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Abstract. With the emergence of the internet, independent applica-
tions are starting to be integrated with each other. This creates a need
for technology for glueing together applications both within and across
organizations, without having to re-engineer individual components. We
propose an approach for developing this glue technology based on mes-
sage flows and discuss the open research problems in realizing this ap-
proach.

1 Introduction

Recent advances in networking and the pervasive deployment of the internet have
created new opportunities for computing research. Many applications are evolv-
ing from monolithic to distributed systems. Business processes are increasingly
being automated and interconnected in spontaneous ways. Companies increas-
ingly require the integration of once independent applications, either because
they are vertically integrating components of the business, or because of merg-
ers or outsourcing of function to separate organizations. In summary, there is
a convergence to loosely integrated distributed systems, where each component
can evolve independently.

In this paper, we make the case for research in “glue technology” for loosely
integrating distributed systems. The basic observation underlying this technol-
ogy is that widely disseminated, often real-time “events” (or messages) — e.g.
stock quotations, advertisements, offers to buy and sell, weather reports, traf-
fic conditions, etc. — are becoming ubiquitously available through the Internet.
These public events, as well as internal events, such as orders, shipments, de-
liveries, manufacturing line changes, can form the “glue” to link applications
within and across organizations. Since this technology is based on messages, we
use the term Message Oriented Middleware, or MOM for short, to refer to it.

Consider the opportunities that arise within a single company. Today, most
large companies consist of several smaller organizations that are supported by
applications that were developed and have evolved largely independently of each
other. In most cases, people provide the linkage between these smaller organiza-
tions. For example, when a sale occurs, the sales representative sends a request
to manufacturing to produce the product. In such cases, what is needed is a tech-
nology that allows companies to automate such processes by tying together its
organizations’ independent applications. Once tied together, the integrated com-
puting system is potentially cheaper to operate, faster and less prone to errors



than the system in which humans glued together independent organizations.
Further, this kind of integration opens up new opportunities for macroscopic
analysis such as forecasting, and requirements analysis across the company that
can further streamline operations.

The value of tying together applications can easily be extended to partner-
ships between companies. One obvious scenario 1s when two companies merge.
Usually each company has its own set of independent applications — the chal-
lenge is to provide “computing glue” to tie these applications together. Another
obvious scenario is when two companies do business with each other. In today’s
model, people are heavily involved in transacting business between companies.
Business integration offers the opportunity to automate business interactions
between companies by tying together their applications.

As more consumers shop, invest, pay bills and taxes, read, and perform co-
operative work and play online, the same glue technology may be extended to
support business-to-consumer interactions. Better integration between business
software and end-user software such as web browsers offers the promise of more
power and greater ease of use to the end-user.

We propose an approach for developing the glue technology required for
MOM. Our proposed approach is derived from the publish and subscribe model
[OPSS93] and event delivery systems [WIS]. In this model, the basic unit of data
is a message, which corresponds to what are called “events” in publish/subscribe
or event delivery systems [SV97]. Clients register as publishers or subscribers of
messages. Messages are sent to and delivered from information spaces, each of
which has a predefined message schema [BKS199]. Information spaces may be
tied together via message flow graphs that specify how messages are propagated
and transformed between producers and consumers. A message flow graph may
route a filtered subset of messages from one information space to another, merge
messages from multiple sources, or deliver a transformed version of a message
from one information space to another. Some information spaces contain states
summarizing the message history of other information spaces. This state can be
re-mapped back into a message sequence, often in more than one way. Systems
can exploit this non-determinism by relaxing the ordering of messages, by drop-
ping obsolete messages, by compressing the past history being sent to a newly
connecting subscriber or to a subscriber who has reconnected after being off-line.

