
330 Patterns: Direct Connections for Intra- and Inter-enterprise

Figure A-1 Lab environment

Sample application setup
To install the ITSO Electronics sample application in the IBM WebSphere Studio
Application Developer V5.1 for Windows workspace:

1. Download the ITSO Electronics sample. See Appendix B, “Additional
material” on page 335 for details.

2. Extract the ITSO Electronics sample to the required location, for example C:\
on Windows

3. Stop WebSphere Application Server if it is running locally.

4. Start Application Developer using the -data option to specify the ITSO
Electronics workspace folder. For example, on Windows:

wsappdev -data C:\workspace

5. Import the ITSO Electronics projects into your WebSphere Studio workspace:

a. Select File → Import from the Studio main menu.

b. In the Import window, select Existing Project into Workspace as the
import source and click Next.

CICS TG
CICS TS

Target App

WebSphere
V5.0

Target
Application

wtsc66oe
(z/OS)

CICS

fw1w
(NT4)

fw2w
(NT4)

IB
M

 S
ec

ur
ew

ay

Fi
re

w
al

l

WebSphere
V5.0

WebServices
Gateway

.NET
Target App

WebSphere
Enterprise

V5.0
WebServices

Gateway

WebSphere
V5.0

Source
Application

IB
M

 S
ec

ur
ew

ay

Fi
re

w
al

l

wsgw2
(W2K)

wsgw1
(W2K)

source
(W2K)

target
(W2K)

www.webservicex.net

1

2

3

4

5

internet
(W2K)

TC
PM

on
 Appendix A. Scenarios lab environment 331

c. In the next window, click Browse, then navigate to the Build project folder.
For example, on Windows:

C:\workspace\Build

Click OK, then click Finish to import the project.

d. Repeat steps a to c for each of the remaining ITSO Electronics projects:

• ITSOSourceAppWeb
• ITSOSourceApp
• ITSOTargetAppEJB
• ITSOTargetAppWeb
• ITSOTargetApp

6. Set up the service endpoint DNS names.

Our development/test environment consisted of two machines, one machine
running the ITSOSourceApp and ITSOTargetApp in the WebSphere Studio
test environment, and a second machine running the Web Services Gateway
on WebSphere Application Server.

You can use the sample application without modifying the WSDL endpoint
addresses if you add the entries shown in Example A-1 to your system hosts
file on both machines (<WINDIR>\system32\drivers\etc\hosts on Windows).
Just substitute 10.10.10.10 with the IP address of your WebSphere Studio
machine, and 10.10.10.11 with the IP address of your Web Services
Gateway machine.

Example: A-1 Sample application hosts file entries

...
10.10.10.11 wsgw1.itso.ral.ibm.com wsgw1
10.10.10.11 wsgw2.itso.ral.ibm.com wsgw2
10.10.10.10 target.itso.ral.ibm.com target
...

7. Deploy the following services on your Web Services Gateway(s):

– InventoryDoc, as described in Chapter 10, “Using the Web Services
Gateway” on page 215.

– InventoryCics, as described in Chapter 11, “Using the Web Services
Gateway with J2EE Connectors” on page 237.

8. Generate the Web service classes and deployment descriptors.

You can do this as described in the scenarios chapters, Chapter 8, “Using
RPC style Web services” on page 147 through to Chapter 11, “Using the Web
Services Gateway with J2EE Connectors” on page 237.

Alternatively, you can use the wsdeployall.cmd command script in the Build
project as follows:
332 Patterns: Direct Connections for Intra- and Inter-enterprise

a. Select, then right-click the Build/wsdeployall.cmd script, and select
Open With → Text Editor from the pop-up menu.

b. Set the WAS_HOME and STUDIO_WSPACE variables for your
environment.

c. Save your changes and close the editor.

d. Right-click the wsdeployall.cmd file and select Open With → System
Editor to launch the script.

9. Generate the EJB deployment code:

a. Select, then right-click the ITSOTargetAppEJB project, and select
Generate → Deploy and RMIC Code from the pop-up menu.

b. In the Generate Deploy and RMIC Code window, click Select all to select
all the EJBs, then click Finish.

10.Start the applications:

a. Right-click ITSOTargetApp and select Run on Server....

b. In the Server selection window, set the Server type to WebSphere version
5.0 Test Environment and click Finish.

c. Right-click ITSOSourceAppWeb and select Run on Server....

The ITSO Electronics welcome page should appear, as shown in Figure 8-2
on page 150.

In Chapter 11, “Using the Web Services Gateway with J2EE Connectors” on
page 237, we implement the ITSOConnectorApp for deployment on the Web
Services Gateway. To install this application in the IBM WebSphere Studio
Application Developer Integration Edition V5.0 for Windows workspace:

1. Start WebSphere Studio Integration Edition using the -data option to specify
the workspace folder. For example, on Windows:

wsappdevie -data C:\workspaceIE

2. If needed, import the CICS ECI resource adapter, as described in “Import the
resource adapter into the workspace” on page 242.

