TEMPT: Technology Mapping for the Exploration of FPGA
Architectures with Hard-Wired Connections

Kevin Chung & Jonathan Rose
Department of Electrical Engineering

University of Toronto
CANADA MS5S 1A4

Abstract

This paper describes TEMPT, a technology mapping al-
gorithm aimed at ezploring FPGA architectures with hard-
wired connections. Such FPGA architectures may be im-
portant because hard-wired connections are much faster
and smaller than the programmable connections between
basic logic blocks that they replace.

TEMPT maps a network of basic blocks to a netlist of
hard-wired logic blocks (HLBs), in which each HLB con-
sists of several basic blocks hard-wire connected in an ar-
bitrary tree topology, and optimizes either speed or area.
TEMPT is as effective as the Xilinz 4000 CLB mapper,
PPR, when minimizing CLBs to implement a set of MCNC
benchmarks. Using TEMPT we demonstrate empirically
how many HLBs are significantly faster than FPGAs with-
out hard-wired links. Also, we demonstrate several HLBs
that exhibit superior logic density to the Xilinz 4000 CLB'.

1 INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) are an in-
creasingly popular means of implementing Application
Specific Integrated Circuits (ASICs) because designers can
manufacture their ASIC cheaply and in minutes. The
user configures the FPGA logic and routing connections
by a simple programming technology (such as download-
ing bits into static RAM cells [Hsie90] or blowing anti-fuses
[E1Ga89]). This user-programmability of routing connec-
tions, however, makes FPGAs slower and less dense than
Mask-Programmable Gate Arrays because of the signifi-
cant capacitance, resistance and size of the programmable
switches. This routing delay and area can be signifi-
cantly reduced by replacing some of the programmable
connections with hard-wired connections, which are metal
wires that have almost-zero delay and consume little area
[Chun91] [Sing91]. For example, Figure 1(a) illustrates a
network of basic logic blocks with five slow programmable

1This work was supported by an ITRC Fellowship, NSERC
Operating Grant #URF0043298 & a Xilinx Inc. research grant.

connections in the routing along the critical path®. Sup-
pose three basic blocks are hard-wired together, as in Fig-
ure 1(b), to make a hard-wired logic block (HLB) with a
fast path through 3 basic blocks. Using this HLB to imple-
ment the circuit in Figure 1(a) results in the faster circuit
shown in Figure 1(c)®. This faster circuit has only two

tapping buffe|

tapping buff

output tapping bu
(b) An HLB

(c) Faster HLB Circuit

Figure 1.

2A dotted line represents a programmable connection and
only output connections along the path are counted.

3The hard-wired links are shown in thick lines and the hard-
wire connected sets of basic blocks are circled by dashed ovals.

28th ACM/IEEE Design Automation Conference®

0738-100X/92 $3.00 © 1992 IEEE

Authorized licensed use limited to: The University of Toronto. Downloaded on July 19,2021 at 02:25:21 UTC from IEEE Xplore. Restrictions apply.

Paper 23.1



programmable links instead of five along the critical path,
giving a significant reduction in routing delay. However,
the inflexibility of hard-wired links in the circuit can lead
to unusable basic blocks, resulting in lower logic density.
The presence of hard-wired connections provides several
reasons for the introduction of a new synthesis tool. First,
there already exists a commercial architecture [Hsie90]
with hard-wired connected basic logic blocks. Second,
hard-wired connected basic blocks present a new synthe-
sis problem because they present a strong link between
logic synthesis and routing. The third and most important
motivation is to aid in the exploration of FPGA architec-
tures with hard-wire connected basic blocks. In [Chun91]
[Sing91] we investigated the speed/area tradeoffs of an
FPGA architecture composed of an array of Hard-wired
Logic Blocks (HLBs), where an HLB is several basic logic
blocks (such as lookup tables or NAND gates) connected
by metal wires in a tree topology. This study showed that
certain HLB topologies result in a 44% decrease in the
average number of programmable connections along the
critical path compared to an FPGA without hard-wired
connections, yet only reduce the logic density (measured
by the total number of basic blocks) by 6% [Chun91]. The
results in [Chun91) [Sing91] were obtained empirically us-
ing logic synthesis tools to implement benchmark circuits.
This paper presents one of the tools, TEMPT, a technol-
ogy mapper for tree-connected hard-wired logic blocks.
This paper is organized as follows. Section 2 presents
some assumptions and terminology. Section 3 describes
the TEMPT technology mapping algorithm for both delay
and area optimization. Section 4 shows the results of using
TEMPT to map to several different HLB architectures.

