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Abstract 
 

Automatic Layout of FPGA Tiles Using One-Layer Metal Cells 
 

Bachelor of Applied Science and Engineering, December 2003 
Simon So 

Division of Engineering Science 
Faculty of Applied Science and Engineering 

University of Toronto 
 
 

The design and custom layout of FPGA (Field-Programmable Gate Array) can be 
a time consuming process. 

The physical layout and routing of a modern commercial FPGA is currently done 
manually customize for each technology to ensure high performance.  Automation of this 
process would greatly assist designer in development of FPGA.  University of Toronto 
has undertaken groundbreaking work in developing a tool that automatically generates 
physical layouts from FPGA architectural specification. 

This research focuses on improving the performance of the placement and routing 
tool.  Using the latest techniques for cell grouping and one-layer metal cells, the area of 
Xilinx Virtex-E generated by GILES has improved by 135.3% compare to previous 
results. 

 

ii



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Acknowledgements 
 
 
I would like to thank my supervisor, Jonathan Rose, for the guidance he offered 

and encouragement that he provided throughout this project.  His enthusiasm has 
provided motivation for me throughout this project. 

I would also like to thank Aaron Egier and Ian Kuon for providing me with the 
resources I needed to conduct this research.  Their assistance and support are greatly 
appreciated. 

 

iii



 

Table of Contents 
 

Chapter 1  Introduction.................................................................................................... 1 
1.1 Motivation........................................................................................................... 1 
1.2 Scope................................................................................................................... 3 
1.3 Thesis Organization ............................................................................................ 3 

Chapter 2  Background .................................................................................................... 5 
2.1 Overview of FPGAs............................................................................................ 5 
2.2 FPGA Tiles ......................................................................................................... 8 
2.3 GILES ................................................................................................................. 8 

2.3.1 GILES Cell Placement.............................................................................. 10 
2.3.2 Area Approximation ................................................................................. 11 
2.3.3 Place and Route......................................................................................... 13 
2.3.4 Grouping ................................................................................................... 14 

2.4 GILES and Virtex E.......................................................................................... 15 
2.5 Standard Cell..................................................................................................... 16 

Chapter 3  Cell Layout ................................................................................................... 18 
3.1 Goal................................................................................................................... 18 
3.2 One layer metal layout Result........................................................................... 18 

3.2.1 Polysilicon routing.................................................................................... 19 
3.2.2 Multiple Vdd and Gnd contact.................................................................. 20 
3.2.3 Cell Grouping............................................................................................ 21 

Chapter 4  Results........................................................................................................... 24 
4.1 Summary ........................................................................................................... 24 

Chapter 5  Conclusion .................................................................................................... 26 
5.1 Final result ........................................................................................................ 26 
5.2 Future Work ...................................................................................................... 27 

Appendix A  Layout of the cells..................................................................................... 29 

References........................................................................................................................ 50 

iv



 

 

 

 

 

 

 

List of Figures 
 

Figure 2.1  Block diagram of a FPGA [2] .......................................................................... 6 
Figure 2.2 Two types of routing switches a) pass transistor b) pass transistor with buffer 6 
Figure 2.3  a) One Basic Logic block, b) Block diagram of one tile, it may consist of 

multiple Basic Logic block so it can have multiple inputs and outputs...................... 7 
Figure 2.4  GILES CAD flow [3] ....................................................................................... 9 
Figure 2.5  Simplied VPR CAD flow [2] ......................................................................... 10 
Figure 2.6  Port constrain in a tile..................................................................................... 11 
Figure 2.7  Cells placed in a routing grid.......................................................................... 12 
Figure 2.8  N-well does not line with adjacent cell, so 2 grid spacing is require to ensure 

minimum distance is satisfied................................................................................... 13 
Figure 2.9  Grouping cells saves border area [3] .............................................................. 15 
Figure 3.1 SRAM cell with 1 layer of metal..................................................................... 19 
Figure 3.2  6x Buffer......................................................................................................... 21 
Figure 3.1  Layout of individual cells a) Pass transistor 6.25x, b) Buffer 6x, c) SRAM.. 22 
Figure 3.2  SRAM-pass transistor 6.25x-Buffer 6x switch .............................................. 23 
 

v



 