3. Import the ITSOConnectorApp.ear file into your WebSphere Studio
Integration Edition workspace:

Tip: To skip deployment of any of the Web service servers or clients,
comment out the call statement(s) in wsdeployall.cmd for the service. Use
the WSDL file name immediately before each call statement to work out
which service is which. (The Inventory and InventoryDoc services have two
call statements; one to emit the Web service server and one for the client.)
 Appendix A. Scenarios lab environment 333

a. Select File → Import from the Studio main menu.

b. In the Import window, select EAR file as the import source and click Next.

c. In the next window, click Browse, then navigate to the
ITSOConnectorApp.ear file. For example, on Windows:

C:\workspace\Build\ITSOConnectorApp.ear

Click OK, then click Finish to import the EAR file.
334 Patterns: Direct Connections for Intra- and Inter-enterprise

Appendix B. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described in this appendix.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246933

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG246933.

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
sg246933.zip Zipped ITSO Electronics sample

B

© Copyright IBM Corp. 2003. All rights reserved. 335

ftp://www.redbooks.ibm.com/redbooks/SG246933
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 20 MB
Operating System: Windows, AIX, Linux
Processor: 500 MHz Pentium, pSeries®
Memory: 384 MB RAM minimum

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.
336 Patterns: Direct Connections for Intra- and Inter-enterprise

acronyms
B2B Business-to-business

API Application Programming
Interface

BPM Business Process
Management

CCI Common Client Interface

CICS Customer Information Control
System

CICS TG CICS Transaction Gateway

CORBA Common Object Request
Broker Architecture

CSS Cascading Style Sheets

DEBA Distributed Event-Based
Architecture

DMZ Demilitarized zone

DNS Domain Name System

DOM Document Object Model

EA Enterprise Architecture

EAI Enterprise Application
Integration

EAR Enterprise Archive

ECI External Call Interface

EDI Electronic Data Interchange

EIS Enterprise Information
System

EJB Enterprise JavaBean

EPI External Presentation
Interface

ERP Enterprise Resource Planning

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol
Secure

Abbreviations and
© Copyright IBM Corp. 2003. All rights reserved.
IBM International Business
Machines Corporation

IDE Integrated Development
Environments

IIOP Internet Inter-ORB Protocol

ITSO International Technical
Support Organization

J2C J2EE Connector

J2EE Java 2 Platform, Enterprise
Edition

JAR Java archive

JDBC Java database connectivity

JMS Java Message Service

JNDI Java Naming and Directory
Interface

JSP JavaServer Pages

JSR Java Specification Requests

JTA Java Transaction API

JVM Java Virtual Machine

LAN Local Area Network

LDAP Lightweight Directory Access
Protocol

MQAI WebSphere MQ
Administration Interface

MQSC WebSphere MQ Commands

MVC Model-View-Controller

OAM Object Authority Manager

OLTP online transaction processing

ORB Object Request Broker

PDA Personal Digital Assistant

PKI Public-Key Infrastructure

QoS Quality of Service

RACF Resource Access Control
Facility
 337

RAR Resource Adapter Archive

RMI Remote Method Invocation

SAX Simple API for XML

SOA Service oriented architecture

SOAP Simple Object Access
Protocol

SSL Secure Sockets Layer

TPA Trading Partner Agreement

UDDI Universal Description
Discovery and Integration

URL Uniform Resource Locator

VAN Value Added Networks

WAR Web Archive

WAS WebSphere Application
Server

WLM Workload Management

WSDL Web Services Description
Language

WS-I Web Services Interoperability
Organization

WSIF Web Services Invocation
Framework

XML Extensible Markup Language

XSL Extensible Stylesheet
Language

XSLT Extensible Stylesheet
Language Transformations
338 Patterns: Direct Connections for Intra- and Inter-enterprise

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 341. Note that some of the documents referenced here may
be available in softcopy only.

� WebSphere Data Interchange Installation and Configuration, REDP3600

� Implementation of iSoft and Integration with an EAI solution, REDP3625

� Revealed! Architecting Web Access to CICS, SG24-5466

� Securing Web Access to CICS, SG24-5756

� CICS Transaction Gateway V5 The WebSphere Connector for CICS,
SG24-6133

� IBM WebSphere Application Server V5.0 System Management and
Configuration: WebSphere Handbook Series, SG24-6195

� B2B solutions using WebSphere Business Connection, SG24-6197

� IBM WebSphere V5.0 Applications: Ensuring High Performance and
Scalability, SG24-6198

� MQSeries Publish/Subscribe Applications, SG24-6282

� Java Connectors for CICS: Featuring the J2EE Connector Architecture,
SG24-6401

� MQSeries Programming Patterns, SG24-6506

� Using Web Services for Business Integration, SG24-6583 (to be released late
in 2003)