2 ASSUMPTIONS & DEFINITIONS

An important architectural assumption is that each ba-
sic block output in an HLB has a tapping buffer that makes
the output accessible to the routing. Figure 1(b) shows an
HLB with three 4-input basic blocks hard-wired together
in a cascade. Tapping buffers can lead to faster HLB cir-
cuits since the output of one basic block can be accessed
directly instead of propagating it through another basic
block. Tapping buffers can also improve logic density be-
cause unrelated pieces of logic can be packed together in
the same HLB.

The inputs to TEMPT consist of a description of the
HLB topology and a network of basic blocks. In the
remainder of this paper, we consider only lookup table
(LUT) basic blocks since they exhibit reasonable area and
delay in FPGAs without hard-wired connections [Rose90]
[Sing91]. Also, there is an FPGA [Hsie90] with hard-wire
connected LUTs and an associated mapper for testing and
comparison. The LUT basic block network is generated

Paper 23.1

362

"

" @ @) 4

(b) L2-3 HLB Fragments

wy

(a) L2-3 HLB

Figure 2: The L2-3 HLB and its Fragments

using the following two steps: (1) logic optimization of the
MCNC benchmark circuit using mis2.2 [Bray86], and (2)
mapping to LUTs using Chortle [Fran91a] [Fran91b).

Synthesizing HLB circuits is a new problem because
HLBs are a combination of logic and routing resources.
Thus, the mapping to HLBs can occur during either logic
or layout synthesis. In TEMPT, we chose to perform the
assignment of hard-wired links in the HLBs during logic
synthesis because the goal of our previous work [Chun91]
[Sing91] was an exploration of FPGA logic block architec-
tures with no assumption of specific routing architectures.
The use of a placement and routing algorithm would re-
quire more detailed specification of the routing architec-
ture, whereas mapping to HLBs during technology map-
ping abstracts out physical layout details. This abstraction
for technology mapping also allows a tighter focus on opti-
mizing the use of the hard-wired connections for each HLB
and may lead to better optimization for HLBs.

2.1 HLB Fragment Patterns

An HLB fragment is a connected subset of the basic
blocks in an HLB *. Since we assume tapping buffers make
every basic block output in an HLB accessible, any HLB
fragment that matches a portion of the basic block network
can be used to implement that portion. An HLB fragment
that matches part of the basic block network rooted at a
specific node is said to be feasible at that node. Since HLB
fragment DAGs are trees, the feasible HLB fragments can
be quickly found using tree pattern matching [Keut87).

Given an HLB topology described by a tree, the HLB
fragment patterns are generated by one of the following
operations on the tree. The first operation deletes a hard-
wired link edge between two basic blocks (this assumes
that a hard-wired input of the downstream block can be
ignored) and the second operation converts a basic block
into a buffer. Note that LUTSs allow both of these opera-
tions, but a basic block such as a 4-input NAND gate does
not. Figure 2 shows the L2-3 HLB® in Figure 2(a) and its

4Note that the complete HLB is also a fragment

5The HLB name is the height of the HLB followed by a listing
of the sizes of the subtrees from a pre-order traversal. Subtrees
of size 0 or 1 are not listed.

