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ABSTRACT
A new publish/subscribe capability is presented: the ability to pre-
dict the likelihood that a subscription will be matched at some point
in the future. Composite subscriptions consisting of temporal and
logical operators are efficiently represented by a set of finite state
machines and rules. The algorithm trains a Markov model to an ap-
plication’s event workload, and predicts the probability that a given
subscription will match within a window in the future event stream.
Evaluations demonstrate that the memory and processing costs of
the algorithm scales well with the number of subscriptions, and the
prediction precision is high, especially when the workload charac-
teristics do not change rapidly. A comparison with a hand-crafted
Markov model using real data traces shows that the algorithm con-
sumes much less memory and processing power, and still delivers
prediction precision that approaches the hand-crafted model’s. This
is especially impressive since the algorithms lack any of the domain
expertise embedded in the hand-crafted model.

1. INTRODUCTION
A wide variety of scenarios require the detection, correlation,

or aggregation of events. For example, a credit card fraud detec-
tion system may correlate a user’s purchases to find any suspicious
usage patterns. Current complex event processing engines and pub-
lish/subscribe systems support the real-time detection of such com-
plex patterns [4, 6, 20, 19, 12]. In many applications, however, it is
too late to raise an alert of a malicious activity after it has occurred.
What is needed is a way to predict the likelihood of a given pattern
matching at some point in the future. This paper proposes a novel
publish/subscribe matching engine that computes the probability
that a subscription, or pattern, will match based on the application
workload and partial match of the subscription.

Many applications would benefit from predictive subscription
matching capabilities. For example, in a network monitoring sys-
tem [11], a particular pattern of login attempts and port scan opera-
tions may not, constitute a successful attack, per se, but experience
may indicate it is a precursor to an intrusion. The system may
then proactively block the intruder or take other defensive mea-
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sures. Other scenarios that may exploit predictive matching include
algorithmic trading [16], business activity monitoring [11], and epi-
demic warning [22].

One approach to realize predictive capabilities is to define ad-
ditional subscriptions whose match indicates some likelihood that
an activity is about to occur. For example, the increased sales of
a cough medication followed by long hospital wait times may sig-
nify an 80% probability of a flu outbreak. The problem with this
approach, however, is that defining these additional subscriptions
and rules requires domain expertise, can be complex and time con-
suming, and may need to be revised as the workloads change.

The predictive publish/subscribe matching engine in this paper,
on the other hand, is easy to use, and can predict when a subscrip-
tion is about to be matched without requiring any domain expertise
or additional rules to be defined. The prediction is dynamically
tuned to the current application workload based on the history of
events. Furthermore, the user is able to control the quality of the
prediction, in terms of the number of false positives, by specifying
the minimum prediction threshold and how far into the future to
look ahead.

This work complements probabilistic databases event processing
engines [7,22,3] that work with uncertain data. Whereas these sys-
tems are designed for scenarios where there is imprecision in the
event stream and event values, this paper assumes that the events
themselves are precise; the only uncertainty is in the future event
stream. This work also complements existing publish/subscribe re-
search [1, 10, 5, 9, 18] that determine matching subscriptions based
on published events, but can not predict future matches based on
events observed in the past.

This paper makes three key contributions: (1) A set of algorithms
are developed to represent arbitrarily complex subscriptions con-
sisting of temporal and Boolean operators. Temporal subexpres-
sions of a subscription are matched by a finite state machine and
Boolean subexpressions by a rule-based engine. This partitioning
avoids the state explosion of FSMs with Boolean expressions. As
well some common subexpressions among a set of subscriptions
are merged so to reduce computation and memory costs. (2) An
efficient engine is proposed to predict matches of subscriptions. A
Markov model is used to perform the prediction, and the model is
continually tuned to the application workload. The engine can be
configured to report only those predictions above a given threshold
and within a given time in the future. (3) A thorough quantitative
evaluation of the costs of the algorithms is presented. The com-
putation and memory consumption scalability of the algorithms are
presented, the quality of the predictions under a variety of situations
is analyzed, and a comparison of the prediction engine compared
to a hand-crafted Markov model for a real-world scenario is made.



2. RELATED WORK
This paper complements ideas developed in probabilistic databa-

ses, CEP systems that operate on uncertain data, and publish/sub-
scribe.

Probabilistic Database: Probabilistic databases are currently an
active area of research. A probabilistic database is an uncertain
database in which the possible worlds have associated probabili-
ties. Fuhr introduced a probabilistic relational algebra to represent
imprecise attribute values and integrate vague queries in database
systems [13]. While there are currently no commercial probabilis-
tic database systems, several research prototypes exist including
Trio [3], Orion [21], MystiQ [8] and MayBMS [2].

Trio [3] is a database management system which integrates data,
uncertainty of the data, and data lineage together. Trio is based
on an extended relational model called ULDBs, and it supports a
SQL-based query language called TriQL.

The ORION database system [21], is an uncertain database man-
agement system with built-in support for probabilistic data as first
class data types. In contrast to other uncertain databases, Orion
supports both attribute and tuple uncertainty with arbitrary correla-
tions.

MystiQ [8] is a system that uses a probabilistic data model to find
answers in large numbers of data sources exhibiting various kinds
of imprecisions. Moreover, users sometimes want to ask complex,
structurally rich queries, using query constructs typically found in
SQL queries: joins, subqueries, existential/universal quantifiers,
aggregate and group-by queries.

MayBMS [2] uses probabilistic versions of conditional tables as
the representation system, but in a form engineered for admitting
the efficient evaluation and automatic optimization of most oper-
ations of a language using robust and mature relational database
technology.

Event uncertainty management: In complex event processing
systems, events from the environment are correlated and aggre-
gated to form higher level events. Uncertainty in the events may
be due to a variety of factors including imprecision in the event
sensors or generators, and corruption of the communication chan-
nel possibly dropping events.

Wasserkrug et al. [22] present an event processing engine that
supports matching events with degrees of uncertainty. The uncer-
tainty of events propagates through to the event materialized as a re-
sult of a pattern matching, thus transmitting the uncertainty across
the event causality chain. An algorithm based on a Bayesian net-
work and more efficient approximation algorithm are developed.

PEEX [15] manages ambiguous and unreliable events from RF-
ID tags by annotating events with a probability distribution on their
values. Evaluations show that the system improves recall at the
expense of precision.

Publish/Subscribe Systems: Publish/Subscribe systems are an
active area of research [1,10,5,9,18]. Subscriptions expressing sub-
scribers’ interest in events are continually evaluated against publi-
cations representing events. The approaches are distinguished by
the data formats they process and by the algorithmic design. Com-
mon among the approaches is the determination of a match based
on the publication processed. None of the approaches predicts
matches based on publications processed in the past.

Unlike probabilistic databases and uncertain event processing
systems, this paper assumes that the events are precise and have
no ambiguity. Instead, it is the future event stream that is unknown
and the matching of a pattern at some point in the future is predicted
with some probability.