In the near future, we envision a pervasive MOM environment that glues to-
gether a large number of stand-alone applications. Each application may evolve
independently from the others in this environment. The MOM environment will
support such evolution without requiring changes in other applications, and in
fact, without requiring the other applications to be aware of the addition and
removal of applications and clients. (The only exceptions would be those appli-
cations dealing with access control and security). The MOM environment will
allow new applications to “tap into” information generated by existing applica-
tions without disturbing them. This will allow users to add higher order features
such as auditing, monitoring, and data mining on top of existing information
flows, after the fact, and without disrupting the underlying applications.



Several crucial research problems remain unsolved in the MOM approach, and
even those that are solved have not been completely implemented yet. A complete
and precise model for this approach has not yet emerged. Several key distributed
computing problems remain open such as scalability, and how to provide end-to-
end guarantees on message delivery. Some of the known algorithms tackle subsets
of the overall problem. Questions related to fault-tolerance, security, message
ordering, and topology changes that have been well studied in the context of
other types of messaging systems are open areas for further research in the
context of MOM.

There are several efforts from various other communities to provide glue tech-
nology to tie together applications, and it is not clear at this stage whether a
single glue technology is best suited for all environments. The database commu-
nity has extended the classical ideas underlying databases to distributed environ-
ments via distributed transactions [TGGL82] and federated databases [Hsi92].
The languages community has extended the concept of objects to a distributed
environment via remote method invocation (CORBA [Gro98], RMI [BN83], etc.).
Group communication systems such as Isis have also been used to glue together
applications in a distributed environment [BCJT90,Bir93,Edi96]. Finally, there
exist higher-level approaches such as Workflow that are targeted towards specific
subsets of the overall problem [W{M,PPHC98]. We will compare our proposed
MOM approach with these other approaches.

The rest of this paper is organized as follows. In section 2 we examine sev-
eral examples that motivate the need for message oriented middleware. In sec-
tion 3 we elaborate on the message oriented middleware model. In section 4 we
discuss open areas for further research in this area. In Section 5 we examine
alternative approaches. Section b concludes with work related to content-based
publish/subscribe systems.

2 Examples

In this section, we provide two examples that motivate the need for Message
Oriented Middleware and illustrate the various requirements imposed on this
approach:

1. Stock Trading. This example of application integration demonstrates the
need for MOM-based systems to be highly scalable and for on-the-fly trans-
formation of messages into formats suitable for different clients. This exam-
ple also illustrates the need for anonymity between message publishers and
message subscribers.

2. Home Shopping. This example 1s a home shopping application and further
demonstrates the need for cross-domain messaging. This example also il-
lustrates the need for interpreting message streams to capture application-
specific meaning.



2.1 Stock Trading

To illustrate an instance of application integration, consider a publish-subscribe
based stock trading application written for a particular stock exchange, say
the New York Stock Exchange (Figure 1). In such an application, stock trades,
bids, and sales are published as messages. Brokers affiliated with the NYSE have
access to this information, and subscribe to events of particular interest to them.
Stock trade events are published in a format beginning with the following four
attributes: (1) NYSE ticker symbol, (2) share price, (3) share volume, (4) broker
1d. In a similar application running at the NASDAQ stock exchange, a separate
application may also publish events corresponding to trades, but with a different
format for the first four attributes: (1) NASDAQ ticker symbol, (2) share price,
(3) capital in this trade, (4) broker code. For both markets, message rates are very
high (thousands of messages/second), and there are large numbers of publishers
and subscribers. Thus, an important requirement for MOM is performance and
scalability.

Notice that to extend the system to new applications, such as direct cus-
tomer trading, it is simply necessary to “tap in” to the message streams. Pro-
vided that the infrastructure can scale from hundreds of brokers to hundreds of
thousands of on-line investors, each investor can specify an appropriate selec-
tion of interest — such as the issues in his portfolio. Of course the applications
used by customers and by professional stockbrokers will be very different, but
the message stream “glue” will remain the same. This example illustrates both
the importance of anonymity between producers and consumers, and the need
to cross organizational barriers. Applications posting events need not be aware
of their destinations; applications subscribing to events need not be aware of
their sources. Extending the system to bring stock trade events directly to home
computers may change the system load, but not the fundamental architecture.

