IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH 2002 100

Automatic Generation of Synthetic Sequential

Benchmark Circuits

Michael D. Hutton, Member; IEEFE, Jonathan S. Rose, Member; IEEF,
and Derek Corneil.

Abstract— The design of programmable logic architectures
and supporting CAD tools fundamentally requires both a
good understanding of the combinatorial nature of netlist-
graphs and sufficient quantities of realistic examples to eval-
uate or benchmark the results.

In this paper we investigate these two issues. We intro-
duce an abstract model for describing sequential circuits and
a collection of statistical parameters for better understand-
ing the nature of circuits. Based upon this model we intro-
duce and formally define the signature of a circuit netlist
and the signature-equivalence of netlists. We give an algo-
rithm, (GEN), for generating sequential benchmark netlists,
significantly expanding previous work [1] which generated
purely combinational circuits.

By comparing synthetic circuits to existing benchmarks
and random graphs we show that GEN circuits are signifi-
cantly more realistic than random graphs. We further illus-
trate the viabilty of the methodology by by applying GEN to
a case-study comparing two partitioning algorithms.

I. INTRODUCTION

OST algorithms in CAD are heuristic and the only

reasonable evaluation method is to use benchmark
circuits. The design of of programmable logic devices
(PLDs) is similarly inexact and benchmarks are needed
to evaluate competing routing and logic structures, and to
predict future wiring requirements. However, it is difficult
to find such test circuits, particularly large ones.

Netlists are typically modeled as graphs, which can be
characterized by their mathematical and topological prop-
erties. Furthermore, many algorithms have different be-
haviour and quality for different sets of graphs and in fact
some problems which are NP-hard on general graphs are
easily solvable for specific graph sub-classes. The goals
of this paper are to understand the restrictions which are
typical for the types of netlist-graphs which occur in prac-
tice, characterize these mathematically and statistically,
and generate new graphs which emulate the typical netlist
in terms of their characteristics and behaviour.

In earlier work [2], [1] we used this method to character-
ize and generate purely combinational netlists. Other pre-
vious work by Darnauer and Dai [3] generated a random
graph subject to a partition tree following Rent’s Rule [4],
with the goal of studying routability. This method cap-
tures empirical notions of partition hierarchy which we do
not attempt to address here but does not deal with the de-

Research supported by grants from Hewlett-Packard Corporation
and Actel Corporation. Author’s affiliations are Departments of
Computer Science and Electrical and Computer Engineering Uni-
versity of Toronto, Ontario M5S 3G4. {mdhutton@cs, jayarQeecg,
dgc@cs}.toronto.edu. First author’s current address is: Altera
Corporation, 101 Innovation Drive, San Jose, CA 95134. mbhut-
ton@Altera.com.

Industrial
Benchmark
Circuit

CIRC | Circuit GEN
(characterization)] Parameterization (generation)
GEN "clone"

(from complete
parameterization)

Random Graph

(same number of

Original
nodes, edges and 1/0)

Circuit

VPR and MAX+PLUS2 Generation
Quality
Comparison

Placement and Routing

Fig. 1. Measure Circuit Quality

lay, fanout and sequential correctness which we do model.
Iwama and Hino [5] used random modifications of seed cir-
cuits to create test instances for logic synthesis.

In this paper we extend the previous combinational char-
acterization and generation efforts of [2], [1] to the more dif-
ficult problem of sequential and hierarchical circuits. We
use the approach illustrated in Figure 1 to measure the
quality of synthetic circuits. Given an industrial bench-
mark “seed” circuit, we use our software tools CIRC to ex-
tract its parameterization or signature and GEN to gener-
ate a clone circuit with the same signature. For compari-
son we generate a random graph with the same number of
nodes, edges and I/Os, but otherwise unconstrained. We
place and route all three circuits with an academic tool VPR
[6], and with Altera Corporation’s MaxPlus2 software [7].
By comparing physical post-placement and routing statis-
tics we are able to show that our method generates cir-
cuits which significantly more more realistic than random
graphs.

Though we use “cloning” as a validation method, we
have used the MCNC circuits [8] to generate typical distri-
butions of the input parameters to GEN. In fact, the only
required parameter to GEN is the circuit size n; all other un-
specified values can be determined from the default distri-
butions. Users can also define parameters in terms of other
values, or using common statistical distributions using the
specification language of GEN. For example, unit_delay =
gauss(log(n),1) defines that the circuit’s unit delay will be
sampled from a normal distribution with mean log(n) and
variance 1.

The structure of this paper is as follows. In Section II
we discuss combinational and sequential circuit character-
ization, then formally define the signature of a circuit and
signature-equivalence classes of circuits. Section III gives
our generation algorithm. In Section IV we perform the
evaluation process just described. Section V presents an
application of our methodology to comparing two parti-
tioning algorithms. We conclude in Section VI and discuss

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH 2002 101

planned future work.

The results here are an almalgamation of several prelim-
inary papers. The sequential generation algorithm origi-
nally appeared in [9], the formalization of sequential sig-
natures and the equivalence classes of clone circuits in [10]
and the application to partitioning in [11].