Table 1: Event stream of login history
EID TIME STATUS IP��� 2007/02/14/12:38:10 denied 128.100.2.15��� 2007/02/14/12:42:10 denied 128.100.2.15��� 2007/02/14/12:42:10 denied 128.100.2.15��� 2007/02/14/12:43:28 success 128.100.2.15��� 2007/02/14/12:43:56 logoff 128.100.2.15��	 2007/02/14/12:45:28 success 128.100.5.10

3. SYSTEM MODEL
In this section we describe the language and data model underly-

ing our predictive publish/subscribe approach. The objectives are
to allow subscribers to express interests in complex constellations
of events over event streams allowing the subscriber to join indi-
vidual events through Boolean operators and constrain interests via
explicit and implicit temporal conditions. The language is the basis
for algorithms to match subscriber interests and to predict matching
results from partially detected events.

3.1 Publication Data Model
Publications describe real-world events and are defined by a set

of attribute value pairs: 
���
 ��������������������������������� �"!$#
Unlike conventional publish/subscribe approaches, the model in

this paper operates over event streams, where an event stream is
interpreted as infinite sequence of events, and each event repre-
sents an occurrence of interest at a designated point in time. As is
common in the publish/subscribe literature, we are using the terms
event and publication synonymously. Each event contains a field
that records when it occurred. Events are assumed to be processed
in the order they occured.

For example, Table 1 shows the events logged by a typical op-
erating system monitoring facility. Whenever a login attempt is
registered by the system, the event is recorded with a timestamp,
a status message, and the IP address from where the attempt was
made. We add an event ID, as a unique identifier for each event.

3.2 Subscription Language
A subscription expresses a subscriber’s interest. A primitive sub-

scription is matched by a single event, whereas a composite sub-
scription is matched by a set of events.

A primitive subscription is a conjunction of predicates, each pred-
icate defining a constraint over an attribute: %&
(' ��) '+* ),���-��) '+. �
where the ' � are Boolean predicates.

For example, a primitive subscription that monitors a failed login
from a specific computer is expressed as %�/�0��214365 _ 1 7�8�� �:9��<;>=&?@=BAC;

ED�
�F+G<
�D �>)H��I�J 
LKNM�O # K�PQP # M # KNR ��# Events 
 � and 
�* would each
match primitive subscription %�/�0��S143T5 _ 1 7"8�� � .

A composite subscription expresses interest in composite events,
which represent constellations of events. More formally, a compos-
ite subscription is defined as an expression over primitive subscrip-
tions that are composed with temporal or Boolean operators. The
temporal operators supported include contiguous sequence (whose
symbol is “,”), non-contiguous sequence (symbol “;”), and explicit
temporal (symbol “@”); and the supported Boolean operators are
conjunctions (symbol “

)
”) and disjunctions (symbol “ U ”).

The contiguous sequence operator, “
�
”, requires its operand sub-

scriptions to be matched by contiguous events in the event stream.
The non-contiguous sequence operator, “ V ”, is similar, but allows
other events to occur between the events in the event stream match-
ing the operand subscriptions, as long as the matched events occur
in order. Since events in the event stream occur in order and we
assume no events occur at the same time, there is an implicit tem-
poral condition associated with both “

�
” and “ V ” operators. That



is the time interval between the events matching the operand sub-
scriptions has to be greater than zero. One event cannot match two
operands of the same composite subscription. In contrast, “ � ” is
an explicit temporal operator; it adds an explicit temporal condi-
tion that requires the matching events to occur in the specified time
interval.

In our intrusion detection scenario a possible intrusion can be
modeled by a composite subscription as follows:

% � � % * � %�� 9 I�J 
���� ) ;�=&? =CAC; 
 D�
�F G<
�D
%�� 9 I�J 
���� ) ;�=&? =CAC; 
 %	��
�
-
Q%N%
�%�� ��
������ �27 � 9 % � V�%N*QV�% � � ���-� % � �����-� % �"��� R��:G F � V"%��


�% � ��
������ � 7 � defines an intrusion as at least three failed login at-
tempts within a 5 minute interval followed by one successful login,
with intermitting events allowed before the successful login cap-
tured by %�� . The variable, � , in the IP predicate is used to represent
a join condition that all login attempts originate from the same IP
address. The non-contiguous sequence operator used allows for
other events to occur in between.

A more general example:
% � � % * 9 I�J 
���� ) ;�=&? =CAC; 
 D�
NF+G<
�D
% � � %�� 9 I�J 
���� ) ;�=&? =CAC; 
 %���
�
�
�%N%

%�� 9 I�J 
���� ) ;�=&? =CAC; 
(' � %�%	� D
%� 9 I�J 
���� ) ;�=&? =CAC; 
"!$#�%&#�'('
�%	) 7+*-, � 7+*H� � 365 
 % � V ��� %N*�V�% � � ���-� % � �.�/��� % ���0� D ��� U� %�� � %�� ��� V"%  


�% ) 7+*-, � 7+*H� � 365 defines an intrusion pattern bracketed by a failed
login attempt and a logoff action; in between these events, either
there are at least one failed login followed by one successful login,
or one successful login followed by a password reset action. This
composite subscription illustrates the combination of both temporal
and Boolean operators.

3.3 The Matching and Prediction Problems
The matching problem is similar to the standard publish/subscribe

matching problem: Given a set of composite subscriptions 1 ; and
an event stream 2 , find all 
�%43/1 ; such that the events in 2 sat-
isfy the primitive subscriptions in 
�% as well as any temporal and
Boolean operators.

For example, 
�% � ��
������ � 7 � is matched by the event sequence 
�5 �

 ��� 
�* � 
 � from Table 1.

Next, we describe the prediction problem. At some time,
� � 776 ,

events in the event stream may have matched some of the primitive
subscriptions registered with the system. A composite subscription
for which some of its primitive subscriptions are matched is said to
be in a partially matched state. This is the case, for example, when
% � and % * in 
�% � ��
������ � 7 � are matched.

Our objective is to be able to predict that the probability a sub-
scription, 
�% , will match is greater than a threshold, 8 ) � , after pro-
cessing 9 further events.

Say, based on past observations, we know that an intrusion oc-
cured half of the time after the first failed login and O�P�: of the time
after two failed logins. Based on this, we conclude that the com-
posite subscription, 
�% � ���;
������ � 7 � , is matched with a probability of
P # R after observing the first login failure and with a probability of
P # O after the second failure.