 

 

 

 

 

 

 

List of Tables 
 

Table 2.1 Area comparison to show the border effect ...................................................... 14 
Table 2.2  Summary of area by GILES at different runs .................................................. 16 
Table 2.3  Standard Cell comparison................................................................................ 17 
Table 3.1  Cell area ........................................................................................................... 21 
Table 4.1  Area Comparison between 2 layer and 1 layer without border ....................... 24 
Table 4.2  Area Comparison between 2 layer and 1 layer with border ............................ 25 
Table 4.3  GILES results for placement and final routing for 6 metal layer (4 layer for 

inter-cell routing) ...................................................................................................... 25 
Table 4.4  GILES results for placement and final routing for 5 metal layer (3 layer for 

inter-cell routing) ...................................................................................................... 25 
 

 

vi



Chapter 1  

Introduction 
 

1.1 Motivation 

There are many options to implement digital circuits.  FPGA (Field-

programmable gate array), standard-cell or ASIC (Application-Specific Integrated 

Circuits), and custom layout all offers possible solutions.  FPGA offers ease and speed of 

development at cost of area, speed, power and price compare to other options.  As 

technologies advances in the past two decades, transistors can be made smaller and faster, 

FPGA is becoming more and more popular for digital design.  But the key reason that 

makes FPGA attractive is that they can be programmed to implement different digital 

circuits and be-reprogrammed if necessary.  It allows designers to achieve lower non-

recurring engineering cost and hence faster time-to-market for their design [1].  A well 

design FPGA can minimize the speed/area/power disadvantage and produced cheaply, 

thus making them available to a larger market. 

Designing a high performance requires careful planning and can be a difficult task.  

Making a high performance FPGA lies on four major factors:  the logic, routing, and the 

architecture of the FPGA, the circuit design in transistor level to realize the architecture, 

the software tool that configures it, and the physical layout [1].  Each factor is important 

and cannot be overlooked.  As the architecture determines an FPGA capability, the 

transistor level design determines the circuit speed performance, the software tool 

provides the usage for designer and the physical layout impacts the area and cost. 
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Furthermore, all these factors are highly interrelated.  For example, the circuit 

design will impact the physical layout.  And because the four factors are interrelated, one 

motivation is to automate the whole process flow. 

An automated FPGA architecture evaluation tool that considers circuits in 

transistor level given an architecture description can greatly reduce design efforts.  

Moreover, if the tool can evaluate the physical layout can reduce time and cost.  An ideal 

tool would be able to determine the circuit from transistor level to physical layout by 

specifying an architecture description.   

In the past decade, University of Toronto has made effort in trying to developing 

a tool that links three of the four factors indicated above; a CAD tool that can automates 

the exploration and evaluation of FPGA architectures [2].  GILES, Good Instant Layout 

of Erasable Semiconductors, is the name of the tool developed. 

GILES is based on VPR [4].  It is capable of generating circuit design and the 

physical layout from an architecture description.  Though GILES is not yet close to the 

quality achieved by humans, the benefits of the automated circuit and layout generation 

are:  reduction in time and initial design effort.  Moreover, these designs and layout can 

serve as starting points, thus reducing the cost and time spend on FPGA design cycle [2].  

In order for the realization of these benefits relies on the tool to consider all layout 

constrains and generate adequate-quality layout based on the architecture description.  

The focus of this research is on the physical layout of the part of GILES.  The 

goal is to move closer to area achieved by human.  Since the key structure of an FPGA is 

replicated over and over like tiles, much effort has been devoted to hand-tune a high 

performance structure that provides good speed in a small area.  Aside from University of 
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Toronto, there have been other similar research projects such as AKORD and commercial 

tools Synopsys’ Cadabra that aid designer in automatic transistor level layout [3].  