Now let us suppose that brokers and analysts previously dealt separately
with both the NYSE and NASDAQ exchanges, and that in future they wish
to run the same analysis programs for trades on both exchanges. In order to
run their internal analyses on information from both sources, they may wish
to convert the data into a common internal format. Each of them will have to
administer access to multiple sources, track changes to event formats, etc. It will
be substantially easier to access information from both exchanges by accessing
one data stream instead of two.

An integrated application consisting of both the NYSE and NASDAQ stock
trading applications can solve this problem by transforming data from the two
sources into a common format, and merging the two information streams into a
single stream. For instance, both stock trade formats can be converted to a uni-
fied format consisting of the following first four attributes: (1) unique company
name, (2) share price, (3) share volume, and (4) unique broker name. That is,
the MOM must transform those messages it 1s delivering to clients requesting
the common format while preserving the original format for legacy applications.
The transformation enables clients accessing both stock exchanges to access this
integrated data without disrupting the operation of legacy applications.
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Fig. 1. Applications using both NYNEX and NYSE to exchange data.



In order to continue to use legacy client applications, it may be necessary to
integrate these applications by performing other transformations. For example,
legacy NYSE client applications may wish to access NASDAQ trade events in
the NYSE format and vice versa.

2.2 Home Shopping

Consider a home shopping application where consumers may request up-to-the-
minute information and pricing on retail items from “virtual markets” for prod-
ucts such as automobiles, computers, or camera equipment (Figure 2). Each
message represents a seller’s ad: the seller’s identity and location, the type of
article, and attribute-value pairs representing the attributes of the article being
sold. For example, automobile advertisements would include the make, model,
year, mileage, and options. The price might either be fixed, or left open to com-
petitive bidding in a real-time auction. Additional messages represent bids by
buyers, and the open and closing of auctions. Consumers subscribe through a
number of tests on these attributes. As in the previous example, messages must
be routed to some subset of all subscribers based on their information content.

An important function that MOM must support for this scenario is the com-
munication of dynamic changes in the availability and the price of items. The
seller may lower the price or withdraw his ad in response to lack of interest by
customers. Or buyers may raise the price as a result of competitive bidding.
Typically a buyer would subscribe not just to a stream of events, but to a state,
determined by the message history, such as the current price of items matching
his criterion. As a result, new subscribers would not receive all messages from
the beginning of time but instead only those messages representing the current
valid prices for these selected items. Messages which have become superseded by
updates or which correspond to items no longer available for sale need not be
delivered. This example illustrates the importance of interpreting event histories
as a state — specifying such a summarization requires the system to understand
that a new price for the same item supersedes the previous price, and that the
termination of an auction or the withdrawal of an ad cancels all previous prices
for that item.

The ability to subscribe to a state summarizing a message history has addi-
tional effects on message delivery if the buyer wants to subscribe not merely to
the current offer for each selected item, but instead wants to track for instance,
the lowest-priced ad matching his criteria, plus any items for which the buyer
1s still the low bidder. In this case, messages which do not impact the lowest
price because they are ads for articles with higher prices are not delivered. Note
that if the low-priced ad i1s modified or withdrawn, or if its price is bid up in
an auction so that it is no longer the low-priced ad, then it may be necessary
to either deliver the ad for the second-low-priced item (if it had previously been
suppressed) or to redeliver it. For example, consider the auto advertisements in
Figure 2. The $20,000 price is the low price, so the $30,000 price is not delivered.
However, once the $20,000 price is withdrawn or raised above $30,000, the ad
for the $30,000 automobile is delivered to replace it.
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Notice that, in this example, there is no real organizational boundary. Anyone
might register as a publisher (potential seller) or as a subscriber (potential buyer)
of an information space for a particular product.