That is given an event stream, we aim to calculate the probabil-
ity that a composite subscription, 
�% , is matched some time in the
future given its current partial matching state. The challenge is to
efficiently calculate this conditional probability for all composite
subscriptions. Thus, the prediction problem is as follows: Given a
set of composite subscriptions, 1 ; , and an event stream, find all
partially matched composite subscriptions 
�%<3=1 ; such that the
probability of 
�% transitioning from a partial match to a full match,
after processing 9 events, is greater than the threshold, 8 ) � .
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Figure 1: System architecture

4. SUBSCRIPTION PROCESSING
The publish/subscribe system presented in this paper performs

four principal matching tasks. These are the matching of primitive
subscriptions, the matching of sequence and temporal operators,
the matching of Boolean expressions underlying composite sub-
scriptions, and the prediction of subscription matches based on par-
tial matching state evolving over time. Figure 1 shows the match-
ing engine architecture and hints at the processing flow of events
through the system.

Before discussing the event processing flow in more detail, we
describe how composite subscriptions are decomposed and repre-
sented in the system. A composite subscription is an expression
tree. Intermediate tree nodes represent the operators and leaf nodes
the expressions of the primitive subscriptions.

The Boolean expressions defining the composite subscription
are represented as Boolean trees and are managed by the Bool-
ean Matching Engine (BME) in the architecture. The temporal
subexpressions of composite subscriptions are represented as fi-
nite state machines (FSM) and are managed by the State Machine
Engine (SME). Individual primitive subscriptions, which are at the
leaves of the tree, are managed by the Atomic Subscription Matcher
(ASM). The decomposition of a composite subscription into FSMs
and Boolean trees is described in Sec. 4.2.

Input events are first evaluated against all primitive subscriptions
stored in the ASM. The resulting matches drive the state transitions
of the SME and the matching of the Boolean operators of compos-
ite subscriptions in the BME. SME and BME produce three kinds
of outputs. The first kind are the fully matched composite subscrip-
tions. The second kind are referred to as derived events. These are
events that are fed back from the SME to the BME and from the
BME to the SME to trigger further state transitions and Boolean
matches, respectively. The third kind are partial matches passed on
to the Prediction Engine (PE).

Primitive subscription matching and Boolean expression match-
ing has been extensively studied [17, 5, 10, 18] and will not be fur-
ther discussed here. Here, we focus our discussion on the algo-
rithms underlying the State Machine Engine (SME), which lever-
ages FSMs [14] for the processing of sequence operators. Sub-
scription expressions are graphs that represent FSMs derived from
the sequence operators. In the graph a node represents a state, an
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edge represents a state transition labelled by a primitive subscrip-
tion whose match triggers the transition. State transitions are trig-
gerd by events. Below, we describe the FSM construction and
event processing algorithms for our composite subscription expres-
sions.

4.1 Sequence Operators
Constructing an FSM and processing it for expressions using the

contiguous sequence operator is simple. It constitutes a building
block for supporting the other operators. In our presentation, we
assume the processing of one expression, deferring optimizations
for the merging and joint processing of multiple FSMs to below.

Given an expression with � primitive subscriptions 
�% 
 % ��� %N* ��-��� � %N. , the FSM has ��� K states capturing the intermediate states
of matching the individual primitive subscriptions. 9 5 is the initial
state (no matches), 9 � represents the state that % � matches, 9 .�� �
represents the state that the previous � � K contiguous events match
% � � % * ����� % .�� � , and the last state, 9 . , represents the state that the
whole expression is matched. For each state 9 � , where P
	 G�	
� � K , we add a transition from state 9 � to state 9 �
� � upon the
match of the primitive subscription % �
� � .

During matching, the initial state is always checked for each new
event to see whether a new partially matching instance of the FSM
must be initialized. If nothing matches the incoming event, all cur-
rent FSM instances are simply discarded, exploiting the property
that no intermittent events are permitted in matching the contigu-
ous sequence operator.

We treat the temporal condition defined by � as an additional
predicate of the associated primitive subscription. The same algo-
rithm can be applied to build the FSM for expressions containing
� operators as for building the FSM for contiguous operators.

To support the explicit temporal operator in event processing,
each state has an associated field that records time of the most re-
cent transition into the state. Furthermore, when a new instance
of a state machine is created, separate transition times are main-
tained for the states in each instance. These transition times are
used when the time condition is evaluated to determine whether to
take the transition.

Consider the example subscription and associated state machine
in Figure 2. This composite subscription is similar to 
�%N� ��
������ �27 �
from the earlier intrusion detection scenario, and expresses an in-
terest in three failed login attempts, followed by one successful at-
tempt with the additional constraint that the three failures occur
within a time window of duration D . In the figure, � and

;
rep-

resent the primitive subscriptions that define a failed or successful
login attempt, respectively. That is, we abstract in the presentation
from the underlying primitive subscription matching, where � and;

are the results of evaluating the underlying primitive subscrip-
tion.

Continuing the example, suppose an event stream contains a se-
quence of three failed login attempts occurring at times 1, 2, and
3. At this point there would be three instances of the state machine
in Figure 2. In one instance, the current state is 9 � with a transi-
tion time of 3; in another instance, the current state is 9 * and state
9 � has a transition time of 2; and in the last instance, the current
state is 9 � , state 9 * has a transition time of 2, and state 9 � has a
transition time of 1.

N0
N1 N2 N3 N2

S2 F

S F S@TF
(F) (F;S) (F;S;F) (F;S;F;S)

1

1: primary link 2: secondary link

F

* * *

4

3

3: self link 4: out link

Figure 3: FSM for � V ; � V�� V ; *�� ����� � � ��� � � = �

There are two differences when constructing an FSM for expres-
sions with non-contiguous sequence operators. First, since events
not contributing to matching an expression are allowed to occur
during matching, the FSM must remain at the current state, even
if the primitive subscription that triggers the transition to the next
state is not matched. Second, if the next primitive subscription is
matched, we need to take two transitions in order to track all match-
ing possibilities. One transition leads to the next state, the other
transition leads back to the state itself to allow future matches of
the next primitive subscription to trigger the transition to the next
state.

To correctly support the explicit temporal operator “@”, it is nec-
essary to differentiate the transitions by which a state is reached.
Taking Figure 3 as an example, there are three incoming links to
state 9 * . From state 9 � , there is a link to state 9 * upon the match
of
;

. This is the first time that 9 * is reached upon a match, and we
call this link the primary link. From state 9 * , there are two links
back to itself. One is also triggered upon a match of

;
, and we call

this link the secondary link. The self link which is labeled by � ,
is triggered for every event except those that cause a transition of
the primary or secondary links. Only primary and secondary links
are triggered upon a match and the transition times associated with
a state should be recorded on these two transitions for future use
when evaluating relevant time conditions.

When both contiguous and non-contiguous sequence operators
are used in one composite subscription, we decompose the compos-
ite subscription into multiple terms separated by the non-contiguous
sequence operators where each term contains only contiguous se-
quence operators. We first build a state machine for each term and
then add transitions between terms. Algorithm BuildStateMachine
describes the detailed process.