However, they are only capable of laying out hundreds of transistors, not tens of 

thousands in an FPGA tile. 

In order to evaluate the quality of GILES generated tiles, a commercial 

architecture Xilinx Virtex-E is chosen as a comparison in this research.  However, this 

comparison is only an approximation because it is not possible to accurately describe the 

commercial architecture with the relatively simple GILES architecture description [3].  

This research is an attempt to move closer to goals of considering physical layout by 

using a more accurate cell-level netlist; and hence able to give a better description of the 

commercial architecture and area evaluation. 

1.2 Scope 

This research involves two phases, In the first phase, we layout actual cells that is 

going to be used for building Xilinx Virtex-E. 

In the second phase of our work, we generate the netlist for the cells and feed it 

into GILES to perform layout.  The scope of this work is limited to area comparison with 

actual cells.  Optimization and transistor layout for GILES is left to future work. 

1.3 Thesis Organization 

Chapter 2 presents background information and detail about previous work that is 

relevant to this research.  Chapter 3 describes the first phase of our work, difficulties 

encountered while laying out the cells and solution to the problem.  Chapter 4 compares 
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the results in area after layout.  Chapter 5 summarizes the conclusion and gives 

suggestion for future work. 
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Chapter 2 

Background 
 

This chapter is divided into four sections.  The first section of this chapter 

illustrates the structure of FPGAs.  The second section describes the architecture, tiles, 

and routing of FPGA.  The third section will describe GILES – Good Instant Layout of 

Erasable Semiconductors and its previous work.  The fourth and final sections outline 

GILES performance in creating a commercial product and comparison of its performance 

to a commercial tool. 

2.1 Overview of FPGAs 

 

An FPGA can be configured to perform a wide variety of digital logic.  FPGAs 

are mainly made up of three components:  logic blocks, programmable routing, and I/O 

pads [1].  The logic block and programmable routing is what makes up the core and I/O 

pads are on the perimeters of the FPGA.   
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Figure 2.1  Block diagram of a FPGA [2] 
 

The core of the FPGA is created by tiling the same logic block and its 

surrounding route.  Figure 2.1 shows the routing channels that run between logic blocks.  

Between the channels are switches.  These switches controls routing paths and logic of 

the logic blocks.  These switches can simply a pass transistors or a pass transistor with a 

buffer for greater drive strength.  The gate of the pass transistor is control by an SRAM 

cell.  Figure 2.2 shows the schematic of a switch. 

 

SRAM SRAM 

a) b) 

 
Figure 2.2 Two types of routing switches a) pass transistor b) pass transistor with buffer 
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The logic block consist of a 4-input Look-Up Table (LUT), D-Flipflop, and 

Multiplexers.  Figure 2.3 shows the block diagram of the logic block. 

 

 
 

 
b) 

Figure 2.3  a) One Basic Logic block, b) Block diagram of one tile, it may consist of multiple 
Basic Logic block so it can have multiple inputs and outputs 
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The LUT is a 16-input MUX where the input of the LUT is driven by a 16 bit 

SRAM block.  The select of LUT are driven by inputs from other logic blocks or 

feedback from the output.  And thus, by programming the SRAM bits, it is possible to 

realize any 4-input Boolean logic function, also the routing of the output can be 

configured so that more complex logic can be implemented efficiently. 

2.2 FPGA Tiles 

As mentioned earlier, the core of a FPGA is created by replicating tiles.  A well 

designed and layout can yield a high speed and power performance FPGA.  With a well 

planned of a single tile, it can be duplicated regularly.  Because the fundamental building 

block of the FPGA core is a tile, thus the smaller each tile is will translate to a smaller 

chip area; and hence lower fabrication cost, or more logic per chip.  Inside each tile, it 

may contain one or more logic block.  The automatic transistor layout studied in this 

research the layout of one tile.   