Since the publication of [3], [12], [2] there has been large
and growing interest in automatic benchmark generation,
both in the realm of equivalence classes of circuits and in
Rent-based approaches. Kapur et. al. [13], Ghosh et. al
[14] and Harlow and Brglez [15] addressed various methods
for “mutating” seed circuit through local perturbations in
order to effect a circuit with similar overall structure but
differing local connectivity. A special session at the 1999
ISCAS conference was also dedicated to benchmark gener-
ation [16], [17], [11], [10]. Stroobandt et. al. [18] extended
the Rent-based approach significantly, and applied the re-
sults to partitioning problems. Most recently, Pistorius et.
al. [19] classified circuits according to their functional type,
and generated and glued both random-logic circuits and
parameterized modules such as memories, controllers and
multipliers together using a Rent’s Rule hierarchy, again
with high-density partitioning as a target application. This
work used GEN as a subroutine for generating some logical
sub-functions.

II. THE SIGNATURE OF A CIRCUIT.

Denote by npr and npo the number of primary inputs
(PI) and outputs (PO) in netlist N, by nroe the num-
ber of logic nodes (4-input lookup tables or LUTs), and
nprp the number of flip-flops. Then n, the size of N,
is npr + nprr + nrog'. We consider only single-clock
synchronous netlists with no bidirectional pins. For any
node z, fanin(x) is the number of edges entering z. Sim-
ilarly, fanout(z) is the number of edges leaving z and
maz_fanout(N) is MAX, e n{fanout(z)} We assume that
fanin(z) is always bounded by some constant k (typically
4), but that max_fanout(N) is bounded only by n. Defin-
ing fanouts[i], i=0..max_fanout, as the number of nodes
in NV with fanout i, we have the fanout distribution of N.
The number of edges neqges in N is the sum, over all z in
N, of fanin(z) (equivalently the sum of fanout(z)).

The remaining parameters defined on netlist N are re-
lated to combinational delay. Because delay can sometimes
have subtle distinctions, we define these more formally:

Definition 2.1: Define the unit delay of a node z: If z is
a PI or DFF, then delay(z) is 0. Otherwise delay(z) is 1 +
the maximum unit delay of any fanin of z. Define delay(NN)
as the maximum, over all nodes z in N, of delay(z).

Definition 2.2: Define the sequential level of a node x. If
x is a PI, then level(z) is 0. If = is a DFF, then level(x) is
1+ the level of the D-input of z. Otherwise level(x) is the

1For various implementation details we equate the number of nodes
n with the number of nets, so primary output nodes (which have no
fanout) are not counted in n. However this choice is purely account-

ing.

minimum level over all fanins of z. Define levels(N) as 1
+ the maximum, over all nodes z in N, of level(x).

Definition 2.3: A netlist N is combinational if it contains
no DFF nodes, and sequential otherwise. If IV is combina-
tional it must have exactly one level, and all nodes x satisfy
level(z) = 0. Otherwise N has at least two levels, and at
least one node at each level.

Under the restrictions mentioned previously (no combi-
national cycles or bidirectional I/Os and a single global
clock), both level(z) and delay(z) are well-defined.

Definition 2.4: The shape function of a combinational
netlist NV is defined as an integer vector shape[d], d =
0..delay(N), where shape[d] is the number of nodes in N
which have delay d.

Definition 2.5: Given a directed edge e = (z,y) in a
netlist N, define define length(e) = delay(y) - delay(z).
If level(y) < level(z) then e is a back-edge. If level(y) =
level(z) then delay(y) > delay(z) and e is a forward-edge.
Otherwise e is a FF-edge, and we must have delay(y) = 0,
level(y) = level(z) + 1, and z is a DFF node. There are
no other cases possible under the definitions of delay and
level.

Definition 2.6: The edges function of a netlist N is de-
fined as an integer vector edges|d], d = 0..delay(V), where
edges|d] is the number of edges in N of length d.

We can now outline a mechanism to decompose or par-
tition a netlist into two or more parts. Given N and a bi-
partition X and Y of the nodes of N, create two graphs N,
and N, induced by the partition. For every edge e = (z,y)
where z is in N, and y is in IV, create a new primary input
zo in Ny for z, and a new primary output yo in N, for y
(and similarly for edges from Y to X). The netlist graphs
X and Y are now disjoint, yet by identifying or gluing the
appropriate nodes x, x¢ and y, yo together we can re-create
N.

Definition 2.7: Under the decomposition of Definition
2.6, for an edge e = (z,y), denote zg as a ghost input
(GI) in N, and yo as a ghost output (GO) in N,. Define
delay(zo) to be that of delay(z) and delay(yo) to be that
of delay(y), supplementing the previous definitions with
that of the new node-types GI and GO. Along with pri-
mary output nodes (PO), we can infer new shape functions
POshape[d], GOshape[d] and Glishape[d] as we did for the
delay-based shape function on the appropriate subset of
nodes.