� Patterns: Self-Service Application Solutions Using WebSphere Application
Server V5, SG24-6591

� EJB 2.0 Development with WebSphere Studio Application Developer,
SG24-6819

� Patterns for the Edge of Network, SG24-6822

� WebSphere Version 5 Web Services Handbook, SG24-6891
© Copyright IBM Corp. 2003. All rights reserved. 339

Other publications
These publications are also relevant as further information sources:

� Jonathan Adams, Srinivas Koushik, Guru Vasudeva, George Galambos,
Patterns for e-business: A Strategy for Reuse, IBM Press, 2001, ISBN
1-931182-02-7

� CICS Application Programming Guide, SC33-1687

� CICS RACF Security Guide, SC33-1701

�

Sun ONE article Riddle Me This: Is Your XML Data Safe? by Brett Mendel:

http://sunonedev.sun.com/building/tech_articles/xmldata.html

�

Online resources
These Web sites and URLs are also relevant as further information sources:

� IBM Patterns for e-business

http://www.ibm.com/developerWorks/patterns/

� IBM aphaWorks

http://www.alphaworks.ibm.com/

� IBM CICS

http://www.ibm.com/software/ts/cics

� IBM developerWorks

http://www.ibm.com/developerworks

� IBM Web services

http://www.ibm.com/software/solutions/webservices

� IBM WebSphere Business Integration Adapters

http://www.ibm.com/websphere/integration/wbiadapters

� IBM WebSphere Data Interchange

http://www.ibm.com/software/integration/wdi/

� IBM WebSphere Developer Domain

http://www7b.boulder.ibm.com/wsdd/
340 Patterns: Direct Connections for Intra- and Inter-enterprise

http://www.ibm.com/developerWorks/patterns/
http://www.alphaworks.ibm.com/
http://www.ibm.com/software/ts/cics
http://www.ibm.com/developerworks
http://www.ibm.com/software/solutions/webservices
http://sunonedev.sun.com/building/tech_articles/xmldata.html
http://www7b.boulder.ibm.com/wsdd/
http://www.ibm.com/software/integration/wdi/
http://www.ibm.com/websphere/integration/wbiadapters

� IBM WebSphere MQ

http://www.ibm.com/software/ts/mqseries

� IBM WebSphere software platform

http://www.ibm.com/software/webservers/appserv

� Apache Web Services Project

http://ws.apache.org/

� Apache XML Project

http://xml.apache.org/

� ebXML

http://www.ebxml.org/

� Java Community Process

http://www.jcp.org/

� OASIS Web Services Security (WSS) Technical Committee

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

� Sun ONE for Developers

http://sunonedev.sun.com/

� Sun Java 2 Platform, Enterprise Edition

http://java.sun.com/j2ee

� Sun Java Technology Products and APIs

http://java.sun.com/products/

� WebserviceX.NET

http://www.webservicex.net/

� Web Services Interoperability Organization

http://www.ws-i.org/

� World Wide Web Consortium (W3C)

http://www.w3.org/

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks
 Related publications 341

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.ibm.com/software/ts/mqseries
http://www.jcp.org/
http://www.ibm.com/software/webservers/appserv
http://xml.apache.org/
http://java.sun.com/j2ee
http://java.sun.com/products/
http://sunonedev.sun.com/
http://www.ws-i.org/
http://www.w3.org/
http://ws.apache.org/
http://www.webservicex.net/
http://www.ebxml.org/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

342 Patterns: Direct Connections for Intra- and Inter-enterprise

Index

Symbols
.NET 62, 205

Numerics
80/20 situation 3

A
Actor 116
Adapter 23

Coupling adapter connector 23
Flow adapter 23
Information adapter 23
Representation adapter 23
WebSphere Business Integration 106

Adapter connector 22, 98
Coupling 56

Aggregator pattern 66
ANSI ASC X12 318
Application gateways 100
Application Integration application pattern 39
Application Integration pattern 33

Business and IT drivers 35
Process-focused 41

Data-focused 33, 53
Process-focused 33
Quality of Service

Process-focused 42
Application patterns 4, 11

Application Integration 39
Broker 28, 48
Direct Connection 28, 43
Exposed Broker 30, 83
Exposed Direct Connection 29, 78
Exposed Serial Process 30, 85
Extended Enterprise 74
Parallel Process 29, 51
Process-focused 40
Serial Process 28, 50

Application portfolio 37
Application server 98
Application server/services 98
AS1 319
© Copyright IBM Corp. 2003. All rights reserved.
AS2 319
Asynchronous 18

CCI calls 268
Messaging 284
Web services 302

Asynchronous interaction 24
Availability 26

B
B2B See Business-to-Business
BAAN 36
Background integration 36
Batch enveloper/de-enveloper 320
Batch integration 36
Best practices 4, 15