Algorithm BuildStateMachine( 
�% )
( � construct an FSM for a CS containing temporal operators � )
1. Decompose 
�% into F terms separated by non-contiguous se-

quence operators: 
�% 
 = � V = *NV ����� V = � ; where each term= � 
 ; � ���"; �S* ������� ��; � .�� contains only contiguous sequence
operators

2. � 
�� � ����*�� ����� ��� �
3. Construct � states 9 5 � 9 � 
 % �-������� , 9 * 
 % ����� % � * ������� �% � . � V ����� V % ��� � % � * ������� � % � .�� , where each state represents

the partial match state of one more primitive subscription
4. for each state 9 � 
E% � � % * �-����� � % � where

� P�	 G�	 � �
5. add an edge % ��� � from 9 � to 9 ��� �
6. for each state 9��C
 ����� V�% � � � % � * �-����� � %�� . � � 
 %�� �
7. add an edge %�� � � from 9�� to 9�� � �
8. add an edge %�� from 9�� to 9��
9. add an edge � from 9 � to 9 �

In the above algorithm, “� ” represents any input. Figure 4 shows
an example for a composite subscription composed of three terms:� � � � ��; � , � � ��; � and

� � ��; � .
Complexity Analysis: In Algorithm BuildStateMachine, there

are two steps to build a state machine: first build the graph for each
term, then add transitions between terms. Consider a subscription
with � sequence operators of which F are non-contiguous opera-
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Figure 5: General composite subscription

tors, thereby having F � K terms and � states in total. Suppose the
time to create a new state is

� �
and the time to add an edge is

� 3 .
When building the state machine for term

= � , we need to create ���
states and add �$� edges. Thus, the time to build a state machine for
a term is

��� � � � 3 � � �$� . In the second step, three edges are added be-
tween two sequential terms, and so the second step takes

� F � 3 time.
Therefore, the total time to build a state machine for a subscription
is �

� � ��	� � ��� � � � 3 � � �$� � � � 3 � � F � K � 
 � ���;� � � 3 � � � F � 3 . Since
F � � , the time complexity to build a state machine becomes lin-
ear in the number of states:

=�
 � �S1 5 _
�;
 0 
 3 _ * 0 )
� � � 3 
�� � � �

.

4.2 Combining Boolean/Sequence Operators
A general composite subscription containing both sequence and

Boolean operators is decomposed into a set of state machines and
Boolean machines. Boolean machines here are simply the expres-
sion trees that represent a Boolean expression. The decomposed
state or Boolean machines are hierarchically organized and indi-
vidual machines are referred to as parent or child machines based
on their relationships in the hierarchy. As well, the machine at the
root of this hierarchy is called the master machine.

As an example, the composite subscription 
�%C
 % � V ��� %�* � % � ��)� % � � % � ��� V"%� �V � % � U % � � can be represented by three state machines
and one Boolean machine as shown in Figure 5. In Figure 5(a),
the two state machines labeled

;��
and

;��
are child machines of

the
;��

Boolean machine, and the two Boolean machines are in turn
children of the master state machine in Figure 5(b). The entire com-
posite subscription is matched when the master machine reaches its
matched state.

Special trigger events are used to transition between state and
Boolean matching engines: in-trigger events are sent by a parent
machine to start a child machine, and out-trigger events are sent by
a child machine to notify the parent of a match. Once a child ma-
chine is triggered, it remains active in order to detect more matches.
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Figure 6: Merging multiple state machines

Matches in the child machine generate derived events that are con-
sumed by the master machine. The child machine only terminates
when the master machine terminates, i.e., the whole composite sub-
scription is matched or times out.

For example, in Figure 5, when the master machine transitions to
state 9 � , it sends an in-trigger to its

;��
child Boolean machine to

activate it to begin examining the event stream for matching events.
Similarly, when the

; � ) ; �
subexpression matches, the

;��
Bool-

ean machine sends an out-trigger that causes the master machine to
transition to state 9 * .
4.3 Merging Multiple Graphs

When composite subscriptions share common subexpressions,
portions of their respective state and Boolean machines can be mer-
ged. This saves memory and reduces the matching computation. As
merging Boolean expressions has been studied and is not the focus
of this paper, we only describe state machine merging here.

Merging state machines should not affect the matching of the
associated subscriptions. Two states, 9 � in 
�% � and 9 * in 
�%N* , can
be merged if they are equivalent, that is, any time 
�% � arrives at
state 9 � , 
�%�* also arrives at state 9 * , and vice versa.
Definition: States 9 � and 9 * are equivalent if the following hold:
(1) The number of incoming transitions of 9 � and 9 * are equal.
(2) The incoming transitions arrive from equivalent states and are
triggered by the same set of events. Formally, for every transition
9��

�� 9 � , there exists a transition 9�� �
�� 9 * , where 9�� and 9�� �

are equivalent.
Figure 6 shows the result of merging three state machines 
�% � 
� V
� � 
 , 
�% * 
 � V
� � D and 
�%�� 
 �

. State � �
and � * are merge

states representing the partial matches for both 
�% � and 
�%N* . Note
that states � �

and � � cannot be merged although both are trig-
gered upon an occurrence of event

�
. � �

and � � are not equivalent
because there is another incoming transition (the � edge) associated
with state � �

.
Complexity Analysis: Without merging, the time to build the

state machine for a composite subscription with � primitive sub-
scriptions and F non-contiguous operators is � ����� � � 3 � � � F � 3 ,
for a total time of 9�� � ��� � � � 3 � � � F � 3�� when there are 9 sub-
scriptions. With the merging optimization, subscriptions with com-
mon subexpressions can share states. For a set of 9 subscriptions
with a merging degree of D * : , meaning D&* : of the states are
common, the total time to build the state machines decreases to
9�� � ��� � � � 3 � � � F � 3�� � D * : .

After merging, all the state machines can be considered as one
large graph (perhaps with multiple connected components). The
memory required to store the entire graph is the size of the graph,
which depends on the total number of states � and the total num-
ber of edges  . Therefore, the total space complexity is � � � �! � .

5. EVENT PROCESSING
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Figure 7: Data structure for subscription 
�% 
 % � V�%�*�� ��� � � ��;� � � � � V�% � � ��� � � � �;� � ��� � � ���;� � �/� � ��� � �

5.1 Matching Algorithm
Composite subscriptions are represented as state and Boolean

machines, with each primitive subscription match triggering a tran-
sition. During matching, it is important to correctly manage the
time information for each matched primitive subscription and to
efficiently evaluate the associated time conditions. The discussion
below considers cases where the explicit temporal operator refer-
ences states either within a single FSM or in multiple FSMs.

5.1.1 Time conditions within an FSM
Each time condition involves two primitive subscriptions. We

refer to the earlier and later matched primitive subscriptions as the
referencing and dependent subscriptions, respectively. In the state
machine, the states arrived at when these subscriptions match are
called the referencing and dependent states. For example, for a
time condition � ��� � � � � � � � � D between primitive subscriptions
% � and % * , % � and % * are the referencing and the dependent subscrip-
tions, respectively. During matching, all the primary and secondary
transitions into the referencing state are recorded so that the time
condition can be evaluated when the dependent state is reached.