Definition 2.8: For netlist N and each level ¢, define the
level-netlist N; to be the subgraph induced by the set of
nodes in NV which are at level 7 and the edges between them.
The partition of N into sequential netlists is its sequential
decomposition. A set of netlists N;, is compatible if there
exists an identification or gluing of ghost inputs and ghost
outputs such that the sequential and combinational delay
of all nodes in the combined circuit are maintained, and we
define the resulting circuit the sequential composition of its

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH 2002 102

anary inputs
(level 0 only)

Sequential level 0

Primary output (any level)

*-—
\ Flip-flops

>Sequential level 1

Primary output (any level)

combinational
sub —circuit

comblnatlonal
sub —circuit

> Sequential level 2
Fig. 2. Abstract model of a 3-level sequential circuit

sub-circuits.

Figure 2 illustrates sequential decomposition into 3 lev-
els. It is important to point out that, though this model
could appear to apply only to certain types of circuits which
have a pipelined appearance, it does not actually preclude
other views of sequential connections. Rather we just de-
fine sequential levels in this way. The process of sequential
decomposition and composition is fundamental to both the
characterization and the later generation of sequential cir-
cuits.

A. Signature-Equivalence Classes of Clone Circuits

Definition 2.9: The signature of a level-netlist N; is com-
posed of i, n, npr, npo, nroa, nprr, NPO, NGI, NGO,
delay(N;), max_fanout(i), shape[], edges|], fanouts| |,
POshape[] GOshape] |, and GIshape[]. (A purely combi-
national end-circuit would be the same with nGI and nGO
set to 0.) The signature of a sequential netlist N is defined
by the collective signatures of its sequential decomposition.
For an exact specification the scalar parameters are redun-
dant given the vector parameters in the signature but are
part of the signature for clarity.

Given the concept of a signature of a netlist, we can now
formally define equivalence classes of netlists.

Definition 2.10: Two netlists are equivalent iff they have
the same signature. Given the set of all netlists of any
size, we can then induce a mathematical equivalence class
to properly partition all netlists into equivalence classes
under signatures.

Definition 2.11: Given a set of circuits generated to have
the same signature as a given input circuit, we refer to the
original circuit as the seed circuit, and the other members
of the equivalence class as clone circuits.

B. Clircuit Characteristics and Empirical Distributions.

As part of this work, we used the MCNC circuits [8] to
empirially determine the distributions of parameters in the
circuit signature (and some parameters not in the signa-
ture) [12]. The distributions of combinational shape and

fanout were discussed in [1] and both combinational and
sequential parameterization was covered in detail in [12].
This empirical description of the physical attributes is both
interesting in its own right and also forms the basis of prob-
ability distributions used to complete a partial signature
given as input to the circuit generator.

The division of a circuit into its combinational sub-
circuits introduces the concepts of sequential shape, the
number of nodes in each successive sequential level. Ta-
ble I shows sequential shape, along with scalar parameters
of a selection of MCNC benchmark circuits.

Name N 10 FF E BE | Seq. Shape
5838 167 37 32 556 256 | 169 65
5953 214 39 29 739 184 | 191 65 3
styr 238 19 5 814 219 | 207 45
planet 266 26 6 910 300 | 169 110
sbc 372 96 27 1273 300 | 388 51
mm30a 467 63 90 1697 235 | 500 90
dsip 1362 | 425 | 224 5440 896 | 1590 224
5298 1930 9 8 6944 | 2218 | 1636 305
bigkey 1699 | 425 | 224 6108 | 1344 | 1591 560
clma 8361 | 127 31 | 30114 | 5596 | 5810 2640 3
TABLE 1

SEQUENTIAL CIRCUIT CHARACTERISTICS FOR SELECTED MCNC
CIRCUITS: DESIGN NAME, NODES, 10s, DFFS, EDGES, BACK-EDGES,
AND SEQUENTIAL SHAPE.

We can make a number of observations with respect to
the complete dataset:

The number of I0s, which we modeled with a Rent-like
parameterization for purely combinational circuits [1], [12]
no longer holds for sequential circuits. Rather, there is no
statistical correlation between between n and nyo. For the
default profile we thus use a uniform distribution (between
2 and n/4) to select njo if it is unspecified.

The number of sequential levels is a small value (typically
1 to 3). Recall that a circuit with one sequential level is a
combinational circuit. Of 78 sequential MCNC circuits, 69
have two sequential levels, 6 have three levels, and there is
one circuit each of 4, 7, and 8 sequential levels. In all cases
we saw, the majority of the combinational logic lies in the
primary (0") sequential level. We typically see successive
sequential levels of logic having less than half the logic of
the preceding level.

The number of flip-flops in a circuit also has low corre-
lation to the amount of logic in the circuit. This is un-
derstandable, given the designer’s flexibility in trading off
logic and registers (e.g. 1-hot vs. encoded state machines).
We use a Gaussian distribution around a constant-deflated
square root of the number of nodes as an approximation.
Note that rather than an arbitrary function, this roughly
models Rent’s Rule for the number of flip-flops as the num-
ber of I/Os in a combinational circuit.