Document stype Web services 210
J2EE Connector Architecture 278
Java Message Service 296
RPC style Web services 181

Black box 38
BPM See Business Process Management
Broker application pattern 28, 48

Router variation 49
Business and IT drivers

Application Integration pattern 35
Process-focused 41

Call Connection variation 48, 83
Direct Connection application pattern 44
Exposed Direct Connection application pattern
79
Extended Enterprise application pattern 75
Extended Enterprise business pattern 71
Message Connection variation 47, 82

Business patterns 4, 6, 33, 69
Business Process Management 37
Business scenario 111

Inter-enterprise integration 121
Intra-enterprise integration 115

Business-to-Business 69
BytesMessage 284

C
C programming language 271
 343

Call Connection variation 44, 47, 79, 82
Business and IT drivers 48, 83
Product mapping 60, 92

CCI See Common Client Interface
Channel 216, 222
CICS ECI Resource Adapter 256
CICS Gateway for Java 105
CICS See Customer Information Control System
CICS TG See CICS Transaction Gateway
CICS Transaction Gateway 105, 239, 263
CICS Transaction Server 105
cicsecitools.jar 256
Class diagram 157, 187
Clustering

WebSphere MQ 294
COBOL 271
Collaboration 19
COMMAREA 268
Common Client Interface 265, 269

Asynchronous calls 268
Common Object Request Broker Architecture See
CORBA
Complex interaction 21
Component managed sign-on 275
Composite pattern 35, 95
Composite patterns 4, 9
Connection 45, 80
Connection management 273
Connection rules 43, 45, 78, 80
Connector 21, 98

Adapter connector 22
Asynchronous

Interaction 24
Coupling adapter connector 23
Modelled 21
Path connector 22
Primitive 21
Synchronicity 24
Synchronous interaction 24

Connector subtypes 22
Container managed sign-on 275
Controller 150
CORBA 138, 145
Coupling

Loose 38
Tight 38

Coupling adapter connector 23, 56
Custom design 35
Customer Information Control System 105

See also IBM CICS
Resource adapters 140, 267
Scalability 274
Workload management 274

D
Data-focused Application Integration 33, 53
De-synchronization 305
Direct Connection application pattern 28, 43

Business and IT drivers 44
Call Connection variation 44, 47
Message Connection variation 44, 46

Direct Connection runtime pattern 54
Product mapping 57

Distributed Event-Based ArchitectureDEBA See
Distributed Event-Based Architecture
Distributed Program Link 268
Document style Web services 183

Advantages 184
Disadvantages 185

Domain firewall 100
Domain QoS providers 99
DPL See Distributed Program Link
DTD 129
Dynamic Web services 135, 155

E
EAI See Enterprise Application Integration
EDI INT 319
EDI See Electronic Data Interchange
EDIFACT 318
ejb-link 164, 197
Electronic Data Interchange 102, 106, 317

Transmission 318
Embedded JMS provider 290
endptEnabler 165, 199
Enterprise Application Integration 33, 128
Enterprise architecture 39
Enterprise JavaBeans

Message-driven beans 287
Enterprise out 39
Enterprise Resource Planning 33, 36, 139
Enterprise Services 242, 270
Enveloper/de-enveloper 320
ERP See Enterprise Resource Planning
Exposed 30, 94
Exposed Broker application pattern 30, 83

Router variation 84
344 Patterns: Direct Connections for Intra- and Inter-enterprise

Exposed Direct Connection application pattern 29,
78

Business and IT drivers 79
Call Connection variation 79, 82
Message Connection variation 79, 81

Exposed Direct Connection runtime pattern 86
Product mapping 88

Exposed Serial Process application pattern 30, 85
Extended Enterprise application pattern 74

Business and IT drivers 75
Quality of Service 77

Extended Enterprise business pattern 69
Business and IT drivers 71

Extensible Stylesheet Language Transformations
130

F
Federation 27
Filter 216
Firewall 311

Domain 100
Protocol 100

Flow adapter 23
Foreground integration 36

G
Geographic proximity 37
Get delivery date

Use case 119
GETDATE 251
Guidelines 4, 15

H
HTTP 154
HTTP router module 165, 199

I
IMS J2C resource adapter 140, 271
Information adapter 23
Integration

Background 36
Batch 36
Foreground 36
Invasiveness 38
Real-time 36
Scope 37

Integration domain

Quality of Service capabilities 26
Integration patterns 4, 7

Classification 24
Interaction 19–20

Asynchronous 24
Classification 24
Complex 21
Parallel 24
Serial 25
Synchronous 24

Interaction diagram 158, 189
Inter-enterprise integration 121
Inter-enterprise network infrastructure 100
Intra-enterprise integration 115
Inventory.wsdl 162
InventoryCics.wsdl 246
InventoryCicsProxy.wsdl 251
InventoryDoc.wsdl 192
InventoryReply.xsd 192
InventoryRequest.xsd 192
iSoft Peer-to-Peer Agent 315, 322