3 A Flow-Graph Model for Message Oriented Middleware

For supporting the examples in the previous section, we desire a model which:
(1) facilitates expression of clients’ requirements; (2) is easy to reason about,
both for validating specifications and implementations; (3) is rigorous, and (4)
permits the widest possible latitude for the implementor.

Good models are founded upon a small number of basic concepts. For ex-
ample, the key concepts underlying transactional database models are atomicity
and serializability. The data, whether distributed and/or replicated, whether
concurrently accessed or not, behave as if located at a single site and accessed
one transaction at a time. Similarly, the key concepts underlying the Isis model
[BCJ*90] are group membership [Bir93,Edi96] and virtual synchrony [BT87].
Once a model 1s chosen, we have a rigorous requirement for developing clever
implementations for preserving the appearances of the model under a wide va-
riety of design points and physical environments.

The Gryphon project at IBM Research (http://www.research.ibm.com/gryphon)
1s exploring a particular model for MOM based upon the concepts of informa-
tion spaces and message flows. A system is modeled as a message flow graph:
an abstract representation of the propagation of the messages in a system, di-
vorced from any realization on an actual network topology [BKST99]. A message
flow graph is a directed acyclic graph whose nodes are information spaces and
whose arcs are message flows. Information spaces are either totally ordered mes-
sage histories or states derived from message histories. Each information space
has a schema that specifies the type of the messages or of the state. Publishers
and subscribers are source and sink message histories respectively. Message flows
specify the propagation of messages or the updating of state, in order to preserve
specific relationships between information spaces as new messages are added to
the system. These relationships include:

— selection: the destination message history receives a copy of the subset of the
source message history that satisfies some boolean predicate P. For example,
an analyst may request all trades of more than 1000 shares of XYZ company
having a price greater than $40 per share.

— transform: the destination message history receives each message of the
source message history after applying a transform T. For example, the con-
version “Volume = Capital/Price” might be used to convert all messages
from the NASDAQ format to the NYSE format.

— merge: when multiple message histories have arcs to a single destination,
the destination receives a merge (in a non-deterministic order) of the all
the messages of the sources. This operation is involved in any application
involving multiple publishers.



— collapse: the destination state 1s computed by applying some summarization
function S over all the messages in the source message history. In the home
shopping example, a client may be interested in the lowest priced ad for Saab
cars with less than 80,000 miles and a price under $6000.

— expand: expand is the inverse of collapse. The source message history is (non-
deterministically) computed to be any message history which summarizes to
the destination state under the summarization function S. All such message
histories are said to be equivalent — the system is free to choose which one
of the many message histories to deliver to a destination.

Message flow graphs can evolve dynamically, and in fact the changes to these
graphs and requests to change the graph are themselves meta-events that can
be subscribed to. As in similar systems, access control policies limit who may
add and delete nodes and arcs, and where they may be added.

Notice that this model has some characteristics of database systems, some
of group communication systems, and some unique characteristics of its own.
Information spaces in MOM are analogous to tables in relational databases.
Just as database tables have data schemas, information spaces have message
schemas. The selection relation between information spaces is similar to the
select operator between relational tables. Just as a relational database allows
linkages between tables and views, MOM allows linkages between information
spaces via message flow graphs.

Like group communication systems, messages flow from producers to con-
sumers without explicit requests from consumers — i.e., both systems are push-
based. In a push-based environment, it is natural that operations on the message
flow, such as selections, transforms, and summarizations, are performed incre-
mentally.

Defining and implementing the flow graph model gives rise to a number of
open research issues. These issues are discussed in detail in the next section.

4 Research Issues

4.1 Model

The message flow graph is a useful abstraction for specifying many problems
such as the ones discussed in the previous section. It is easy to explain to users
familiar with either dataflow graphs or with spreadsheets.

There are, however, a number of open issues. One is the type system for
defining schemas for messages and information spaces. Whereas it makes sense
to organize relational databases as tables in normal form with each row consisting
of a tuple of scalars, a similar “normal form” is probably not feasible for message
histories. One reason is that while relational tables containing rows of different
formats can be factored into separate tables, message histories cannot be so
factored without losing the intrinsic total order characteristic of histories. It
1s probably necessary to allow messages to contain variant types, as well as
embedded lists or bags.