2.3 GILES 

GILES is a system that produce layout of FPGA tile from a FPGA architecture 

description file [3].  GILES can perform two operations:  area estimation and cell 

placement.  For area estimation, GILES uses information about the transistor sizes from 

the circuit.  If only the layout information is given, the system can place and route the cell; 

however, this requires manual pre-layout cells such as buffer, multiplexers and etc. 
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GILES processes the architecture description and eventually generates a layout 

view of the tile is performed by three basic steps:  netlist generation, cell placement and 

inter-cell routing.  Figure 2.5 describes the process flow. 

 

 
Figure 2.4  GILES CAD flow [3] 

 

The netlist generation is done using an enhanced version of VPR – Versital Place and 

Route designed at the University of Toronto [4].  VPR performs clustering, placement, 

and routing of circuit netlist using the architecture description.  Figure 2.6 shows a 

simplify CAD flow of VPR.   
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Figure 2.5  Simplied VPR CAD flow [2] 

 

2.3.1 GILES Cell Placement 
The GILES placer performs placement and compaction simultaneously [3].  The 

placement involves placement of cells and ports to from a rectangular FPGA tile.  Ports 

are arranged on the perimeter.  All ports must place symmetrically across left to right or 

top to bottom with its partner as shown in Figure 2.8.  And hence, it ensures adjacent cell 

can connect to the ports. 
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Ports are placed 
symmetrically in top 
to bottom and left to 
right to ensure the 
tiles can be place 
side by side. 

 
Figure 2.6  Port constrain in a tile 

 

The GILES placer operates by continually making small changes to the layout.  

Illegal layouts are not considered by the placer, for instance, overlapping of cells is not 

allowed.  Through many iterations, these small incremental changes will gradually 

decrease the size of the total area, improves cell and port placement. 

2.3.2 Area Approximation 
The area of a cell is calculated in units of squares, where each square is 0.66 µm x 

0.66 µm.  0.66 µm is the minimum distance for two adjacent wires to run side by side.  

The idea of the grid is so that forces the router to only place wire within the grid.  A 

consequence of that is when cells are being placed; they need to be placed in the 0.66 µm 

x 0.66 µm grid as well as their ports line up with the grid.  That way, the router can route 

cells without knowing the actual size of the wire, but only any arbitrary unit of squares.  
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This is a more flexible for future technology changes.  Figure 2.10 illustrates the cell 

placement and wiring in a grid. 

 

Metal 2 line 

Metal 3 lines 

 
Figure 2.7  Cells placed in a routing grid 
 

To initiate the placement process, the placer first calculates the initial tile 

dimension based on the total cell area. 

 

Area = 3.3 * Complexity * Sum of all gates(0.5 * DriveStrength of gate + 0.5)  (1) 

 

The number 3.3 is used to include area needed the minimum distance between 2 

minimum-width transistors.  Note that equation (1) is independent of number of pins.  

The Complexity factor is used to accommodate the difference between types of cells.  

From empirical results, the equation can estimates the area for simple structure such as 

inverters, buffers, pass transistors, and flip-flops [3].  However, complex cells such as 

SRAMs and multiplexers are underestimated since the diffusion region sharing is more 

Cell size in a grid perspective 
 
Actual cell size 

Cell ports Minimum 
contact 
spacing Routing grid 

square 
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complex to model.  Hence, the complexity factor for SRAMs and multiplexer is found to 

be 1.455 and 1.0 for the other cells. 

 

The width and height of the cells are chosen to make the cells as square as 

possible.  For each cell, one grid square border around the cell.  This is to account for the 

spacing between n-wells in design rule since the height and width of the cell does not 

account for the n-well.  This way, two cells can be placed side by side without any 

violating design rules.   

 

n-well Actual dimension of 
the cell is 7 x 4 P diffusion 

N-well minimum spacing 
is 0.60um 

 
Figure 2.8  N-well does not line with adjacent cell, so 2 grid spacing is require to ensure minimum 
distance is satisfied 

 

2.3.3 Place and Route 
Once the initial area is determined, the cells are placed randomly into the box and 

the ports are placed on the perimeter.  The cells are placed such that no overlapping is 

13



allowed.  In the first iteration, the cells are placed from largest to smallest [2].  The 

heuristic helps the initial placement because smaller cells can often fit in the gaps 

between the larger cells.  The cells are then slowly compacted by a process called 

Annealing.  After the cells are placed, the router routes the signal with a given number of 

layer of metal.  If routing is unsuccessful, GILES will increase the size of the box and 

tries to route until success.  GILES also reserve one layer for global signals such as VDD, 

GND and clock. 