For each referencing state referred to by a time condition, we as-
sociate a time list

= * � %N� � that records when the state is reached (or
when the primitive subscription triggering the arrival of this state
is matched). New entries will be inserted into the time list when
a primary transition or a secondary transition is taken. Since each
state can be referred to by multiple time conditions and each time
entry may satisfy a different set of time conditions, we associate
a time compatible set

= ) � % � � with each entry containing the set of
time conditions satisfied by this entry.

Figure 7 shows an example of the data structures to support ex-
plicit temporal operators. There are three time conditions in the
example involving three subscriptions % � , %N* , and % � (and their as-
sociated states 9 � , 9 * , and 9 � ), so a time list is maintained for
each of these states.

Now suppose the incoming events match the subscriptions at
the times indicated in the timeline at the bottom of Figure 7. The
first three times (where events match % � ) are inserted into time list= * � % �"� to record the times when events matched % � . At time � ,
%N* is matched, but before moving to state 9 * , time condition

= �
is evaluated based on the matching time of % * (

� � � 
�� ) and the
entries in

= * � % ��� . Only times M and
�

in the list satisfy
= �

, so time
K can be pruned from

= * � % � � . Time � is then inserted into
= * � % * �

and times M and
�

are inserted into
= ) � % ��� . Similarly, at time R ,

% * is matched again, time R is inserted into
= * � % * � and time

�
is

inserted into
= ) � % ��� . At time

�
, %N* is matched again, but since it

does not satisfy the time condition
= �

, based on the time entries
in
= * � % ��� , it is discarded. For the same reason, at time � , % � is

matched, but it is discarded because time condition
= � is not satis-

fied. At time 8, subscription % � is matched again, and we evaluate
the associated time conditions

= * and
= � . This time,

= * is satis-
fied using % * ’s matching time of � , and

= � is satisfied using % � ’s
matching time of

�
. Since % � ’s matching time of M is no longer ref-

erenced, it is pruned from the
= * � % � � and

= ) � % � � lists. Similarly
time R is deleted from

= * � %�* � . At this point, the time lists and
compatible lists will be updated as shown in the figure. According
to these entries in the lists, we know that the composite subscription
is matched using the events at times 3, 4, and 8.

As explained in the above example, the time lists and compat-
ible lists are updated as the state machine transitions occur. This
procedure is detailed in Algorithm Match.

Algorithm Match( � ; � � 
 )
( � Given a finite state machine � ; � and an event 
 � )
( � update the current state and time lists � )
1. 9 � 
�� � 9 ) � 
 �;��� //Find the next state 9 � based on current

state 9 ) , event input 
 , current time
�

and transition function
�

2. if � time condition � = refered by state 9 �
3. insert time

�
into

= * � % � �
4. for each time condition � = dependent on state 9 �
5. 9 �>

	C
 � _ �C
�' _

; �6�&� 
 � � =C�
6. List !$* 
"9 � # %�
 � _ � G � 
 _ !SG6% �-�<�
7. Set matched_times = 
 �$� ! � � =@� !$* � ���
8. if !matched_times.isEmpty()
9. entry =

= * � % � ��# G<F %�

� �-���"�
10. entry.set( 9 � , matched_times)
11. if 9 ���
"9 )
12. prune( 9 ) ), 9 ) 
"9 �
13. if 9 ) is matched state
14. find the final matched time if no time list is empty
15. return 9 ) .getMatchedPattern()

Algorithm Prune( 9 ) )
( � Recursively update the time lists when leaving a state � )
1. List ! ) 
"9 ) # %�
 � _ � G � 
 _ ! GT% ���<�
2. for each time condition � = associated with incoming transi-

tion to 9 )
3. 9 � 

	C
 � _ �C
�' _

; �6�&� 
 � � =C�
4. List ! � 
"9 � # %�
 � _� G � 
 _ ! GT% ���<�
5.

A 
�� . ! ) � � � # %�
 �-� 9 � �
6. ! � .Update(

A
)

7. Prune( 9 � )
8. for each time condition � = associated with outgoing transi-

tion from 9 )
9. 9 � 

	C
 � _ � 
�'�
�F D�
�F � _ ; ��� � 
 � � = �
10. List ! ��
"9 � # %�
 � _� G � 
 _ ! GT% ���<�
11. for each ! �
� � � # = ) � % ) �
12. ! �
� � � # = ) � % ) � .update( ! � )
13. Prune( 9 � )

Upon an incoming event 
 , we find the primitive matched sub-
scriptions and the next state 9 � based on the current state 9 ) . If
there is no time condition associated with this transition, we just
move to the next state. Otherwise, we insert the time into the time
list of the next state if it is referred by a time condition ( 9 � is the
referencing state of a time condition). If there are time conditions
dependent on 9 � ( 9 � is the dependent state), we update its com-
patible sets. When leaving the current state, we recursively prune
all time lists and compatible sets to find out the final matches that
satisfy all time conditions. If 9 � is a final matched state, we get
the associated composite subscriptions and report the result.

Complexity Analysis: There are three main steps during match-
ing: find the next state, evaluate the associated time conditions
and prune the time lists. The first step requires a constant time



Table 2: Time condition � � %N� � % � � for example subscription

�% 
 % � V ��� %N*�V�% � � ) � %�� � %�� ��� V�%  V � % � U %�� � .

Ref. State Location Dep. State Location Example
( ������� ��� ) ( �	������
 � )���
��������� � ���
� ����� ��� � � �

master ������������� � ����� � � � � ���� � master ����� � � ��� ���� ���������� �� master� ��� �	� � � � � ��������� � �����"! � ����� � � � � ������ ������ � �� master� ��� �	�
� � ����� ! � �� � ������� � � ���#�"$ � ����� ��� �&% �

lookup if the transitions are stored in a hash map. For the latter
two steps, the processing time depends on the number of associated
time conditions as well as the evaluation time and pruning time for
each time condition. Suppose there are on average � � dependent
time conditions and � * referencing time conditions per state. For
each time condition, the evaluation time depends on the length of
the time list ! � . Thus, the processing time for the second step is
� . �� � �(' ! � ' . The time lists pruning recurses through each time con-
dition. From the current state, suppose on average, the pruning
process is called recursively ) times on dependent time conditions
and * times on referencing time conditions. For each time list,
the pruning time depends on the length of the time list. So in to-
tal, the pruning process requires ) � . ��	� �+' ! � ' �,* � . ��	� �-' !S� ' time.
Therefore, the time complexity of the whole matching algorithm is= G � 
 � � �&� 
/. G F(% � 
 � . ��	� �(' !S� ' �0) � . ��	� �(' !S� ' �1* � . �� � �-' ! � ' #

The above formula indicates that event processing time depends
on the length of the time lists. One solution to control the size of the
time lists is to expire events and delete their associated entries from
the time lists. However, this may result in not detecting certain
matches.