Integrating WebSphere Data Interchange 323
ITSO Electronics 111

Inter-enterprise integration 121
Intra-enterprise integration 115
Non-functional requirements 114
Quality of Service 114

J
J2C connection factory 256
J2C See J2EE Connector Architecture
J2EE 127, 139
J2EE 1.3 142
J2EE Connector Architecture 101, 139, 263

Advantages 140
Availability 274
Best practices 278
CICS resource adapters 267
Disadvantages 141
Enterprise Services 270
IMS resource adapter 140, 271
Managed environment 266
Non-managed environment 267
Product mapping 64
Scalability 274
Security 275
Web Services Gateway 237
Workload management 274
 Index 345

Java 2 Platform, Enterprise Edition See J2EE
Java Message Service 101, 142, 279, 308

Advantages 143
Asynchronous 284
Best practices 296
Consumers 290, 296
Disadvantages 144
Message types 284
Point-to-point messaging 282
Producers 289, 296
Product mapping 60
Publish /subscribe messaging 283
Security 294
Synchronous 284
WebSphere MQ support 143

Java Messaging Service 155
Java Specification Request 151

JSR 101 152
JSR 110 152
JSR 67 152
JSR 93 152

Java2WSDL 162, 192
JCA tool plug-in 270
JDBC 101
JMS See Java Message Service
JSR See Java Specification Request

L
LAN See Local Area Network
Layered design 181
Load Balancer 274
Local Area Network 101
Loose coupling 38, 181

M
Manage Process pattern 66
Managed environment 266
Managed Public and Private Process pattern 95
MapMessage 284
Message Connection variation 44, 46, 79, 81

Business and IT drivers 47, 82
Product mapping 57, 89

Message router 320
Message selector 296
Message structure 156, 187
Message timeout 296
Message-driven beans 287
Messaging 143

Messaging style
Simple Object Access Protocol 153, 186

Microsoft .NET 62, 205
Microsoft Network Monitor 235
Microsoft Windows 101, 330
Model 150
Modelled connector 21
Model-View-Controller 150, 289
MQRFH2 322
MQSeries See WebSphere MQ
MS81 SupportPac 308
MVC See Model-View-Controller

N
Network Monitor 235
Non-functional requirements 114
Non-managed environment 267
Non-persistent messages 296

O
OASIS 310
Object Management Group 145
Object model 157, 187
ObjectMessage 284
ODETTE 318
OLTP See Online transaction processing
OMG See Object Management Group
One-way 162
Online transaction processing 105
Operation latency 37
OTMA 140

P
P2PAgent 315
Parallel interaction 24
Parallel Process application pattern 29, 51

Parallel Work Flow variation 52
Parallel Work Flow variation 52
Partner infrastructure 100
Path connector 22, 99
Patterns for e-business 3

Application patterns 4, 11
Best practices 4, 15
Business patterns 4, 6
Composite patterns 4, 9
Guidelines 4, 15
Integration patterns 4, 7
346 Patterns: Direct Connections for Intra- and Inter-enterprise

Product mappings 4, 15
Runtime patterns 4, 12
Web site 5

Peer-to-Peer Agent 315, 322
Integrating WebSphere Data Interchange 323

PeopleSoft 36
Performance 27
Performance Monitor 292
Performance Viewer 234, 272
Persistent messages 296
Point-to-point messaging 282
portType 163
Primitive connector 21
Process re-engineering 37
Process-focused Application Integration 33
Process-focused Application pattern 40
Product mapping

Call Connection variation 60, 92
Direct Connection 57
Exposed Direct Connection 88
J2EE Connector 64
Java Message Service 60
Message Connection variation 57, 89
Web services 58, 61, 89, 92
Web Services Gateway 59, 62–63, 90, 93
Web services to .NET 62
WebSphere Business Integration Adapters 65
WebSphere Data Interchange 91

Product mappings 4, 15
Protocol change

Web Services Gateway 63, 93
Protocol firewall 100
Public Key Infrastructure 131
Publish/subscribe 283, 288

Q
QoS See Quality of Service
Quality of Service 278

Application Integration pattern
Process-focused 42

Availability 26
Capabilities 26
Domain QoS providers 99
Extended Enterprise application pattern 77
Federation 27
ITSO Electronics 114
Performance 27
Security 27

Standards compliance 28
Transactionality 28

R
RACF See Resource Access Control Facility
RAR See Resource Adapter Archive
Real-time integration 36
Redbooks Web site 341

Contact us xvi
Representation adapter 23
Request/reply 285
Resource Access Control Facility 276
Resource Adapter Archive 266
Resource adapters

CICS 140, 267
RMI/IIOP 138, 144
Router variation 49, 84
RPC style Web services 147
Rules directory 99
Runtime pattern 54, 86