Authorized licensed use limited to: The University of Toronto. Downloaded on July 19,2021 at 02:25:21 UTC from IEEE Xplore. Restrictions apply.



generated fragments in Figure 2(b). HLB fragment num-
ber 1 is produced by deleting an input edge of the root
basic block of the HLB. At the same time the complemen-
tary HLB fragment (numbered 2) composed of a single
4-input basic block is also created. Fragment number 3 is
made by using one of the basic blocks that feeds the root
block to implement a buffer. The deletion of the edge be-
tween the two basic blocks of fragment 1 yields a new HLB
fragment (number 4), which is a two-input basic block.

3 TEMPT MAPPING ALGORITHM

TEMPT uses two separate algorithms for optimizing
the delay or area of the netlist of HLBs that implement the
functionality of the input basic logic block network. The
goal of the delay algorithm is to find a set of feasible HLB
fragments that minimize the delay along the critical path.
This delay-optimized set of fragments is then packed to-
gether into a minimum number of HLBs to reduce the area
overhead. The goal of the area-optimization algorithm is
to find the set of feasible HLB fragments that when packed
together yields the minimum number of HLBs.

3.1 Delay Optimization

As in [Keut87], the DAG representing the input ba-
sic block network is first partitioned into a forest of trees.
Each network tree is traversed in postorder fashion and
the feasible HLB fragments at each node are found using
tree matching. The optimal delay cover of feasible frag-
ments for the tree is determined using dynamic program-
ming [Keut87]. A straightforward merging of the trees to
reproduce the final network would give sub-optimal delay
performance because optimization across tree roots with
fanout > 1 is prevented. This limitation is overcome by se-
lectively replicating portions of the basic block netlist that
fanout to two or more nodes. For example, Figure 3(a)
shows a circuit that has been implemented in the HLB of
Figure 2(a) when no replication across fanout is allowed.
The circuit in Figure 3(a) has two HLBs along the critical
paths and thus there are two programmable connections
in the critical path. Replication of the basic block in the
centre of Figure 3(a) into its fanouts leads to the faster im-
plementation in Figure 3(b) with only one programmable
connection delay. However, the number of basic blocks in
the new network has increased from five to six.

The primary cost function in the dynamic programming
and tree matching algorithm is the delay measured as the
maximum number of HLBs (and hence the number of pro-
grammable connections) between the primary inputs and
the node. If two feasible HLB fragment patterns lead to so-
lutions with the same delay, the one with the lower height
(or if the heights are also the same, the one with smaller
size) is chosen. The height of an HLB fragment is the

Authorized licensed use limited to: The University of Toronto. Downloaded on July 19,2021 at 02:25:21 UTC from IEEE Xplore. Restrictions apply.

363

(a) Circuit implementation without Replication

G

(b) Circuit implementation with Replication

] gy
= =

Figure 4: The L2-3 HLB and its Packing Sets

maximum number of basic logic blocks from the fragment
inputs to the output. The size is the number of basic blocks
in the HLB fragment. These secondary cost functions lead
to an HLB fragment at the root of each tree with minimal
delay with respect to the tree inputs and minimal height
Small root HLB fragments lead to fewer repli-
cated basic blocks when replication at tree roots is needed.
Each HLB fragment produced by the delay optimiza-
tion algorithm can fit in an HLB. However, allotting one
fragment per HLB is excessive, so the delay-optimization
algorithm packs the HLB fragments into as few HLBs as
possible using the algorithm outlined in Section 3.1.1.

and size.

3.1.1 Packing HLB Fragments

The packing algorithm takes a list of HLB fragments and
packs them into the smallest number of HLBs. A set of
HLB fragments that can be packed together into a single
HLB is called a packing set of HLB fragments and every
packing set is a subset of a maximal packing set.