5.1.2 Time conditions across FSMs
A composite subscription with both temporal and Boolean oper-

ators will contain both state and Boolean machines. According to
the locations of dependent and referencing states, we classify time
condition evaluation into five cases as listed in Table 2. The graphi-
cal representation of the example composite subscription in Table 2
is shown in Figure 5.

In Table 2,
; � � represents state machine � , and 2 � �<; � � �

represents the Boolean machine where a reference to state machine
� appears. In Case 1, the time condition is defined between two
subscriptions in the same state machine. In Cases 2 and 3, the time
condition is defined across the child and master state machines. In
Cases 4 and 5, the time condition is across two different child state
machines that are referred to by the same Boolean machine (Case 4)
or by different Boolean machines (Case 5).

For time conditions across different state machines, a global time
condition table

= 1 = (as shown in Figure 7) stores the mapping be-
tween referencing or dependent states and the corresponding time
lists. When the referencing state is reached (e.g., % � is matched), a
new entry is inserted into its time list in

= 1 = . When the depen-
dent state is going to be reached (e.g., % � is matched), the associated
time condition will be evaluated and the time list and its compati-
ble list is updated accordingly. If % � is not referred to by any later
time condition, the time list of % � is cleaned up. This procedure is
applied for Cases 1, 2, 3 and 5 as listed in Table 2.

For Case 4, when the time condition spans state machines with
the same parent Boolean machine, there is no order constraint be-
tween these two primitive subscriptions. In this case, the time
condition is treated as an absolute time difference, of the form' � � � � � � 
 ' � =

. For this type of time condition, we can not fix ei-

ther state to be the dependent state at which the time condition is to
be evaluated. Instead, we evaluate the condition

� = 	 � � � � � � 
 �=
after both %�� and % � are matched. To reduce the evaluation time,

we insert new entries into the time lists upon the match of % � and
% � , but we do not evaluate the condition, create the compatible list
or perform pruning until we transit into the first common descen-
dant node of the two nodes in the Boolean tree referring to the state
machines where %N� and % � appear.

Notice that an absolute time condition is not possible for Case 5.
Since

; �43 and
; �65 do not belong to one Boolean machine,

there must be a sequence operator between
; � 3 and

; � 5 mak-
ing an absolute time condition impossible.

5.2 Prediction Algorithm
Each FSM records incremental matches of a pattern, with each

successive state representing a further partial match status towards
the final full match. If the machine is in state 9 ) , the probability
that it moves to state 9 � on the next event depends only on the
present state. In other words, the present state fully captures all the
information that could influence the future evolution of the process.
Therefore, an FSM in our model can be considered as a Markov
chain.

We propose a mechanism to leverage the properties of Markov
chains to predict the probability of a future match of a compos-
ite subscription based on the current state and event history. First,
we explain how to assign the transition probabilities for a Markov
chain (i.e., a state machine) based on the event history. Then we
introduce a conditional probability for a single state machine to
reach the matched state given the current state. Finally, we define
a probability of future match for a general composite subscription
represented by multiple state machines and Boolean machines.

5.2.1 Markov Chain Model Training
To calculate the probability of reaching a state, we need to de-

termine the long-run transition probability for the FSM, i.e., the
Markov chain.

With this objective, we count the number times each transitions
in a state machine is traversed, and use these counters to build a
Markov chain whose probability distribution captures that of the
event stream.
Definition: Given an FSM represented as a digraph 	 
 ��7 � 2 � ,

N� � 3 2 is an edge from node

� � to node
� � , where

� � 3 7 ��� � 3 7
are the states. The transition probability from state G to state 8 is

defined as '�� � 

�-9 � 
:<; �=9 ; � where 9 3 � 
 is the number of times that

the transition from state G to state 8 has been taken and � . 9 3 ; �
is the total number of times that all incoming transitions have been
taken, which is also the number of times we have arrived at state G .

Given the transition probabilities between the states, the state
machine can be considered as a complete Markov chain model.
Since the state space is finite, the transition probability distribution
can be represented by transition matrix

J
whose

� G � 8 � th element
is ' � � 
?>+@ �BA � � � 
08 ' A � 
 G � .
5.2.2 Prediction for Simple Composite Subscription

We assume the Markov chain is time-homogeneous, so that the
transition matrix

J
remains the same at each step. The following

probabilities can be computed:
(a) The probability of reaching the final matched state over the

next F events given a current state. The matrix
JDC ��E


 J �
is used

to determine the transition probabilities over F steps. The proba-
bility ) � of reaching the final matching state � (which represents
a match of the whole pattern) from the current state G over the next
F events is computed as ) C �FE

� 
 J C ��E
��G #



(b) The probability of reaching the final matched state within the
next F events given a current state. The probability * � of reaching
the final matched state � from state G within the next F events is
computed as * C �FE

� 
 � .�� � ) C . E� 
 � .�� � J C . E��G #

5.2.3 Prediction for General Composite Subscription
We define a global state to represent the status of composite sub-

scriptions that require multiple state and Boolean machines.
Definition: A global state 	 is a group of sub-states. For master
state machine � and child state machines 1 �-�������+� 1 . , the global
state can be represented as 	 � 
 � � # 9 ��� � 1 � # 9 ��� � � 1 * # 9 ��� � ��-��� � 1 . # 9 � � ; ! #

The prediction problem for a general subscription with multiple
state and Boolean machines is then defined as follows.
Definition: Given the current global state 	B� , find the probability
of reaching fully matched state 	 * in F steps:

J � C
��E � 	 * ' 	 � ���

where 	B�(
 � � # 9 ��� � 1 ��# 9 ��� � � 1 * # 9 ��� � ���-��� � 1 . # 9 � � ; ! and
	 * 
 � � # 9 *�� � 1 � # 9 *�� � �$����� � 1 . # 9 * � ; ! .

When 	C� or 	 * consist of active states of child state machines,
individual conditional probabilities can be computed for each state
machine separately, and these probabilities are then combined ac-
cording to their relationship in the Boolean machine. Based on
probability theory, we give the definition of the conditional proba-
bility for a simple composite subscription which contains only two
child state machines that are combined by one Boolean operator. In
this case, there are two states in the master state machine.