Another open issue is the language for expressing the selection predicates, the
transforms, and the summary functions used by ezpand and collapse. We want
to be able to express problems like “cheapest current offer for a Saab” with-
out elaborate programming. There is a tradeoff between convenience, expressive
power, and analyzability.

Another issue is how to handle access control. In this model, access control
can involve more than merely saying “this user may subscribe from this space”.
Some subscriptions require all messages to be archived forever, while others allow
messages to be expired relatively quickly — these differences have consequences
for physical resource requirements on broker servers, so there should be a way
to allow access control to take these consequences into account.

4.2 Scalability

There are many dimensions of scalability. In this section, we deal with the poten-
tially large fanout of select, transform, or summarization arcs from a single in-
formation space. In a large application, or in an anonymous environment such as
home shopping where a single information space may be advertised very widely,
the number of subscribers may be very large — perhaps in the tens of thou-
sands or more. In this environment it becomes necessary to deploy algorithms
that quickly match events against a large number of potential subscriptions —
we refer to this problem as the message matching problem. Though the number
of subscriptions to an information space may be large, say N (where N may be
10,000 or more), we expect only a few subscriptions to match any single event,
say K. Efficient algorithms exist for solving the message matching problem in
messaging systems based on subject-based subscription, a simple table lookup
based on the subject of the message yields a constant time algorithm, which is
also optimal. In the more general content-based subscription systems, this ap-
proach does not work since different subscriptions may refer to different fields
of the message schema. Naive solutions take O(N) steps to solve the message
matching problem. It is highly desirable to develop algorithms to solve the mes-
sage matching problem that are sublinear in N. This is an active area of ongoing
research [ASS199].

Note that the message matching problem is complementary to the query
problem in databases. In a database query, a single query (typically a select)
1s matched against a large amount of data — the challenge here i1s to develop
algorithms that are sublinear in the amount of data in the database. In the mes-
sage matching problem a single piece of data (a message) needs to be matched
against a large number of standing queries (subscriptions). Since the problems
are complementary, neither solution is useful in the other context. Note that
the matching problem was first studied in the context of active databases. Effi-
cient solutions to this problem are thus applicable in MOMs and in databases
[HCKW90].

A problem similar to the message matching problem arises when there is a
large fanout of arcs between a single information space and multiple states. By
analyzing the multiple summarization functions we may be able to avoid the



need to make multiple copies of the same state update and to exploit the fact
that if one state doesn’t change as a result of a message, a set of related states
will also not change.

4.3 Distributing broker networks

In a distributed implementation, the above solutions for matching have to be
modified to reflect the fact that the message flow graph will typically be im-
plemented over a geographically distributed network of server processes, which
we call message brokers. Message brokers must combine the functions of routing
and multicasting with the functions of implementing selections, transformations,
and summarizations. Thus it becomes necessary to develop distributed solutions
to these problems — this is an active area of ongoing research [BCM199].
Consider two naive solutions to this problem:

— Perform message matching at the publisher and use the result of the match-
ing to route to the destinations. With this solution, straightforward routing
techniques will not work when there are a large number of clients, since (a)
point-to-point routing will not take advantage of common paths, (b) routing
based on destination lists could result in large message headers, and (c) rout-
ing based on multicast groups could require a very large number of groups
(if there are N subscribers, the system may need as many as 2V multicast
groups).

— Broadcast the message to all message brokers and let each message broker
match the message against its locally connected subscribers. This solution
1s likely to waste communication bandwidth in very large networks, since if
subscriptions are sufficiently selective, messages will often be sent to a broker
none of whose attached clients requires the message.

Approaches to the problem being studied include: (1) performing partial
matching at each broker, forwarding messages (either by conventional point-
to-point or by multicast) to the subset of neighboring brokers requiring the
message; (2) matching messages to a combination of pre-allocated multicast
groups; (3) exploiting the relationships between the subscriptions to reduce the
combinatorial possibilities of multicast groups.