The maximal packing sets are generated using the same
deletion and buffering operations as in Section 2.1. Fig-
ure 4 illustrates how the edge deletion operation generates
two maximal packing sets for the HLB from Figure 2(a).
Each maximal packing set is enclosed in a dotted rectan-
gle. The first edge deletion generates a maximal packing
set with two HLB fragments, a two-basic block fragment

Paper 23.1



PackHLBfrags()
PackedHLB list — ¢
UnpackedFrags — descendingSort(UnpackedFrags)
while UnpackedFrags not = ¢
packedHLB ~— ¢
while UnpackedFrags not = ¢
addedFrag — next (UnpackedFrags)
packedHLB « packedHLB U addedFrag
if packedHLB is a maximal packing set
exit inner loop
else if packedHLB is not a packing set
return addedFrag to UnpackedFrags
else if addedFrag is last of UnpackedFrags
exit inner loop
end if
end while
Packed_list — Packed_list U packedHLB
end while

Figure 5: HLB Fragment Packing algorithm

plus a single 4-input basic block fragment. Deleting the
edge from the two-basic block fragment generates the sec-
ond maximal packing set, which consists of two 4-input
basic blocks and one 2-input basic block. Note that the
HLB fragments in a maximal packing set can be packed
in the same HLB because every basic block output in an
HLB is accessible via tapping buffers.

The pseudo-code for the packing algorithm is illustrated
in Figure 5. Since smaller fragments can fit more eas-
ily into an HLB with other fragments it is more effective
to pack them last; thus, the packing algorithm begins by
sorting the unpacked HLB fragments into a descending list
according to size. While the unpacked list is not empty,
the outer loop of the packing algorithm constructs packed
HLBs with the fragments from the list in a greedy manner.

A new packed HLB is initially empty. The inner loop
scans the unpacked fragment list from largest to smallest,
greedily adding any unpacked fragments that can fit in the
unused part of the new packed HLB. The set of fragments
can fit in a packed HLB if it is a subset of a maximal pack-
ing set. Unpacked fragments are added until one of three
conditions holds: (1) The set of fragments form a mazimal
packing set and thus the packed HLB can hold no more
fragments; (2) The unused capacity of the packed HLB is
too small to accommodate any of the remaining unpacked
fragments or (3) There are no remaining unpacked frag-
ments. At this point the "filled” packed HLB is added to
the packed HLB list and if there are remaining unpacked
fragments, a new packed HLB is started.

Paper 23.1

364

FindMinimum AreaMapping()
initially there are only single-block HLB fragments
pack single-block fragments to find global area cost
if global area cost satisfies lower bound
exit mapping algorithm
end if
for every node n in the basic block network
traversed in pre-order
for every feasible HLB fragment f at n
pack f with all other HLB fragments
if f leads to lowest global area cost so far
record f as best frag. at n and area cost
if area cost satisfies lower bound
exit mapping algorithm
end if
end if
end for
if the lowest area-cost feasible HLB fragment
pattern at n is not a single-block fragment
make the basic blocks in the lowest cost
HLB fragment into a "fixed HLB"
end if
end for

Figure 6: Area-optimization algorithm

3.2 Area Optimization

The area-optimization mapping algorithm seeks to min-
imize the number of HLBs in the final HLB netlist. Each
feasible HLB fragment at a node in the basic block net-
work corresponds to a potential assignment of hard-wired
links between basic blocks. The goal of the algorithm is
to select the set of feasible fragments (and corresponding
hard-wired links) that pack together to yield the fewest
HLBs. A lower bound on the number of packed HLBs is
Hﬁ"—:::—f%f%;‘::—&‘:ﬁf—;] and whenever this lower
bound is achieved, the mapping algorithm ends.