Given a composite subscription %�� 
 %
	 � ) %
	 � where %
	 �
and % 	 � contain only sequence operators and 1 � and 1 * are two
child state machines, suppose the current global state is 	B� 
� 1 � # 9 � � � 1 * # 9 � * ! , and the matching state is 	 * 
 � 1 � # 9 �>� �
1 * # 9 � * ! . Then the probability of reaching the final matched state
in F steps is computed as

J �
�
� � 	 * ' 	 � � 
 J �

�
	 � � 9 � � ' 9 � � � �J �

�
	 � � 9 � * ' 9 �S* ��# If, however, % � 
 % 	 � U % 	 � , the probability

would be
J �

�
� � 	 * ' 	 � � 
 J �

�
	 � � 9 � � ' 9 � � � � J �

�
	 � � 9 � * ' 9 � * ��#

For composite subscriptions with multiple child state machines
and Boolean machines, the conditional probability is decomposed
into three steps. The first step considers the transition from the
current state � # 9 ��� to the next state � # 9 ����� � ; the second step
the transition from � # 9 ��� � � to the state just before the global
state, � # 9 � � � � ; and the third step the transition from � # 9 � � � �
to the global state � # 9 � � .
J �

� � 	 � ' 	 � � 
�
 , ����� � � � J � , � 	 � � � # 9 � � � � ���J � � � � # 9 ��� � � � � # 9�� � � � ���J �
� � � # 9 � � � � � 	 � �

The first and last function will be expanded according to the
combination functions if 	B� or 	 � contains active child state ma-
chines. The second function can be computed based only on the
master state machine since it does not involve any active child state
machine. Taking Figure 5 as an example, suppose currently %Q* and%�� are matched. The probability that 
�% is fully matched in F steps
is: J �

� � 	 * ' 	C� �

 J �

� � � # 9 � ' A # 9<3 � ��� # 9 5 � �

 
 , ��� � � J � , � � # 9 * ' A # 9 3 � ��� # 9 5 � �>�NJ � � � � # 9 � ' � # 9 * �

 
-, ��� � � � J � , �BA # 9 3 � ' A # 9 3 � ���NJ � , ��� # 9 5 � ' � # 9 5 � �����J � � � � # 9 � ' � # 9 * �

6. EXPERIMENTS
In this section we experimentally evaluate our approach. All the

algorithms are implemented in Java and the experiments are run
on a 3GHz Linux machine with 4GB of RAM. We are using two

a b a b e c e f a b c d d g aevent stream:

subscription: a,b;c

P F F P

F: full match
P: partial match

Figure 8: Sample event stream

workloads for experimentation: a synthetic load that lets us inde-
pendently examine various aspects of our approach by running con-
trolled experiments and a second real-world data set to demonstrate
the behavior of our approach under realistic conditions. Our work-
loads comprise composite subscriptions and events.

The synthetic subscription workload is generated as follows. 9 ) �
composite subscriptions are generated, each containing  
�F % � . ) �
primitive subscriptions. Primitive subscriptions in turn are gen-
erated to match exactly one of the events in a predefined event
pool of size 9 3 , . Of the  
�F(% � . ) � � K operators in a composite
subscription, 9 � 7 � _ ) 7 ��
 � 8 � 7 ��� _ 7;, are uniformly selected to be the
non-contiguous sequence operator and the remainder the contigu-
ous sequence operator. By default, 9 ) � 
 K�PQP�P ,  
�F(% � . ) � 
 K�P ,
9 3 , 
 R�P , and 9 � 7 � _ ) 7 ��
 � 8 � 7 ��� _7;, 
 M .

Two sets of subscription workloads are used, characterized by
the distribution of the primitive subscriptions. In the uniform_cs
subscription workload, each primitive subscription matches a ran-
dom event uniformly drawn from the event pool, whereas in the
gaussian_cs subscription workload, events are selected following a
Gaussian distribution.

Since the number of partial and full matches of subscriptions will
affect the prediction algorithm, we control the number of partial
and full matches of a composite subscription, 9 ,�* and 9 /�* , re-
spectively, when generating the event stream workload. As shown
in the example in Figure 8, the event stream contains sequences of
events that partially or fully match a given subscription. In addi-
tion, a number of irrelevant events that do not match any primi-
tive subscriptions are interspersed among the partial and full match
sequences. The event stream is generated as follows. First, we
determine with 50% probability whether to generate a set of ir-
relevant events. If so, a sequence of  
NF(% � . � ��� irrelevant events
are appended to the event stream. Otherwise, one of the compos-
ite subscriptions whose quota of partial or full matches ( 9 ,	* or
9 /�* ) has not been met is randomly selected, and a sequence of
events that correspond to either a partial or full match is generated.
If a full match is required, the necessary set of events is added to
the event stream, otherwise a partial match of length  
NF(% � .�,	* is
appended to the stream. By default 9 ,	* 
 M�P , 9 /�* 
 M�P and
 
NF(% � . � ��� is a uniform distribution in the range �4K � K�PQP � .

Two sets of event stream workloads are used, characterized by
the distribution of the partial match lengths,  
�F % � . ,	* . In the uni-
form_pub workload,  
�F(% � . ,	* follows a uniform random distri-
bution in the range �4K �  
NF(% � . ) � � K � , whereas in the gaussian_pub
workload it varies with a Gaussian distribution over the same range.

It should be noted that the event stream workload only loosely
controls the length and number of partial and full matches of the
composite subscriptions. In reality, the events generated to achieve
a partial or full match of a particular composite subscription may
contribute to matching other composite subscriptions.

In the following experiments, all measurements are performed
after the subscriptions have been inserted into the matching engine.
To evaluate the matching algorithm, the parameters of interest in-
clude the effect of the number of composite subscriptions, their
lengths, the number of non-contiguous operators and the size of
the event pool (i.e., more or less diverse primitive subscriptions,)
For the prediction algorithm, the evaluated factors include the ratio



of full matches to partial matches, the number of prediction steps,
and the prediction threshold.

6.1 Matching Performance
Number of subscriptions: Figure 9(a) shows the number of

states with increasing number of subscriptions. We see that the
number of states grows linearly as the number of subscriptions in-
crease. Furthermore, the rate of increase for a small event pool size
(i.e., fewer primitive subscriptions) is less than that of a larger event
pool size (i.e., more primitive subscriptions). This is because there
are more merged common states with a smaller number of distinct
primitive subscriptions in the workload. Similarly, for the gaus-
sian_cs workload, the workload exhibits more locality and fewer
distinct primitive subscriptions are involved and hence there are
even more common states than in the uniform_cs workload.

Figure 9(b) shows the average time to process one event given
a fixed set of subscriptions. As the subscription size increases, so
does the matching time. Unlike for the number of states, given
a fixed number of subscriptions, the matching time is larger for a
workload with fewer distinct primitive subscriptions (i.e., a smaller-
sized event pool) or gaussian_cs subscriptions where the workload
share more common states. This is because with a larger number
of common states, a given event may trigger more transitions, thus
requiring more processing time.

Number of non-contiguous operators: Figure 9(c) shows that
as the number of non-contiguous operators increases, so does the
matching time. This is because more subscription instances remain
partially matched, waiting for events to trigger their transitions.

Composite subscription length: Figure 9(d) shows the effect of
increasing the length of composite subscriptions on merging. We
plot the commonality, which is represented by the ratio between
the number of shared states with merging and the total number of
states without merging. We see that the commonality decreases
with increasing subscription length. In our FSM model, each state
in the FSM is defined by the prefix of the subscription. For a longer
subscription, there are much more combinations to select events to
generate a subscription compared to a shorter subscription. This
explains why the commonality degree decreases with the increase
of the subscription length. This experiment also shows that the
merging process favors shorter subscriptions.