The existence of message transformations complicates the situation even fur-
ther — some transformations can be moved and/or replicated on multiple bro-
kers; others cannot, either because they involve data that cannot be moved (e.g.
a large database mapping names to social security numbers), or because they
involve “opaque” algorithms not visible to the middleware.

4.4 Message Reliability

The fault model that is typically implemented in traditional group communica-
tion systems — that a failed or slow process is automatically removed from the
group [BT87] — is inappropriate for MOM applications. In MOM, the message



flow graph i1s viewed as an abstract reliable entity: Subscriptions are persis-
tent, and messages may not be lost, permuted, or duplicated, nor must spurious
messages be generated (unless such distortions can be masked as a result of fil-
tering or state equivalence). The implementation must preserve the appearances
of persistence even though in the message distribution scenarios shown above,
the distributed system may contain intermittently connected and intermittently
faulty hardware components. This means that when a faulty subscriber recon-
nects, 1t must be possible to either deliver all the messages that it has missed,
or else to compute (via analysis of the effects on the state of interest) a shorter
set of messages which will re-create this state. Unlike with group communication
systems, it 1s not sufficient to report to a faulty or disconnected subscriber that
1ts subscription has been dropped. For example, the Replenishment Analysis
teams must continue to receive inventory updates after a dropped connection is
reestablished. We need algorithms to provide this appearance of persistence in a
distributed network of message brokers. We also need algorithms to exploit the
cases where state equivalence permits dropping of messages, and to exploit the
properties of state equivalence to deliver compressed message sequences after a
reconnection.

4.5 Message Ordering

Information spaces support the abstraction of a total order on messages. Since
subscribers specify their interest in states derived from message histories, the
middleware has the opportunity of relaxing total order deliveries for specific
clients while preserving the meaning of the overall message history. This is in
contrast with the approach taken by group communication systems in which
ordering guarantees are driven by low level protocol options (e.g., publisher
ordering, causal ordering, etc.) [BCJT90].

For instance, if a subscriber is subscribing to the current price of a set of
advertised items, the subscriber may be sensitive to the order of the last two
updates to the same item, since the current price depends upon which update
1s first. The subscriber may not be sensitive to the order of earlier updates to
that item or to the order of updates to different items. This gives the system
the flexibility to weaken the ordering requirement where it is legitimate to do so
while preserving 1t in the cases where 1t matters. However, it gives rise to open
1ssues of how these situations are detected. It also creates the opportunity for
optimistic delivery of out-of-order messages, as discussed below.

4.6 Optimistic Delivery

Efficient message delivery implementations that address fault-tolerance and or-
dering make a distinction between the receipt of a message and its actual delivery
to a client — it is often necessary for the system to delay the delivery of a re-
celved message until certain control messages have arrived, such as for example,
notifications that the data is stable and that no earlier messages are still en



route. It 1s desirable wherever possible to deliver messages optimistically with-
out waiting for this control information. In the simplest cases, the subscriber’s
state of interest doesn’t depend upon order or isn’t affected by extraneous un-
logged messages. However, in more interesting cases, the state of interest does
depend upon order, but the state interpretation makes it possible for “recovery”
messages to retrieve the correct state after an out-of-order or unlogged message
has arrived. For example, in the home shopping example, it may be that an offer
to sell for $20000 is followed by an offer to sell for $30000. If the offer for $30000
arrives first, it can still be immediately delivered; when the offer for $20000 ar-
rives later, the recovery action is to deliver it if it is for a different item than the
$30000 offer, and to discard it as obsolete if it is for the same item.

It is an open problem to analyze a set of subscriptions to state derived from
message histories, and determine (a) under which conditions messages can be
optimistically delivered without waiting for control messages, and (b) what “re-
covery” messages must be inserted if it is later determined that the state needs
to be corrected.