In order to do a packing to determine global area cost
every node in the basic block network has to be assigned
to some HLB fragment. Thus, the algorithm described in
Figure 6 starts with each basic block being mapped to a
single-block HLB fragment, that is, the initial HLB net-
work has no hard-wired links. We chose this initial assign-
ment because small fragments can fit more easily into un-
used portions of an HLB during packing. The mapping al-
gorithm then proceeds to add hard-wired links by choosing
feasible multi-block HLB fragments at nodes in the basic
block network that lead to a better packing. The nodes in
the network are accessed in pre-order. Each feasible multi-
block HLB fragment at a node is packed with the other
previously constructed multi-block fragments and any re-
maining single-block fragments. Note that since there is no
tree partitioning, matches for feasible fragments can occur
across fanout. This leads to an increase in the number of

Authorized licensed use limited to: The University of Toronto. Downloaded on July 19,2021 at 02:25:21 UTC from IEEE Xplore. Restrictions apply.



feasible fragments at some nodes and can lead to better
optimization. After packing, if the best global area cost
so far is reduced then this feasible HLB fragment becomes
the best fragment at the node. After all feasible HLB frag-
ments for the node have been evaluated, the lowest area
cost fragment is fixed permanently so that the nodes in the
best fragment cannot be assigned to a different fragment.
When all nodes have been visited the algorithm ends.

The primary global area cost function is the number
of HLBs after packing. However, if two sets of HLB frag-
ments have the same number of packed HLBs, the set with
the largest HLB hole (i.e. number of unused logic blocks
in an HLB) is chosen. If the two sets are still tied, then the
one with fewer unpacked HLB fragments wins. The largest
HLB hole cost function is used because a large hole can be
more easily filled, during packing, by an unpacked frag-
ment. Having fewer HLB fragments is also useful because
it means a greater total number of hard-wired connections
are in the fragments. Since the packing of fragments into
the same HLB leads to the wastage of hard-wired connec-
tions, more hard-wired connections in the fragments mean
that fewer are needed for packing them together.

4 RESULTS

In this section, we first compare TEMPT to the com-
mercial technology mapper for the Xilinx 4000 (X4000)
CLB [Hsie90], which is an FPGA with hard-wired connec-
tions. To illustrate how TEMPT can be used for FPGA
architecture exploration we compare the X4000 CLB to
other HLBs for area-efficiency. We also present a com-
parison of several HLB topologies when optimizing purely
for speed. More extensive results comparing HLBs from a
speed and area perspective are in [Chun91] [Sing91].

4.1 Comparison with Xilinx mapper

In this experiment, the goal was to minimize the num-
ber of X4000 CLBs used to implement a set of 15 MCNC
benchmark circuits. The circuits were chosen because
they could fit in the largest available X4000 CLB package.
Each benchmark was optimized by mis2.2 [Bray86]. For
TEMPT, the mis2.2-optimized circuits were first mapped
by Chortle-crf [Fran91a] to the minimum number of 4-
input LUTs and then TEMPT minimized the number of
CLBs to cover the LUT network. The input to the Xilinx
mapper, PPR was also the mis2.2-optimized circuits. The
results quoted for PPR, are the Packed CLB utilization
number from the PPR report file. The Packed CLB value
is the CLB utilization if PPR were to pack the design into
as small an area as possible. Table 1 lists the name of each
benchmark circuit in Column 1. Columns 2 and 3 list the
number of X4000 CLBs for PPR and TEMPT.

Authorized licensed use limited to: The University of Toronto. Downloaded on July 19,2021 at 02:25:21 UTC from IEEE Xplore. Restrictions apply.

365

enc.

Cct CLBs CLBs
9symml 36 35
alu2 71 69
alug 122 118
apex7 38 38
b9 20 20
c1355 91 103
c8 17 18
cc 8 10
cml62a 5 6
comp 17 16
count 21 16
decod 10 10
mux 5 7
vda 97 97
z4ml 3 3

(Totals | 561 | 566 |

Table 1: Xilinx mapper vs. TEMPT

nan B

3-input X4000  4-input L3-4.2
L2-3 HLB CLB  L2-3HLB HLB

Figure 7: Area Study HLB Topologies

For the set of 15 benchmark circuits, the X4000 mapper
required 561 CLBs and TEMPT used 566 CLBs. The two
mappers are close in effectiveness even though TEMPT is
not well-suited to mapping the X4000 CLB for the follow-
ing reasons: (1) The X4000 CLB consists of both 3- and
4-input LUTs but since Chortle does the mapping to a
homogeneous network of LUTs our methodology is better-
suited for homogeneous LUT HLBs, and (2) The X4000
CLB violates the tapping buffer assumption since it allows
only 2 tapping buffers for 3 LUTs. TEMPT had to be
modified to allow this restriction.