2.3.4 Grouping 
As mentioned earlier, 1 grid borders are added around each cell to avoid design 

rule violation.  For large cells such as LUT, the increase in area may not be significant; 

the impact of this border becomes dramatic for small cells such as pass transistor and 

inverters.  The table below shows the increase in cell area when a border is added.  Small 

cell such as an inverter area has increased by 150%. 

 

With border With border Cell 
Width Height Area Width Height Area 

% 

increase 

1x Inverter 3 4 12 5 6 30 150.0% 

SRAM 5 5 25 7 7 49 96.0% 

LUT 13 12 156 15 14 210 34.6% 

Table 2.1 Area comparison to show the border effect 
 

The border is merely white spaces that serve no purpose but avoid n-well budding.  

As a result, it is wise to group certain types of cells together to minimize this inefficient 

use of space.  By grouping certain cells together, n-well for the cells can be share.  For 

instance, in Figure 2.9, the black is the actual cell area and gray is the border.  Two 

separate cells combined occupied 60 grid squares, while the actual area of the two cells is 
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24 grid squrares [3]; and so 60% of the area is wasted.  If the cells were merge together as 

one, say a 5 by 5 square, the total area now becomes 49 grid squares, a saving of 18%.   

 

 
Figure 2.9  Grouping cells saves border area [3] 

 

One of the tradeoffs in combining cells is that the combined cells are larger and 

limits the amount of freedom to place and compact.  Secondly, bigger cells require more 

manual layout effort.  An effective grouping is to group cells that are used more 

frequently [3].  Previous research shows that flip-flops and LUTs account only 0.3% each 

where SRAM account for 36% of the cells.  Buffers and pass transistors are also common 

since they serve the foundation of routing.  Combining SRAM with pass transistor and 

buffer would decrease the effective area significantly. 

2.4 GILES and Xilinx Virtex-E 

Xilinx Virtex-E is manufactured in a six metal layer 0.18um process.  The 

comparison was done by cells with two layer intra-cell connections, three layers for inter-

cell connection and one of which is reserved for global structures such as power, ground 

and clock.   
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The result GILES achieved, with buffer, pass transistor and SRAM bit grouping, 

was 101 752 µm2.  The area generated by GILES is 187% larger than the full custom 

design.  Table 2.2 shows a summary of the result.  

 
 Routed area by GILES 
Without cell grouping 106 062 µm2 
4x4 SRAM and grouped buffer and pass transistor 161 444 µm2 
Buffer, pass transistor and SRAM bit grouping alone 101 752 µm2 

Table 2.2  Summary of area by GILES at different runs 
 

Though the groupings improves the routed area by reducing the wire length, and hence 

eliminates some of the congestions, the area is still almost three times larger. 

2.5 Standard Cell 

Standard cells are common for ASIC implementation.  They are called standard 

cells because they have a specific height and other specifications such as power rails on 

top and ground rail at the bottom.  That way, designer can place standard cells side by 

side during placement, which is much easier laying out custom cells.  To compare the 

placement and routing capability of GILES, standard cells are used to create Xilinx 

Virtex-E and placed and routed with Cadence’s Design Planner and Silicon Ensemble 

automatic layout tools.  Placement is performed using QPlace and WRoute is used for 

global and detail routing [3].  The result from GILES and Cadence Design tools is 

summarized in Table 2.3. 
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 GILES generated tile 

area (µm2) 

Standard Cell tile area 

(µm2) 