4.7 Topology Changes

End-users don’t care about the topology of the underlying network. Ideally (a)
1t should be possible to reconfigure the topology of the underlying network non-
disruptively, and (b) it should not require complex planning on the part of a
network administrator to configure. Any approach to the topology reconfigura-
tion problem must address scenarios in which multiple organizations may own
parts of the communications links and logging disks, and these organizations
must be able to reconfigure and/or control use of their facilities.

4.8 Security

MOM needs at least three varieties of security: (1) control of who may publish
to, or subscribe from the information spaces of the virtual message flow graph,
(2) control of the physical resources, (3) privacy protection of the data that flows
between publishers and subscribers. Any security solution must accept the fact
that there is no single “application” and no single owner of the whole network.

There are open issues about: (1) preventing a user from overloading system
resources by either generating messages too quickly or by requesting states that
make it impossible to discard any old messages; (2) how to deal with clients to
the same information space from different organizations having different access
rights; and (3) the tension between the requirement for brokers to do content-
based matching and the requirement for some brokers not to be able to interpret
the content.

5 Alternative Approaches

Other technologies, including object request brokers (ORBs) and database man-
agement systems (DBMSs) are being used to glue applications together in the



kinds of scenarios presented in this paper [Gro98,Hsi92, WfM,BN83]. However,
each of these approaches has its limitations for the purpose of MOM applications,
as described below.

5.1 Remote Method Invocation (RMI) Systems

ORBs (e.g., [Gro98]) can be used to glue applications by having one application
call methods of objects in another remote application [BN83]. The interfaces
supported by an application are specified in an interface definition language
(IDL) which are compiled into stubs for the caller and into language templates
for the callee. RMI systems have several shortcomings that make them unsuitable
for MOM applications:

— Application evolution: With this approach, applications tend to get tightly
integrated, right from the design stage. Changes are difficult if not impos-
sible to make after an application has been deployed. Also, since remote
method invocation is a point-to-point concept, it is not possible to interpose
new applications between existing information flows without disrupting the
existing applications.

— Disconnected operation: RMI systems support a synchronous style of inter-
action — this makes them unsuitable in environments where clients may
disconnect.

5.2 Database Systems

In general, database systems are optimized for a different set of applications than
the ones that are presented in this paper. For example, databases are optimized
for queries over a large amount of saved data as opposed to matching a message
against a large number of standing queries or computing a summary state from a
sequence of messages. Also, database systems usually support a small number of
views whereas MOM systems must support a large number of views and must be
optimized for frequent view updates. Furthermore, the overhead of distributed
transactions in databases is prohibitively large for MOM applications.

The database community has developed a variety of techniques to use shared
databases to glue together applications in a distributed environment. With this
approach, one application adds data to a shared database and another applica-
tion retrieves the data from it. Shared databases can be used in several config-
urations for this purpose, but all of them have their limitations:

— Pull-based: The receiving application may poll the shared database for new
“Incoming” data; this unnecessarily introduces extra network traffic.

— Actwe Databases: The receiving application may be alerted about new data
in the database using a trigger mechanism. However, the trigger mechanism
may not scale over a large number of receivers interested in different kinds
of updates to the shared database.



— Client-server architecture: In this architecture, distributed clients access a
centralized database. This approach offers limited scalability, and does not
have the ability to cross organizational boundaries. Changes must first prop-
agate to the centralized database before being sent to interested viewers.

— Distributed database architecture: In this architecture, the database is repli-
cated at multiple sites. In many scenarios for gluing applications together,
the replication guarantees provided by distributed databases may be too
strong.

— Federated databases: In this architecture [KK90,Hsi92,GL94], a collection of
independently designed databases is made to function as a single database.
This involves name conflict resolution, schema conversion, and the execution
of transactions on multiple databases as a single global transaction. Although
this approach may be appropriate for organizing multiple databases within
a single company, or for merging two companies together, 1t is unlikely to be
feasible to run global serial transactions across multiple organizations and
thousands of anonymous subscribers worldwide.