4.2 Area-efficiency Results

In this section, we demonstrate how TEMPT may be
used to evaluate the area-efficiency of the different HLB ar-
chitectural alternatives illustrated in Figure 7. The X4000
CLB is an example of an L2-3 HLB topology with two 4-
input LUTs and one 3-input LUT. The other L2-3 HLBs
investigated are composed of three 3-input LUTs and three
4-input LUTSs respectively. Comparing these three L2-3
HLBs is interesting because the functionality of the L2-
3 HLB with 3-input LUTs and the functionality of the
L2-3 HLB with 4-input LUTs bracket the functionality of

Paper 23.1



nch 3-inp | X4000 | 4-inp | 4-inp
Cct 13-3 | CLB | L3-8 | Ls-4.2
Ssymml 40 36 26 19
alu? 77 71 48 37
alud 126 122 82 61
apex7 44 38 27 20
9 22 20 16 12
1355 131 91 80 59
c8 21 17 5 11
cc 17 8 9 7
cm162a 8 3 5 4
comp 27 17 14 13
count 21 21 14 10
decod 10 10 8 8
mux 10 5 5 5
vda 96 97 70 52
z4ml 3 3 3 2
[Tot HLBs [ 653 561 421 320
[ LUY Blts | 15672 | 22440 | 20208 | 20480
Ratios 0.70 1 0.90 0.91
HLB pins | 6530 6171 5473 5440
Ratios 1.06 1 0.89 0.88

Table 2: Area Measures of Different HLBs

the X4000 CLB. The L3-4.2 HLB topology was also eval-
uated. This topology is interesting because the three 4-
input LUTs nearest the root LUT form an L2-3 HLB and
the fourth LUT makes a fast three basic-block level path.

Table 2 compares the HLBs in Figure 7 when Chortle
and TEMPT were used in area-optimizing mode to map
the benchmark circuits. For the X4000 CLB, the PPR
numbers in Table 1 were used. Each row in the table cor-
responds to individual circuit data and the last 4 columns
gives the number of HLBs needed by each HLB topology.
The last five rows of Table 2 summarize the individual
data. The first summary row of Table 2 shows the to-
tal number of each HLB required to implement the set of
benchmark circuits. The second and fourth row are in-
teresting architectural measures derived from the number
of HLBs. The second row compares the total number of
bits in the LUTs of the HLBs needed to implement the
benchmark set. This is a measure of the active silicon area
required to implement the logic. The fourth row is the
total number of pins (one pin for each LUT input and tap-
ping buffer output in the HLB) for the required HLBs. A
previous architectural study [Rose90] demonstrated a cor-
relation between the total number of pins and the routing
area. The third row shows the ratio of the number of bits
relative to the X4000 CLB. The last row shows the ratio
of the number of pins relative to the X4000 CLB.

These results show that the L2-3 HLB composed of only
4-input LUTs (Column 4) uses fewer LUT bits and fewer
pins than the X4000 CLB (Column 3). These architectural
measures indicate that this HLB will have superior logic
density. Also, the L2-3 HLB composed of 3-input LUTs

Paper 23.1

e

L3-4.3 L3-8.22
Interconnect i l
Hord-Wired 53 L3-54 L3-04
Link

Figure 8: Delay Study HLB Topologies

(Column 2) uses much fewer bits and slightly more pins
than the X4000 CLB. The architectural measures for the
L3-4.2 HLB (Column 5) show it is about as area-efficient
as the L2-3 HLB composed of 4-input LUTs. However,
the delay results given in Section 4.3 and [Chun91] show
that, when optimizing for delay, the L3-4.2 architecture has
on average 12% fewer programmable connnections along
the critical path than the L2-3 HLB, and so the L3-4.2
architecture is the better overall architecture.