% Difference 

Final Routed Area 101 752  71 569 -30% 

Cell Area 35 836 61 000 70% 

Wirelength 274 069 166 971 -39% 

Table 2.3  Standard Cell comparison 
 

The result shows that even though the Standard Cell area was bigger initially, the 

commercial tool was able to route larger standard cell more efficiently [3].  One major 

factor is due to Standard Cell used only one layer of metal, and thus leaving one more 

layer of metal for inter-cell routing.  Also, the Cadence router is intelligent enough to use 

not have to reserve one layer for global signals such as VDD, GND and clocks. 
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Chapter 3 

Cell Layout 
 

3.1 Goal 

The goal of the research is to improve GILES in placement and routing in 

minimizing the area of laid out tiles.  As mentioned earlier, routing in FPGA is actually 

the bottleneck in minimizing area for GILES.  It is for this reason, we are motivated to 

create actual cells with one layer metal for intra-cell and reserve an extra layer for routing 

purpose.  This chapter is divided into two sections.  First, it describes the problem 

encounter in laying out cells with 1 metal layer and how it affects cell area.  The second 

describes the final routed area and comparison with the previous place and routed area. 

3.2 One layer metal layout Result 

Laying out cells with only one layer metal resource can be a difficult and time 

consuming task.  Reason being that routing becomes challenging.  The placements of 

various components are critical to avoid any crisscrossing of metals.  Figure 3.1 shows a 

schematic of a SRAM layout with one metal layer.  The poly of the feedback transistor is 

extended and wrapped around to avoid traffic in the middle.  In some cases, this wrapped 

around has causes huge area inflation.  The following subsection will describe three 

methods in overcoming these inflations. 
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0.66um x 0.66um 
grid 

Poly gate 
extended and 
wrapped around 
to avoid GND! 
metal and Data 
metal 

Metal 1 Poly Active pdiff ndiff 

n-well Via12 contact 
 

Figure 3.1 SRAM cell with 1 layer of metal 
 

3.2.1 Polysilicon routing 
In some cases, it is unavoidable to have wires crisscross each other.  One method 

used in resolving this problem is by using polysilicon to route.  As shown in the Figure 

3.1, the polysilicon is used route to the Datab metal to avoid the GND metal and the Data 

metal.  The downside of that is speed since polysilicon tends to have a high resistance. 
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3.2.2 Multiple Vdd and Gnd contact 
 Wrapping wires around can be used to avoid traffic, however, a 

disadvantage of that is it causes area inflation.  In some of the bigger cell, area increase 

may be severe.  For instance, 6x Buffer shown in Figure 3.2 has a dimension of 5 x 10 

squares.  And to save space, the N-well is shared by four pmos.  As a consequence, the 

four nmos are splited resulting two separate GND metals.  If a metal was to stretch and 

connect the two wire GND pin together, the cell would require an extra column of grid.  

This results an increase in area by 20%. 

 

 

2 GND! 
Contact to 
avoid metal 
wrap around 

Possible 
wire to 
connect two 
GND metal 

0.66 µm 
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Metal 1 Poly Active pdiff ndiff 

n-well Via12 contact 
 

Figure 3.2  6x Buffer 
 

To resolve such this problem without sacrificing unnecessary area is by having 

multiple GND pins.  Because GND resource is routed in Metal 2 and it is available in 

many locations, and thus having multiple GND pins would not cause routing problem.  

Besides GND pins, multiple VDD pins are placed as well to avoid unnecessary area 

inflation.  Refer to Appendix # for example of multiple VDD pins. 

3.2.3 Cell Grouping 
To show that grouping indeed saves cell area as mentioned previously, a pass 

transistor, a buffer, and an SRAM is grouped together for area comparison.  The sizes 

each component is list below. 