Number of distinct primitive subscriptions (size of event pool):
The remaining figures show the effect of number of distinct prim-
itive subscriptions on merging and matching. Figure 9(e) shows
that the number of states increases as the number of distinct prim-
itive subscriptions increases for both uniform_cs and gaussian_cs
workloads. As the number of distinct subscriptions increases, the
number of states for both workloads increases. This is because the
number of shared common states among subscriptions decreases
with increasing number of distinct subscriptions. The gaussian_cs
workload results in more locality, that is among the larger num-
ber of subscriptions there are fewer distinct subscriptions, relative
to the same number of subscriptions in the uniform_cs workload,
therefore, the gaussian_cs workload results in fewer states than the
uniform_cs workload.

Figure 9(f) shows that the number of transitions decreases with
the increasing number of distinct subscriptions for different work-
loads. Recall that the number of shared states among subscriptions
decreases with increasing number of distinct subscriptions. Hence,
there are fewer instances during the matching process and so fewer
transitions as well. The Gaussian publication workload contains
shorter partial matches than the workload generated by the uniform
distribution, which also results in fewer transitions.

6.2 Prediction Performance
We evaluate our prediction algorithm on three important metrics:

false positives, true positives and precision, which is defined as the
ratio between true positives and all predictions. We look at the
effect of the number of lookaheads, the threshold, and the ratio
between the number of full matches and partial matches, and at
the effect of the workload distribution. The prediction results are
shown in Figure 10.

Synthetic workload: First, we compare the precision results
when using the same workload to train our model, but test the
prediction algorithm on different workloads. The workloads are
different in terms of the increased number of partial matches (i.e.,
decreased ratio of the number of full matches and partial matches)
in the event stream. In Figure 10(a), we can see that the preci-
sion decreases as the number of lookaheads increases. Also, the
precision increases with the increase of prediction threshold but it
stabilizes for larger thresholds. The precision decreases when the
test file contains more partial matches.

Second, we compare the precision results when using different
workloads for training, but test on the same workload. In this ex-
periment, the workloads are different in terms of the event distri-
bution; all the other parameters are the same. Figure 10(b) shows
the precision when testing on the same workload as training. Fig-
ure 10(c) shows the precision when training with a Gaussian event
stream and testing on a uniform event stream. Comparing these
two figures, we see that the precision decreases when the training
workload and testing workload are not consistent. An additional
discovery is that the precision converges for different number of
lookaheads in Figure 10(b). We can conclude from this result that
if we train and test on the workload with the same distribution, an
increase in the number of lookahead steps does not decrease the
quality of prediction for larger thresholds.

Realistic workload: In order to validate the practicality of our
approach, we evaluated with a real-world data set, where the daily
temperatures are monitored and an alert is announced when the
temperature is high for several consecutive days, perhaps indicat-
ing a heat wave. We use real average daily temperature data for
157 U.S and 167 international cities.1 We define the subscription
as %&
 � = � � P ��� 
�% 
 % � % � % � % � % , where it represents the case the
temperature is higher than 30 degree for five consecutive days. The
generated model is built based only on the composite subscription,
without any knowledge of the event data. In the generated model,
there are only 5 states and each state represents one more hot day
than the previous state. For comparison, we divide the tempera-
ture into 4 categories separated by

� P � MQP � K�P degrees and manually
build a full Markov model consisting of all temperature combina-
tions from one day to 5 days. There are 1365 states in total. We ran
our predicting algorithm for these two models and the results are
shown in 11.

Comparing Figure 11(a) with 11(d), and Figure 11(b) with 11(e),
the generated model makes more predictions than the full model,
including both false and true positives. However with longer looka-
head, both false and true positives drop to zero faster in the full
model when increasing the prediction threshold. This is because
the additional states in the full model capture more information
about the event history, allowing it to better distinguish how a par-
tial match state was reached. For prediction precision, Figures 11(c)
and 11(f) show that when increasing the lookahead, the generated
model performs much better than the full model. Furthermore, the

1Source data from the Global Summary of the Day database is
available at http://www.engr.udayton.edu/weather/
source.htm.
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Figure 9: Matching performance

number of states in our generated model is significantly fewer than
that in the full model, and so the prediction algorithm runs much
faster and consumes less memory with the generated model than
with the full model. As well, the memory and computation cost to
maintain the transition probability matrix is also much less in the
generated model.

7. CONCLUSIONS
This paper presents a new publish/subscribe model that, in ad-

dition to reporting when a subscription has matched, predicts the
likelihood a subscription will match in the future. The system re-
quires no additional subscriptions to be defined, and dynamically
adapts its prediction to the application workload.

Content-based publish/subscribe semantics are supported includ-
ing both temporal and Boolean operators. The temporal subexpres-
sions of a subscription are stored as finite state machines, and the
Boolean parts as Boolean trees, thereby avoiding state explosion
that would result from representing Boolean operators in the state
machine. Furthermore, some common subexpressions are merged
to reduce memory consumption and matching efficiency.

The finite state machines, which are also Markov chains, are
trained using an application’s event history, and model the tran-
sition probabilities among the partial match states of the subscrip-
tion. The Markov model is then used to predict the probability of
a subscription matching within some number of transitions in the
future given its current partial match state.

Experiments show that the memory and computation performance
of the prediction algorithms scale with the number of subscrip-
tions, and that the merging optimizations can significantly reduce

the state machine sizes especially when subscriptions exhibit local-
ity. Moreover, as expected, the quality of the predictions, in terms
of its precision, improves when only higher probability predictions
are considered, and as the lookahead into the future is decreased.
Also, interestingly, when the system is trained and tested using the
same distribution of events, the prediction precision for different
lookahead distances improves and converges. When the system
is trained using a different set of data, however, while the preci-
sion may still be high, increasing the lookahead does impair the
precision. Therefore, if an application event distribution does not
fluctuate rapidly and a user is only interested in highly precise pre-
dictions, there is no harm in asking the system to make predictions
further into the future.

The prediction algorithms are compared to a hand-crafted Markov
model for a real application workload. The predictions in the hand-
crafted model are expected to be better, but requires expertise to
construct and is much more expensive computationally and memory-
wise. Results show that despite being much cheaper to evaluate, the
prediction precision of the model in this paper is not much worse
than the hand-crafted one. In fact, when the lookahead is increased,
our model performs much better.

As this is the first paper to propose predictive matching capa-
bilities in a publish/subscribe system, there are many opportunities
to extend the work. One avenue we plan to explore is to support
matching and prediction where the subscription may not be pre-
cisely defined. For example, in an intrusion detection system, there
may be many ways to perform an intrusion that are similar to, but
not exactly like, the intrusion signature defined by an administrator.
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Figure 10: Experimental results for prediction
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Figure 11: Evaluation on real data, compared with a model with full knowledge