The absolute effectiveness of the area-optimization algo-
rithm can be evaluated by comparing the results in Table 2
to the lower bound in Section 3.2. The number of HLBs
using TEMPT is within 3% and 4% of this lower bound for
the L2-3 and L3-4.2 HLBs consisting of 4-input LUTs. For
the L2-3 HLB consisting of 3-input LUTs and the X4000
CLB, the differences are 13% and 33% respectively. How-
ever, it should be noted that the lower bound is optimistic
for the X4000 CLB because it consists of two 4-input and
one 3-input LUT and the lower bound assumes all HLB
LUTs have the same functionality.

4.3 Pure Delay Optimization Results

In this section, we demonstrate how TEMPT may
be used to evaluate the speed improvement for different
HLB topologies. A sampling of the many HLB topologies
considered are illustrated in Figure 8. Each HLB con-
sists of several 4-input lookup tables hard-wired together.
The depth-optimized LUT networks were generated by
Chortle-d [Fran91b] and the HLB netlists were generated
using the delay-optimization algorithm of TEMPT.

The total critical path delay, Do, is given as
Diot = NLpxDrp + NrxDRg. The first product in this
expression is the delay due to the basic blocks along the
critical path. Here N p is the number of basic logic blocks
and D p is the delay of each basic block. For our 1.2um

366

Authorized licensed use limited to: The University of Toronto. Downloaded on July 19,2021 at 02:25:21 UTC from IEEE Xplore. Restrictions apply.



Logic % decr decr
Block | Ng | in Ng | Diot (n8) | in Dior
K4 5.4 0 30 0
L2-2 1.2 22 26 13
L2-3 3.4 37 22 27
L2-4 3.1 43 21 30
L2-5 3.0 44 21 30
L3-3.2 4.0 26 25 17
L3-4.2 3.0 44 21 30
L343 | 31 13 21 30
L35.2.2 | 3.1 43 21 30
L3-5.3 3.0 44 21 30
L3-5.4 2.9 46 20 33
364 | 2.8 18 20 33

Table 3: Delay Performance of Different HLBs

CMOS technology, the delay for a 4-input lookup table,
Dpp = 1.7ns. The second product is the routing delay.
Here Npg is the number of programmable connections in
the critical path and Dg is the average delay per routing
connection. Dg varies widely according to interconnection
architecture and in [Chun91] and [Sing91] we explored the
effects of various values of Dg. For Table 3 an intermedi-
ate value of D = 4 ns was chosen. In Table 3 the %
decrease in Ng and D, are relative to K4, an FPGA with
4-input LUT basic blocks with no hard-wired connections.

From Table 3, the L2-3 HLB reduces Ng to 3.4, while
L3-4.2 HLB reduces Ng to 3.0, a difference of 12% in the
average number of programmable connections in the criti-
cal path. Compared to an FPGA without hard-wired links,
the 1.2-3 HLB and L3-4.2 HLB reduce Ng by 37% and 44%
respectively and reduce average total critical path delay by
27% and 30%. The greatest speed gains per added basic
block are realized by the L2-2 and L2-3 HLB and the speed
gains are very small, per added basic block, for HLBs with
more than four basic blocks. In general, for HLBs with a
specific number of basic blocks, symmetric topologies at-
tained superior speed than asymmetric topologies. This is
likely because speed-optimized basic block networks tend
to exhibit more balanced tree-structures.