Without Border With Border Cell 
Width Height Area Width Height Area 

6x Buffer 5 10 50 7 12 84 
SRAM 5 5 25 7 7 49 
Pass transistor 6.25x 5 3 15 7 5 35 
Total area   90   168 

Table 3.1  Cell area 
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a) 

 

c) 

 

b) 

Metal 1 Poly Active pdiff ndiff 

n-well Via12 contact 
 

Figure 3.1  Layout of individual cells a) Pass transistor 6.25x, b) Buffer 6x, c) SRAM 
 

The area after adding border has almost doubled.  If the cells were combined together, 

making it as square as possible, the final area obtained is 99 without border, but only 143 

with border.  Although there is a slight increase in the raw area, this is due to the fact that 

the cells require some minimum spacing in between.  However, the final area is 25 

squares smaller, 14.9% decreases, since the border spacing overestimates the amount of 

spacing required between the cells. 

22



 

Metal 1 Poly Active pdiff ndiff 

n-well Via12 contact 
 

Figure 3.2  SRAM-pass transistor 6.25x-Buffer 6x switch 
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Chapter 4 

Results 
 

4.1 Summary 

One layer metal cells was predicted larger than using two layer metal cells.  Table 

4.1 shows the sizes for the list of cells use for comparison.  The list consist of various 

sizes of inverters, MUX and Pass transistors, and LUT to obtain an average inflation. 

 
2 layer 1 layer Cell 
Width Height Area Width Height Area 

% 
increase 

1x Inverter 3 4 12 4 4 16 33.3% 
2x Inverter 3 4 12 4 5 20 66.7% 
4x Inverter 4 4 16 5 5 25 56.3% 
4x Buffer 5 6 30 6 5 30 0.0% 
2 Input MUX 3 3 9 3 4 12 33.3% 
12 Input MUX 11 10 110 13 9 117 6.4% 
24 Input MUX 17 16 272 23 14 322 18.4% 
LUT 13 12 156 17 11 187 19.9% 
SRAM 5 5 25 5 5 25 0.0% 
Pass transistor 3x 3 2 6 4 3 12 100.0% 
Pass transistor 8x 4 3 12 4 3 12 0.0% 
Average       30.4% 

Table 4.1  Area Comparison between 2 layer and 1 layer without border 
 

2 layer 1 layer Cell 
Width Height Area Width Height Area 

% 
increase 

1x Inverter 5 6 30 6 6 36 20.0% 
2x Inverter 5 6 30 6 7 42 40.0% 
4x Inverter 6 6 36 7 7 42 36.1% 
4x Buffer 7 8 56 8 7 56 0.0% 
2 Input MUX 5 5 25 5 6 30 20.0% 
12 Input MUX 13 12 156 15 11 165 5.8% 
24 Input MUX 19 18 342 25 16 400 17.0 
LUT 15 14 210 19 13 247 17.6% 
SRAM 7 7 49 7 7 49 0.0% 
Pass transistor 3x 5 4 20 6 5 30 50.0% 
Pass transistor 8x 5 6 30 6 5 30 0.0% 
Average       18.8% 
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Table 4.2  Area Comparison between 2 layer and 1 layer with border 
 

The Xilinx Virtex-E is placed and routed with the one layer metal cells.  The final 

area, with the best grouping (SRAM-pass transistor-buffer), is 53 807 µm2.  Compare to 

the Virtex-E full custom tile with an area of 35462 µm2 [3], the area obtain by GILES is 

51.7% larger.  And compare to the standard cell, GILES performed 33.0% better. 

 
Step Grid size Area (µm2) 
Placement 292 X 312 39 785 
Post-Routing 346 X 357 53 807 
% difference  35.5% 

Table 4.3  GILES results for placement and final routing for 6 metal layer (4 layer for inter-cell 
routing) 

 
Step Grid size Area (µm2) 
Placement 292 X 312 39 785 
Post-Routing 504 X 540 126 857 
% difference  218.8% 

Table 4.4  GILES results for placement and final routing for 5 metal layer (3 layer for inter-cell 
routing) 

 

As the result has shown, the extra layer of metal was critical in minimizing the 

final area. 
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Chapter 5 

Conclusion 
 

5.1 Final result 

The goal of the research is to improve GILES in placement and routing in 

minimizing the area of laid out tiles.  This research has shown a significant improvement 

in the GILES’ performance. 