Direct Connection 54
Exposed Direct Connection 86

Runtime patterns 4, 12

S
SAP 36
Scalability

JCA 274
Screening routers 100
Secure Sockets Layer 276
Security 27

Component managed sign-on 275
Container managed sign-on 275
J2EE Connector Architecture 275
Java Message Service 294
Web services 136
Web Services Gateway 235

Self-Service business pattern 35, 113
Send-and-forget 286
SendEmail.wsdl 206
Serial interaction 25
Serial Process application pattern 28, 50

Serial Work Flow variation 51
Serial Work Flow variation 51
Service 216, 224, 257
Service endpoint interface

Inventory 162
InventoryDoc 191
 Index 347

Service oriented architecture 136
setInteractionVerb 268
Simple Object Access Protocol 134

Messaging style 153, 186
Monitoring messages 172
Transport protocol 154

SOA See Service oriented architecture
SOAP See Simple Object Access Protocol
Source application 45, 80
Standards compliance 28
Static Web services 135, 155
StreamMessage 284
Synchronicity 24
Synchronous 18

De-synchronization 305
Messaging 284

Synchronous interaction 24
Sysplex distributor 274
System contracts 265

T
Target application 45, 80
TCPMon 173, 234
TextMessage 284
Tight coupling 38
Tivoli Performance Viewer 234, 272
TPA See Trading Partner Agreement
Trading Partner Agreement 321
Transaction Server 105
Transactionality 28
Translator 320
Transmission 318
Transmission style 154, 186
Transport protocol

SOAP 154

U
UDDI See Universal Description Discovery and Inte-
gration
Universal Description Discovery and Integration
134, 217
UNTDI 318
Update inventory

Use case 117
Use case

Get delivery date 119
Update inventory 117

V
Value Added Network 318
VAN See Value Added Network
View 151
voidReturn 162

W
WAN See Wide Area Network
Web service

Transmission style 154, 186
Web Service Description Language 134
Web services 101, 133, 301

Advantages 138
Asynchronous 302
Best practices 181, 210
Disadvantages 138
Document style 183

Advantages 184
Disadvantages 185

Dynamic 135, 155
Message structure 156, 187
Product mapping 58, 61, 89, 92
RPC style 147
Security 136
Static 135, 155

Web services for J2EE 151
Web Services Gateway 215, 301

Channel 216, 222
Filter 216
J2EE Connector 237
Product mapping 59, 62–63, 90, 93
Protocol change 63, 93
Security 235
Service 216, 224, 257
UDDI 217

Web Services Invocation Framework 135, 218, 270
Web services to .NET 205

Product mapping 62
Web up 39
webservices.xml 164, 197
webservicesclient.xml 168, 201
WebserviceX.NET 205
WebSphere Application Server 102

Base V5.0 103, 147, 183, 263, 279, 299
Enterprise V5.0 103, 242
Express V5.0 102
Network Deployment V5.0 103, 215, 237

WebSphere Business Integration Adapters 106
348 Patterns: Direct Connections for Intra- and Inter-enterprise

Product mapping 65
WebSphere Data Interchange 106, 315, 321

Client 324
Integrating iSoft Peer-to-Peer Agent 323
Product mapping 91
Server 325

WebSphere MQ 104, 142, 290, 296, 322
Alert Monitor 292
Client 290
Clustering 294, 296
JMS support 143
MS81 SupportPac 308
Recovery 292
Restart 292
Server 290

WebSphere Studio Application Developer 160, 191
TCP/IP Monitor Server 172

WebSphere Studio Application Developer Integra-
tion Edition 242

Enterprise Services development 270
JCA development 270

White box 38
Wide Area Network 101
Windows 101, 330
Workload management 104

CICS 274
WS-Coordination 180
WSDL See Web Service Description Language
WSDL2Java 163, 168, 195, 200
WSIF See Web Services Invocation Framework
WS-ReliableMessaging 308
WS-Security 137
WS-Transaction 180

X
XCF 140
XML 129, 182

Advantages 129, 132
Disadvantages 132
Encryption 131

XML Schema 129
XSLT See Extensible Stylesheet Language Trans-
formations

Z
zSeries 65, 265
 Index 349

350 Patterns: Direct Connections for Intra- and Inter-enterprise

(0.5” spine)
0.475”<->

0.875”
250 <->

 459 pages

Patterns: Direct Connections for Intra- and Inter-enterprise

®

SG24-6933-00 ISBN 0738453099

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Patterns: Direct
Connections for Intra-
and Inter-enterprise
Select an intra- or
inter-enterprise
integration approach

Explore J2EE, Web
services and EDI
solutions

Learn by example
with sample
scenarios

The Patterns for e-business are a group of proven, reusable
assets that can be used to increase the speed of developing
and deploying Web applications. This IBM Redbook focuses on
point-to-point application integration using the
Process-focused Application Integration::Direct Connection
application pattern for intra-enterprise, and the Extended
Enterprise::Exposed Direct Connection application pattern for
inter-enterprise.