5 CONCLUSION

A technology mapping algorithm that can be used for
exploring FPGA architectures with hard-wired connec-
tions has been presented. It is capable of optimizing for
speed or area and can map to any tree-topology hard-wired
logic block FPGA. The mapper is comparable to a com-
mercial CAD tool when mapping to the Xilinx 4000 CLB,
a commercial FPGA with hard-wired connections.

The utility of this mapper for FPGA architectural ex-
ploration was shown using two studies, one that com-
pared the area-efficiency of several HLB topologies and
another that compared the speed performance of several

Authorized licensed use limited to: The University of Toronto. Downloaded on July 19,2021 at 02:25:21 UTC from IEEE Xplore. Restrictions apply.

367

HLB topologies. In the area-efficiency study, it was demon-
strated that a hard-wired logic block consisting of three 4-
input LUTSs is superior to the Xilinx 4000 CLB in terms of
both logic and routing area. The mapper was also used to
show that another topology, the L3-4.2 HLB topology con-
sisting of four 4-input LUTSs, was similar in area-efficiency
to the best of the 3-LUT HLB topologies. Also, the L3-
4.2 HLB topology was shown to be faster than the 3-LUT
HLBs in the speed performance study.

A future improvement to TEMPT is to integrate the
delay and area algorithms to allow trade-offs between delay
and area. Placement costs will also be considered in the
packing step. More architectural studies on HLBs with
basic blocks other than 4-input LUTs will be performed.

G

REFERENCES

[Bray86] R. Brayton, et al., “Multiple-Level Logic Optimiza-
tion System,” Proc. of Int. Conf. on CAD 1986
(ICCAD-86), Nov. 1986, pp. 356-359.

K. Chung, S. Singh, J. Rose, P. Chow “Using Hier-
archical Logic Blocks to Improve the Speed of Field-
Programmable Gate Arrays.” in FPGAs - Proc. of
1st Int. Workshop on Field Programmable Logic and
Applications, Sept. 1991, pp. 103-113.

A. El Gamal, et. al, “An Architecture for Electri-
cally Configurable Gate Arrays,” IEEE Jour. of Solid
State Ccts. (JSSC), Vol. 24, No. 2, Apr. 1989, pp.
394-398.

S. Ercolani, G. De Micheli, “Technology Mapping
for Electrically Programmable Gate Arrays,” Proc.
of 28th Design Automation Conf. (DAC-28), June
1991, pp. 234-239.

R. Francis, J. Rose, Z. Vranesic “Chortle-crf: Fast
Technology Mapping for Lookup Table-Based FP-
GAs,” Proc. of DAC-28, June 1991, pp. 227-233.

R. Francis, J. Rose, Z. Vranesic “Technology Map-
ping of Lookup Table-Based FPGAs for Perfor-
mance,” Proc. of ICCAD-91, Nov. 1991, pp. 568-571.

H. Hsieh, et al., “Third-Generation Architectures
Boosts Speed and Density of Field-Programmable
Gate Arrays,” Proc. of Custom IC Conf 1990
(CICC-90), May 1990, pp. 31.2.1-31.2.7.

K. Keutzer, “DAGON: Technology Binding and Lo-
cal Optimization by DAG Matching,” Proc. of DAC-
24, June 1987, pp. 341-347.

J. Rose, R. J. Francis, D. Lewis, P. Chow, “Architec-
tures of Field-Programmable Gate Arrays: The Ef-
fect of Logic Block Functionality on Area Efficiency,”
IEEE JSSC, Vol. 25, No. 5, Oct. 1990, pp. 1217-1225.
S. Singh, J. Rose, D. Lewis, K. Chung, P. Chow “Op-
timization of Field Programmable Gate Array Logic
Block Architecture for Speed,* Proc. of CICC-1991,
May 1991, pp. 6.1.1-6.1.6.

ALGQORITHMS

ARCHITEOTURES <

[Chun91]

{E1Ga89)

[Erco91]

[Fran91a]

[Fran91b]

[Hsie90]

[Keut87)

[Rose90]

[Sing91]

Paper 23.1