Using the Xilinx Virtex-E architecture as a comparison, by making the cells larger 

on average of 18.8%, but reserving an extra layer of metal for GILES to routing, the area 

has improved by 135.3%.  The technique used to achieve this result is through most 

frequent functional cell grouping and one layer metal intra-cell.  It is shown that with one 

layer cell, GILES is capable to place and route the tile for 33.0% smaller compare using 

Standard Cells.  Though, compare the full custom layout Virtex-E, the area is still 51.7% 

larger. 

There are several reason contribute to why manual layout is still superior than 

automatic layout.  As discussed previously, the overestimation of border spaces to avoid 

design rule violation.  But by grouping cells together minimizes the cell area.  But there 

downside of bigger cells that is they are more difficult to layout.  And second, they are 

harder to place due to lack of freedom.  Minimizing the border spaces to compact the cell 

is left for future work and analysis. 
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5.2 Future Work 

Though in this research, it was successful in minimizing the tile area, to be able to 

compete with full custom manual layout, much study and analysis is needed to improve 

the GILES placer and router.  The outcome of this research yield several paths for further 

investigation, some of which will be discuss below. 

GILES perform place and routing in two separate steps as mentioned.  During 

placement, the placer is only concern in placing the cells as compact as possible.  

Afterward, the route take the initial area and tries to make possible routing.  If routing is 

unsuccessful, it expands the area until routing is possible.  Future work can examine re-

placement of certain cells to make routing possible.  An investigation of the cost function 

can include the possibility of a successful route.  Besides predicting a failure, the function 

can predict how close it is with the current configuration to achieve a solution.  The 

placer can also be investigated in finding out where the signals of cells connected to, and 

so during placement optimization, cells that are connected together will be place closer 

together.  Hence routing can be more efficient and avoid congestion. 

The current routing reserved a designated layer for VDD, GND and clocks.  With 

the commercial router, it knows where the global signals are and so it manages to use that 

layer as a routing resource.  Future work can investigate on the possibility of using the 

global reserved layer for routing. 

Another possible future work can minimize the amount of white space in each 

layer.  The current GILES requires all layers to line up along a 0.66um x 0.66um grid.  

This is a disadvantage for cells that are partial occupying an incomplete grid.  Moreover, 

metal layers that do not require this much room between them still needs to obey the 
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0.66um x 0.66um grid rule.  For instance, metal 1 only need 0.23um space and minimum 

width is 0.23um, and so the minimum grid size for this can be 0.46um.  This would allow 

more space for routing.  Also, the border of cell is used by GILES is overly conservative.  

As shown previously example, by compacting cells together, an addition of 14.9% space 

can be saved.  Knowing where the n-wells are and appropriately adding border only at 

where necessary can further reduce the size of the tile.  This also lead to the investigation 

of sharing n-well, n-well contact and substrate contact among cells. 
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 Appendix A 

Layout of the cells 
 

Appendix A shows the layout of all the cells used for GILES for Virtex-E. 

Legend 

Metal 1 Poly Active pdiff ndiff 

n-well Via12 contact 
 

 

 
Pass transistor 1x 

 
 

 
Pass transistor 2x 
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Pass transistor 6.25x 

 

 
Inverter 1x 
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Inverter 2x 
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Inverter 4x 
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Buffer 1x 
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Buffer 3x 
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Buffer 4x 
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Buffer 6x 
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2-input Multiplexer 
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3-input Multiplexer 
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4-input Multiplexer 
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6-input Multiplexer 
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8-input Multiplexer 

 
 

 
12-input Multiplexer 
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25-input Multiplexer 

 
 
 

 
26-input Multiplexer 
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LUT 
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Flip-flop 
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SRAM 

45



 
SRAM-Pass transistor 2x-Buffer 3x 
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SRAM-Pass transistor 4x-Buffer 3x 
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SRAM-Pass transistor 4x-Buffer 4x 
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SRAM-Pass transistor 6.25x-Buffer 6x 
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