Part 1 guides you through the process of selecting an
Application and Runtime pattern. Next, the platform-specific
Product mappings are identified based upon the selected
Runtime pattern.

Part 2 presents guidelines on applying the Patterns approach
to a sample business scenario and on selecting application
integration technologies.

Part 3 provides detailed design, development, and runtime
guidelines for intra-enterprise integration solutions. It teaches
you by example using IBM WebSphere Application Server V5.0
with Web services, J2EE Connectors, and JMS.

Part 4 provides detailed design, development, and runtime
guidelines for inter-enterprise integration solutions. It teaches
you by example using IBM WebSphere Application Server V5.0
with Web services.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Patterns for e-business
	Chapter 1. Patterns for e-business
	1.1 The Patterns for e-business layered asset model
	1.2 How to use the Patterns for e-business
	1.2.1 Select a Business, Integration, or Composite pattern, or a Custom design
	1.2.2 Selecting Application patterns
	1.2.3 Review Runtime patterns
	1.2.4 Review Product mappings
	1.2.5 Review guidelines and related links

	1.3 Summary

	Chapter 2. Fundamental concepts in Process Integration
	2.1 The need for a unifying technique
	2.1.1 Similarities between intra- and inter-enterprise integration
	2.1.2 Summary

	2.2 Process Integration concepts and notations
	2.2.1 Collaboration and Interaction
	2.2.2 Connectors and Adapters
	2.2.3 Classification of interaction between sub-systems

	2.3 QoS capabilities framework
	2.3.1 Operability
	2.3.2 Availability
	2.3.3 Federation
	2.3.4 Performance
	2.3.5 Security
	2.3.6 Standards compliance
	2.3.7 Transactionality

	2.4 Application patterns for Application Integration
	2.5 Application patterns for Extended Enterprise
	2.6 Summary

	Chapter 3. Application Integration
	3.1 General guidelines
	3.1.1 Business and IT drivers
	3.1.2 Context
	3.1.3 Solution
	3.1.4 Putting the pattern to use
	3.1.5 Application Integration solution requirements
	3.1.6 What's next

	3.2 Application patterns
	3.3 Process-focused Application Integration patterns
	3.3.1 Direct Connection application pattern
	3.3.2 Broker application pattern
	3.3.3 Serial Process application pattern
	3.3.4 Parallel Process application pattern

	3.4 Data-focused Application patterns
	3.5 Runtime patterns
	3.5.1 Runtime patterns for Direct Connection

	3.6 Product mappings
	3.6.1 Product mappings for Direct Connection: Message variation
	3.6.2 Product mappings for Direct Connection: Call variation

	3.7 Previous Application Integration patterns

	Chapter 4. Extended Enterprise
	4.1 General guidelines
	4.1.1 Business and IT drivers
	4.1.2 Context
	4.1.3 Solution
	4.1.4 Putting the pattern to use
	4.1.5 What's next

	4.2 Application patterns
	4.2.1 Exposed Direct Connection application pattern
	4.2.2 Exposed Broker application pattern
	4.2.3 Exposed Serial Process application pattern

	4.3 Runtime patterns
	4.3.1 Runtime patterns for Exposed Direct Connection

	4.4 Product mappings
	4.4.1 Product mappings for Exposed Direct Connection: Message variation
	4.4.2 Product mappings for Exposed Direct Connection: Call variation

	4.5 Previous Extended Enterprise patterns

	Chapter 5. Node types and Product descriptions
	5.1 Node types
	5.2 Product descriptions
	5.2.1 IBM WebSphere Application Server
	5.2.2 IBM WebSphere MQ
	5.2.3 IBM CICS
	5.2.4 WebSphere Business Integration Adapters
	5.2.5 WebSphere Data Interchange

	Part 2 Scenarios and guidelines
	Chapter 6. Business scenarios used in this book
	6.1 Customer overview
	6.1.1 Business profile
	6.1.2 Business goals
	6.1.3 Existing environment
	6.1.4 Non-functional requirements

	6.2 Intra-enterprise scenarios
	6.2.1 Stage I: Internal ordering on demand
	6.2.2 Stage II: Internal ordering on demand with delivery date

	6.3 Inter-enterprise scenarios
	6.3.1 Stage III: External ordering on demand
	6.3.2 Stage IV: External on demand ordering with delivery date

	Chapter 7. Technology options
	7.1 Selecting an integration technology
	7.2 XML
	7.2.1 Defining XML documents
	7.2.2 XSLT
	7.2.3 XML security
	7.2.4 Advantages of XML
	7.2.5 Disadvantages of XML

	7.3 Web services
	7.3.1 Static and dynamic Web services
	7.3.2 Web Services Invocation Framework
	7.3.3 Web services and the service-oriented architecture
	7.3.4 Web services security
	7.3.5 Advantages of Web services
	7.3.6 Disadvantages of Web services
	7.3.7 Comparing Web services with CORBA and RMI