The number of back-edges empirically varies between one
and two times the number of nodes at the first sequential
level, and we model it as such. The details of the empirical
distributions, along with data for all circuits, is available

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH 2002 103

in [12].

C. Extensions to the Sequential Model.

With ghost input and output ports now defined, it is
worth pointing out that the sequential model can be recur-
sively generalized to describe arbitrary degrees of hierarchy,
rather than just the flat interface between multiple levels
in a simple sequential circuit.

For example, we can define also a purely combinational
circuit as a hierarchy of combinational sub-circuits simply
by combinational specifications and a compatible GI and
GO interface (without requiring that the circuit have flip-
flop or back-edges). In combination with a partitioner this
would allow us to form a partition tree model of an input
circuit (i.e. matching a given Rent parameter).

It would also be interesting to use this mechanism to de-
scribe an interface to other forms of circuits (e.g. memory
[20]), or to deal with circuits at the block diagram level.
To some degree these extensions have already been made
by [19] since the publication of [2], [9].

The ability to generalize the use of ghost inputs in gen-
eration and outputs would open the door to a more general
hierarchical generation process. In this paper, however, we
will restrict ourselves to simple sequential circuits.

III. THE ALGORITHM FOR SEQUENTIAL (GENERATION.

In [1] we gave a complete algorithm for generating purely
combinational circuits. The input to the generation algo-
rithm was the rough equivalent of a combinational circuit
signature (no ghost inputs or outputs). In this section we
extend this algorithm to the more involved case of sequen-
tial circuits. The algorithm is presented in two parts: the
generation of combinational sub-circuits (with the addi-
tions of ghost inputs and outputs) and the gluing algorithm
for sequential circuits.

Since one of our primary applications is to generate good
circuits for FPGA research, our netlist will consist of 4-
LUTs and DFFs.

As a preview to upcoming sections, Figure 3 shows a
small sequential circuit bbtas (left), its signature extracted
by CIRC in the GEN langugage format, and a clone circuit
(right) produced by GEN with that script. For readability,
labels are used instead of back-edges.

A. Generating combinational sub-circuits.

Given the combinational signature for a level-netlist, we
need to generate a graph (netlist) on n nodes and neqges
edges, such that each node z is assigned one fanout value
from the set represented by the fanouts, that assigned
value corresponds to the actual fanout of z in the graph,
combinational delay is well-defined for all nodes (i.e. d(y)
< d(z) for all fanins y of z, and at least one fanin yo has
d(yo) = d(z)-1), fanin is bounded by k for all nodes, and
all fanins to x are distinct (i.e. any signal enters a logic
node at most once).

The parameterization defines a set of disconnected nodes
at each combinational delay level and sets of unassigned
edges and fanouts, as shown in Figure 4. The goal of the

c fghe

(b) Clone circuit

fghe fghe

c fghe fgh

(a) Circuit bbtas

c fghe

X = { name="bbtasclone";

LO = (Q@.comb_circ) { name="L0"; n=8; kin=4; nPI=2;
nDFF=0; level=0; delay=2; nBot=3; shape=(2,3,3);
nGI=13; GIshape=(4,9,0); nG0=3; GOshape=(0,0,3);
nP0=2; POshape=(0,2,0); nEdges=7; edges=(0,7,0);
outs=(5,0,2,1); max_out=3; nZeros=5;

};

L1 = (@.comb_circ) { name="L1"; n=3; kin=4; nPI=0;
nDFF=3; level=1; delay=0; nBot=3; shape=(3);
nGI=0; GIshape=(0); nG0=13; GOshape=(13); nP0=0;
POshape=(0); nEdges=0; edges=(0); outs=(3);
max_out=0; nZeros=3;

};

glue=(L0, L1);

};
output (circuit(X));

Fig. 3. The MCNC circuit bbtas, a clone produced by GEN script,
and the GEN-script used to generate the clone.

algorithm is to complete the specific assignment of edges
to nodes.

The progress of the algorithm after each step is illus-
trated in Figure 5.

Step 1. Compute boundaries on level in and out-
degree. We initially consider all nodes on the same level
as collapsed to a single level-node. The goal of this step
is to compute vectors min_in[i], max_in[i], min_out[i] and
max_out[i] for bounds on the fanin (in-degree) and fanout
(out-degree) of delay level ¢ in the circuit.

Because GI and GO are special cases for fanout, we need
their locations before fanout assignment. Experiments on
industrial designs show that about 90% of the LUTs which
feed a flip-flop in real circuits have no other outputs so
we want to, wherever possible, assign fanout values of 0 to
nodes which will have a single ghost output destined for
a FF-edge. To accomplish this goal, we identify the delay
location of the ny4¢cn ghost outputs which will eventually
feed a flip-flop in Step 1 of the original algorithm. This
allows us to take them into account during the degree al-
location phase. The result of this calculation is to make a
new vector latch_shape[i], i = 0..d, available to the degree
calculations of Step 1.