In general, a database used as a communication channel is too heavyweight
as glue between applications. This approach has a significant administrative
overhead and may not provide the same kind of communication throughput
that a more specialized communication channel could provide. Thus, although
databases cannot be a total solution, especially given heavyweight commit pro-
tocols that we often don’t need in the message flow graph solutions, databases
are still potential clients of MOM systems.

5.3 Group Communication Systems

Group communication systems (e.g., [Edi96]) can be used to glue applications
by having applications join process groups meant for exchanging particular
types of messages. This technique is commonly used to implement subject-based
pub/sub, where a subject (or a channel) is implemented as a process group.
In fact, we view MOM as a natural evolution of the group communication ap-
proach. However, this approach has several shortcomings if used to support the
full spectrum of MOM applications:

— Flexibility: The group communication based approach imposes a fixed sub-
ject structure on all applications — this reduces the flexibility of the overall
system. In large systems, it may be necessary for different applications to
select messages based on different fields in a message — a subject structure
cannot capture this requirement.

— Scalabiity: Group communication system implementations tend to be tightly
coupled, thus it i1s natural to deploy group communication systems over
small numbers of computers (100s) on a tightly coupled network (e.g., a
LAN). Scaling group communication to larger numbers of computers and
onto WAN environments is an open area of active research [BFH97].



— Fault model: The fault model that is typically implemented in group com-
munication systems — that a failed process is automatically removed from
the group — is inappropriate for MOM applications. In MOM, subscriptions
are persistent, when a failed process recovers it needs to be updated with all
the messages that 1t did not receive.

— Opaque messages: In general, group communication systems do not interpret
the content of messages. This forces them to support qualities of service based
on low level properties of the protocol, not on the semantics of messages.
MOM systems can get more information from applications and use it to
provide various qualities of service more effectively.

5.4 Workflow Systems

Workflow systems (e.g., [WfM,Lut94]) are used for coordinating potentially dis-
tributed tasks via a specification of the sequence and control of tasks. While
these systems are typically used to solve problems at a “higher-level”, they may
also be used to glue applications by treating each application as an “activity”
that communicates with other “activities” via a workflow manager (which is the
software component that controls the flow of work between activities). However,
the major shortcomings of this approach when used for integrating applications
are:

— Workflow specifications are relatively static in nature — activities and their
interactions do not change once the flow has been defined. Applications re-
quiring integration, on the other hand, may need to support changes to
subscriptions at a frequent rate.

— Workflow managers are centralized in practice. This may limit the scalability
and the throughput of the system. Building a distributed Workflow system
is an active area of ongoing research [PPHC98].

6 Related Work in Content-based Publish-Subscribe
Systems

Several projects [WIS], such as SIENA [Car98], READY [GKP99], Elvin [SA97],
and Gryphon (http://www.research.ibm.com/gryphon), are exploring the use of
content-based publish-subscribe systems as the basis for various MOM appli-
cations. While the motivations for the work in these projects are similar, the
approaches they are pursuing are different in important respects.

From a model point of view, all of the above systems support rich sub-
scription languages which approach the expressiveness of SQL. Some of the sys-
tems, e.g., READY, also support the use of temporal relationships between mes-
sages for expressing “compound events”. As described earlier, the content-based
publish-subscribe model can be generalized to include transformations, merges,
and stateful operations in the single framework of message flow graphs — this
approach is being explored by the Gryphon project. None of the above projects
has explored the notion of cross-domain message flows in any detail.



From an implementation point of view, none of the above projects has ad-
dressed all the research issues mentioned earlier in this paper. The first scalable
solutions for matching and multicasting have appeared recently [ASS+99,BCM*99].
The SIENA project has explored issues relating to efficient propagation of sub-
scriptions. Questions of efficient matching and multicast, message reliability,
message ordering, and optimistic delivery are currently being explored in the
Gryphon project.
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