	7.4 J2EE Connector Architecture
	7.4.1 CICS resource adapter
	7.4.2 IMS resource adapter
	7.4.3 Advantages of J2EE Connectors
	7.4.4 Disadvantages of J2EE Connectors

	7.5 Java Message Service
	7.5.1 What messaging is
	7.5.2 JMS and IBM WebSphere MQ
	7.5.3 Advantages of JMS
	7.5.4 Disadvantages of JMS

	7.6 Other integration technologies
	7.6.1 RMI/IIOP
	7.6.2 CORBA

	7.7 Where to find more information

	Chapter 8. Using RPC style Web services
	8.1 Business scenario
	8.2 System design overview
	8.3 Web services for J2EE
	8.4 Design guidelines
	8.4.1 Design considerations
	8.4.2 Object model

	8.5 Development guidelines
	8.5.1 Web service enabling the target application
	8.5.2 Web service-enabling the source application
	8.5.3 Monitoring SOAP messages

	8.6 Quality of Service capabilities
	8.6.1 Autonomic
	8.6.2 Availability
	8.6.3 Performance
	8.6.4 Security
	8.6.5 Standards compliance
	8.6.6 Transactionality

	8.7 Best practices

	Chapter 9. Using document style Web services
	9.1 Business scenario
	9.2 Document style Web services
	9.3 Design guidelines
	9.3.1 Design considerations
	9.3.2 Object model

	9.4 Development guidelines
	9.4.1 Web service enabling the target application
	9.4.2 Web service enabling the source application

	9.5 Integration with .NET-based Web services
	9.6 Quality of Service capabilities
	9.6.1 Transactionality

	9.7 Best practices
	9.8 Overview of ebXML

	Part 3 Application Integration scenarios
	Chapter 10. Using the Web Services Gateway
	10.1 Business scenario
	10.2 IBM Web Services Gateway
	10.3 Design guidelines
	10.4 Development guidelines
	10.4.1 Installing and configuring the Web Services Gateway
	10.4.2 Deploying the Web Services Gateway service
	10.4.3 Exporting the WSDL file
	10.4.4 Web service-enabling the source application

	10.5 Quality of Service capabilities
	10.5.1 Autonomic
	10.5.2 Security

	Chapter 11. Using the Web Services Gateway with J2EE Connectors
	11.1 Business scenario
	11.2 Design guidelines
	11.3 Development guidelines
	11.3.1 Creating a CICS enterprise service
	11.3.2 Testing the enterprise service
	11.3.3 Deploying generated Java classes to WebSphere Enterprise
	11.3.4 Configuring a J2C connection factory in WebSphere
	11.3.5 Configuring the service in Web Services Gateway
	11.3.6 Web service enabling the source application

	11.4 Quality of Service capabilities

	Chapter 12. Using J2EE Connectors
	12.1 Business scenario
	12.2 Design guidelines
	12.2.1 Components of J2EE Connector Architecture
	12.2.2 Design considerations

	12.3 Development guidelines
	12.3.1 Creating a J2EE Connector application using native CCI
	12.3.2 Enterprise Services toolkit
	12.3.3 Using Enterprise Services toolkit
	12.3.4 Migration to other J2EE Connector resource adapters

	12.4 Quality of Service capabilities
	12.4.1 Autonomic
	12.4.2 Availability
	12.4.3 Performance
	12.4.4 Security
	12.4.5 Standards compliance
	12.4.6 Transactionality

	12.5 Best practices

	Chapter 13. Using Java Message Service
	13.1 Business scenario
	13.2 Design guidelines
	13.2.1 Java Message Service
	13.2.2 Design considerations

	13.3 Development guidelines
	13.4 Quality of Service capabilities
	13.4.1 Autonomic
	13.4.2 Availability
	13.4.3 Performance
	13.4.4 Security
	13.4.5 Standards compliance
	13.4.6 Transactionality

	13.5 Best practices

	Part 4 Extended Enterprise scenarios
	Chapter 14. Using inter-enterprise Web services
	14.1 Business scenario
	14.2 Design guidelines
	14.2.1 Design considerations

	14.3 Development guidelines
	14.4 Quality of Service capabilities
	14.4.1 Security

	Chapter 15. Using WebSphere Data Interchange
	15.1 Business scenario
	15.2 Design guidelines
	15.2.1 Electronic Data Interchange
	15.2.2 WebSphere Data Interchange
	15.2.3 The iSoft Peer-to-Peer Agent
	15.2.4 Integrating iSoft with WebSphere Data Interchange

	15.3 Development guidelines
	15.3.1 Development environment
	15.3.2 Runtime environment

	Part 5 Appendixes
	Appendix A. Scenarios lab environment
	Lab setup
	Sample application setup

	Appendix B. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks

	Index
	Back cover