The fanout assignment is iterative: we begin with rough
bounds on the possible level fanin and fanout (i.e. each
non-GI, non-PI final node will need between 2 and k fanins
and at least one fanout if it is not a PO or GO), and refine
these using a number of heuristic rules. For example, the
out-degree at level j is bounded from above by the sum of
the current maximum in-degrees at succeeding levels less

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH 2002 104

F E 000000 O0N,
1O 0t [l ©CC000 N

1t O0000 N
veiza||[|ll[[] coo
— OO N,
fanout set edge set node sets

Fig. 4. Combinational Circuit Generation Problem.

0.. (13)

S

1141411
12..13
12.1 (10)
10 l@ 112321
10..10
(5)
5“7@ 11111
6..6
&
3.4 111
4.4
Step 1 Step 2 Step 3
7 7 T 9

o o
1 4
O o O o O o
1 2 3 2 1 1
(@]
2

o
1

0
=0
=0

o o o
1 1
o O

Step 4

Fig. 5. Example at the conclusion of Steps 1 to 4.

the sum of the minimum in-degree at succeeding levels,
and from below by the number of nodes at level j less the
number of primary outputs at level j.

To accommodate ghost inputs and outputs, we must take
the following points into account:
1. We assume that latch_shape[i] nodes at level i will have
a minimum fanout of zero, rather than one (as per the
above discussion).
2. We allow (but don’t require) shape[i] - GIshape[i] nodes
at level i to have minimum fanin one rather than two. Note
that we must still allocate at least one non-ghost fanin
for each node, or it would not (by definition) be in this
subcircuit.
3. We subtract GIshape[i] nodes from the maximum fanin
of level i, to leave room for the incoming back-edges.

Step 2. Assign edges between levels. Given the bound-
aries from the previous step, we now assign (between all
long levels) all long (non-unit) edges and enough unit edges
to meet the minimum in and out degree boundary. We
first dispose deterministically of the special cases of GI (no
fanin) and GO (no fanout) nodes, then similarly assign the
required number of “critical” unit edges at the first and
last delay-level and enough unit edges between other levels
to allow combinational delay to be well-defined—e.g. each
node at delay 5 needs at least one input at delay exactly
4. Then we probabilistically assign all long edges based
on the available fanin and fanout at levels which are the
appropriate length: draw one value from the distribution

and assign it, then update the distribution accordingly and
repeat. Finally we deterministically assign enough of the
remaining unit-edges to guarantee each level’s minimum
in-degree.

Step 8. Partition the total fanout at each level. Given the
total out-degree of a level i, we now need to divide it into
N; node out-degrees taken from the fanout set F. To do
this, we first calculate target (predicted) fanouts for each
level, taking into account the remaining unassigned unit
edges. At each level i, latch_shape[i] and + POShape[i]
are used to determine the number of fanout-0 nodes re-
quired. Fanout assignment for the remaining nodes after
the removal of special cases is solved as an approximate
integer-partitioning algorithm (solving the exact problem
is NP-complete).

Step 4. Split levels into nodes. We need to split each
level-node N; into its n; individual nodes. This is a trivial
process, except for the need to introduce locality into the
final structure. To introduce the types of local structure
which is empirically found in human-created netlists, we
impose a list ordering on the nodes at each level (1..n;),
and allocate the fanin values assigned to that level proba-
bilistically so as to spread out the high-fanout nodes across
the ordering. In the edge-connection stage to follow, we
will use the ordering to determine the utility of connecting
two nodes with an edge using their relative orderings as a
metric of locality.

This step must now formalize the assignment of GI and
GO designation to individual nodes. Previous steps have
tried to “make room” for the ghost I/Os, so here the
allocation is relatively straightforward: we allocate the
GIshapeli] ghost inputs randomly and uniformly to the
nodes at delay level i. Looking at the data for real circuits,
we find that there is no statistical reason to do otherwise.

We also designate latch_shape[i] nodes as latched. These
nodes will eventually be candidates for gluing to a flip-flop.
As much as possible, these will be fanout-0 nodes, and will
not be assigned additional GOs. If there are remaining
fanout-0 nodes after this step, we assign additional GOs.
All remaining GOs are kept for a new post-processing step
discussed next.

Step 5. Connect edges between nodes. From the pre-
ceding steps we have a set of edge sources and destinations
assigned to each level, and within the level we know the
fanout of each individual node. The goal here is to assign
each edge source and destination to specific nodes. The
first pass connects unit edges to guarantee that the combi-
national delay of every node is well-defined. Then the al-
gorithm proceeds probabilistically: For each sampled node
x with available fanin, we randomly choose L (the locality
parameter) different possible fanout edges from the pre-
ceding levels which could attach to it, and connect the one
with the closest index to that of z. This process continues
until all edges have been connected at both ends. The lo-
cality parameter L is an important tuning parameter of the
generation algorithm. By forcing cells with similar indices
to have a higher connection probability we induce an ele-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH 2002 105

A A
Tqa™ o™
<13 <5

Fig. 6. Final result of the combinafional algorithm.

ment of structure to the design which would not otherwise
be present.

Step 6. Remaining GO assignment. Sequential sub-
circuits usually have fewer available edges than fully com-
binational circuits, so we use the ghost outputs, in part,
to “repair” any extra zero-fanout nodes which may exist
(usually some, but a small proportion) on the delay level
they are assigned to. The remaining ghost outputs are not
assigned uniformly. We want to generate more realistic cir-
cuits which tend to have a smaller number of high-fanout
nodes to previous levels, rather than many nodes with a
single ghost output. To do this, we choose a random sub-
set of the nodes on each delay level requiring ghost outputs,
smaller than the number of ghost outputs available, then
assign the ghost outputs uniformly to nodes in the subset.

The overall algorithm yields a circuit as shown in Fig-
ure 6 — a combinational circuit with the correct number
of GI and GO at the required combinational delay levels.
In the next section we will show the sequential composition
or “gluing” process which operates on these sub-netlists.

Note that the above algorithm assumes that an exact and
complete signature is available. More typically, the user
will specify only a few of the scalar parameters (either ex-
actly or in relation to other parameters), and the front-end
to GEN will create the remaining parameters from the de-
fault scripts also mentioned earlier. For example, the num-
ber of I/Os to a circuit can be defined as a random-variable
drawn from a gaussian distribution around the square-root
of the number of lookup-tables, emulating Rent’s Rule with
“r=0.5” and overriding the default distribution.

B. Gluing Subcircuits.

The problem of joining subcircuits together into the fi-
nal sequential circuit NV is essentially one of appropriately
matching the ghost ports between the subcircuits into back-
edges and FF-edges.

When gluing begins, we have a list of subcircuits IV;, i =
1..c to be connected, sorted by increasing sequential level.
Each subcircuit contains a list GI_list of ghost inputs, a
list F'F'_outlist of ghost outputs which have been labeled as
targeting a flip-flop (from 74 in the specification), a list
GO_list of other ghost outputs intended for back-edges and
a list F'F'_inlist of primary inputs in subcircuits at non zero
sequential levels which will become flip-flops. Each ghost
input and output is attached to a node in the subcircuit,

and inherits the combinational delay of that node.

We have previously discussed the locality metric in mak-
ing combinational connections between nodes in Step 5.
For sequential gluing, define the index of a node as an inte-
ger proportional to the node’s location in the node list for a
given delay level in any subcircuit (the 0..n; — 1 ordering of
the n; nodes in delay level 7, scaled to the maximum width
over all combinational levels). When edges are connected
in Step 5 of the base algorithm, we probabilistically favour
connections between nodes which have closer indices, in
order to introduce clustering in the circuit. This form of
geometric clustering is evident when viewing pictures of cir-
cuits generated by heuristic graph-drawing packages such
as DOT [21].

In order to generate realistic circuits it is important to
continue this process when connecting nodes to flip-flops
and back-edges, or we generate circuits with many crossing
edges which are overly difficult to place and route. Thus
we continue to use the node index for sequential gluing.

The matching is constrained by combinational delay and
sequential levels. We cannot join a node z at sequential
level I to a node y at level [+ 1, unless y is a PI (i.e. in-
tended to become a flip-flop). We also cannot join a node z
to any node y at a level beyond [+ 1 without violating the
definition of sequential level on the nodes of N. Similarly,
we cannot join a ghost output on a node x to a ghost input
on a node y if d(z) > d(y), without violating the combina-
tional delay of y, and we cannot connect two ghost outputs
attached to x with two ghost inputs to y, or we create a
duplicate fanin to y.

This problem can be solved as a standard weighted bipar-
tite matching problem (weights arise from locality). How-
ever, the O(n? logn) time [22] for weighted matching is too
expensive for the size of netlists we need, so we use a heuris-
tic greedy version instead. The most important aspect of
the operation is to properly order the connections so as to
increase the chances of finding a good solution. A solution
which fails to connect all possible edges will result in GEN
later having to diverge from its input specification by cre-
ating extra flip-flops or by moving ghost inputs or outputs
to different nodes.

Because registered ghost outputs are labeled separately
from the other ghost outputs, the problems of gluing back-
edges and gluing FF-edges are independent. However, dif-
ferent subcircuits do “compete” for back-edges. We give
priority to earlier sequential levels by processing in the fol-
lowing order (justified in later detailed discussion):
for i = 0..c /* c is the number of subcircuits */

connect back-edges from Nj, j # i, to GIs of N;.
connect FF-edges from registered GO nodes in N;
to PIs in N;4q
end for

The greedy algorithm for gluing edges is described in the

following section.

B.1 Gluing back-edges.

The greedy algorithm for gluing back edges to the ghost
inputs of one circuit N; from all other subcircuits is as

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH 2002 106

follows.

First create a destination list of all ghost inputs in V;
and a source list of all ghost outputs in the other subcir-
cuits which are at later sequential levels. Sort both lists by
increasing index within decreasing delay. The purpose of
this order is to use up the highest delay ghost outputs first
(because they are less likely to find a matching ghost in-
put and then require a flip-flop or movement later), and to
match them to the highest delay ghost inputs with which
they are compatible. Given that, we want to match indices
as well as possible.

Now proceed through the source list in order. Define the
match value of a source node z with a destination node y
as oo if (z,y) is an invalid edge (by the constraints above),
and d(y) — d(z) otherwise. We search the destination list
for the first node with lowest match value, which also lines
up a compatible index by the sorting. Note that we don’t
actually have to look at the entire destination list; this
can be done in O(d) time, using a few additional pointers
indexed into the destination list. Combinational delay d is
essentially a constant so the algorithm is fast.

The time required for this gluing phase is dominated by
the sorting, so we need O(nlogn) time? per subcircuit, of
which there are a constant number. Note that “n” in this
algorithmic complexity refers to the number of back-edges
in N, which is typically about 5-10% of the size of the
whole circuit?.

The reason that the main algorithm processes subcircuits
in order of their sequential level is that the earlier levels
typically have both many more nodes and greater combi-
national delay, and also a more complex overall structure.
(Later levels often reduce to a register-file with only a cou-
ple of logic nodes.)

B.2 Gluing Edges to Flip-Flops.

The process for gluing nodes with ghost outputs labeled
as latches to primary inputs at the next sequential level
is more straightforward. For each adjacent pair of levels,
create a source and destination list as before, sort the lists
by index (independent of delay), and line up nodes directly
(the lists are the same size, by the original specification of
the subcircuits). This is an additive factor of O(nlogn)
time to the preceding steps, so the entire gluing algorithm
remains O(nlogn) time. (In this case, n refers to the num-
ber of flip-flops in the circuit which is, in practice, not the
entire size of the circuit.)

Note that the order in which subcircuits are considered
is unimportant, as the connections are independent.

2Due to the fact that the node lists are already sorted, we can
reduce this to an O(n -d) algorithm with appropriate data structures.
However, given the tight constants which exist for sorting algorithms,
we believe the constant for doing this would dominate logn for all
reasonable n, so it is not of practical interest to do so. The same
applies to most (but not all) sorts which occur in GEN.

3This doesn’t change the abstract complexity, but the algorithm
runs faster in practice.

C. Variance and Adherance to Specification

Because the algorithm for generation consists of a num-
ber of heuristics, we can never guarantee that we are able
to completely match an input specification. In general we
find that we can miss a specification by a couple percent: In
assigning 1000 edges to a given edge-distribution, it is nor-
mal to have 10 to 20 edges be forced to the incorrect length
from their exact specification. Similarly it is normal to ex-
pect a small variation in delay-shape distribution. None
of these is particularly significant given that our goal is to
generate new and different benchmarks anyway.

A more significant issue is incompatibility between ghost
input and output shape. This problem is harder to get
right, so rather than forcing incorrect connections the basic
algorithm is allowed to leave some ghost ports unconnected,
and we add an additional post-processing step to resolve
the leftover ports. In this step ghost inputs and outputs
are moved to suitable candidates elsewhere in the subcir-
cuits until matches are found. In extreme cases (flagged
by warnings from GEN) up to 40% of back-edges can be
unresolved before post-processing, but typically only 0-5%
of ghost inputs and outputs (which comprise less than 1%
of all edges) remain after the main gluing algorithm. We
note that since the underlying problem is NP-complete, to
expect otherwise in polynomial time is unrealistic.

D. Software Tools: CIRC and GEN.

The algorithms just described, and the source code for
them is available under to the public domain at the website
http://eecg.toronto.edu/~jayar. To date over 50 different
academic and industrial users including Altera, Xilinx, Ac-
tel and HP have obtained prototype versions of CIRC and
GEN under academic license.

GEN is able to produce circuits in several different gate-
level netlist formats, including Berkeley BLIF, Actel ADL,
Altera AHDL, Xilinx XNF and gate-level Verilog. Thus the
tools are of immediate practical value to the community.

IV. VALIDATING THE QUALITY OF GEN-CIRCUITS

As mentioned in the introduction, we will test the vi-
ability of sequential GEN-circuits in a number of different
ways.

Our first evaluation relies primarily on generating clone
circuits for known benchmarks and comparing their be-
haviour to GEN-clones and to random graphs of the same
size. The goals are to determine the relative viability of
GEN circuits with respect to both random graphs and to
existing benchmarks. We do this using two different tools,
a high-quality academic placement tool VPR and a commer-
cial FPGA place and route tool MAX+PLUS2 from Altera
Corp. It is important to point out that the use of GEN
circuits is not restricted to clone generation; this is simply
a method of evaluation.

The second operation is to evaluate the ability of the tool
to meet a given specification, and to analyze the variance
between clone circuits in the same equivalence class. For
this operation, we chose a smaller subset of the design set

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH 2002 107

comprising eight circuits. For each of these eight circuits
we generate 100 clones using different random seeds, and
compare the resulting clones for their variation from the
seed circuit and each other.

Before dicsussing these results we need to describe how
we generate the random graphs used for comparison.

A. Generating random graphs.

We generate a random directed graph on n nodes and
n. edges with np; primary inputs, npo primary outputs,
with nppp available flip-flops (for breaking combinational
cycles, as we want only synchronous designs) and kqz-
bounded fanin. The algorithm is as follows.

1. Determine the maximum k such that 2 - k- n is less
than n.. Create a random permutation ¢ of size 2 - k - n,
to represent 2 - k - n nodes, and join nodes o9; and o9;41
with an edge, i = 0..(k - n) — 1. This creates a graph on
2-k-n nodes with k-n edges, where each node is connected
to exactly one other, i.e. a random matching.

2. Now collapse all nodes labeled o;..0(;41)i—1 into a
single node z;. The result is an n node undirected graph
where the degree of each node is exactly k (a k-regular
graph*) and the distribution of graphs generated is guar-
anteed to be uniformly distributed over all k-regular graphs
of size n.

3. Direct all edges from lower-numbered nodes to higher,
to get a directed graph. Randomly label np; fanin-0 nodes
as PI (similarly npo fanout-0 nodes as PO). Randomly
connect non-labeled fanout-0 and fanout-0 nodes by new
edges until they are exhausted, then continue randomly
connecting random nodes to random nodes with fanin less
than k,,4, until the graph contains n. edges. When it is
necessary to connect a node to a node of a lower number,
separate the two by a flip-flop if one remains to allocate,
otherwise search for an alternate connection that does not
involve a back-edge.

This process generates a graph with the specified num-
ber of each node-type and the specified number of edges.
A more standard definition random graph (i.e. G(n,p) on
n nodes with each edge existing with probability p), would
not be an interesting comparison with GEN, because it is
much too hard to place and route (e.g. it contains more
than O(n) edges and a clique on log(n) nodes, almost al-
ways).

The graphs generated by the above process could be seen
as a “first pass” version of GEN which takes fewer param-
eters into account. In fact, this algorithm alone would be
an improvement over most naive approaches to generating
random graphs for benchmarks. Comparing real circuits
to clones and these random graphs is essentially measur-
ing how far along the scale from “random” to “real” the
current GEN approach has travelled. See Figure 10 for an
explicit visual of this scale.

4There are details to deal correctly and exactly with the double and
and self-connections between nodes without sacrificing the uniform
distribution, but these are beyond the current discussion.

B. Comparing Routing Results.

We generated place and route data using 22 industrial
benchmark circuits from Altera Corporation. For each cir-
cuit we generated both a clone circuit (by extracting the
entire signature with CIRC) and a random netlist with the
same number of nodes and edges. All 66 circuits were then
run through each of vPR and Altera’s MAX+PLUS2 com-
mercial PLD software.

The benchmarks used are between 600 and 1100 logic
blocks (4-input LUTs) and use up to 240 user I/O pins.
By typical industry metrics this is roughly between 2 and
5 thousand equivalent “ASIC gates.”

The academic place and route tool VPR uses the model of
a symmetric array of logic blocks, similar to a classic gate-
array or the Xilinx 3000 FPGA architecture [23]. VPR
allows the architecture to vary in channel width, and re-
ports the total wirelength and the maximum channel width
required for global routing. In MAX+4PLUS2, we target an
exact commercial programmable logic device (the Altera
10K20 [7]).

Our results are shown in Table II. The first 3 columns
show the wirelength of the original circuit, and the percent-
age of extra wirelength required first by the clone circuit,
and second by the random netlist. The second group of
columns show an alternative fitting quality measure, the
maximum track-count required by VPR to achieve a route.
In VPR there is no such thing as a “no-fit” because track-
width are increased to the point where the circuit finally
fits. The final two columns show the percentage increase
in routing resources used by the clone circuit and the ran-
dom circuit when implemented on the PLD. Since raw line-
count information is proprietary, we show only percentage
change for the commercial part; this is all that is needed
to evaluate the algorithms in GEN.

For our metric of resource usage in the Altera part,
we count the total number of full-horizontal (GH), half-
horizontal (HH) and vertical (GV) lines used by the design
in a 10K20, as reported by MAX+PLUS2. Because we are
using an actual device, it is possible that a design does not
fit (successfully complete place and route for the fixed re-
source counts of the part). Though all original circuits do
fit in the commercial part, one of the clone circuits and 13
of the random graphs did not, and these are indicated by a
‘.’ in the table. All of the original (non-synthetic) circuits
do fit in the device.

The last row of the table indicates the averages for each
column. For the last two columns, the missing data is
not included in the average, meaning that our summary
statistics are conservative.

In [12], [2] we also give the definition of a measure quanti-
fying the degree of reconvergent fanout in a circuit between
0 and 1. By this measure, GEN circuits differ by about 0.19
on average, while random graphs differ by 0.28 on average.

We find that the clone circuits are harder to place and
route than are the original circuits we took the specifi-
cations from, though a given clone is always dramatically
closer to the original than the corresponding random graph
which is much harder. On average the clone circuits used

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH 2002 108

VPR wire VPR tracks 10K20 tracks
clone rand clone rand |clone rand
orig. %diff %diff | orig %diff %diff | %diff %diff

5102 21 144
7719 64 215
6344 27 160
6818 20 147
6609 53 266
4293 57 188
4147 2 158
5107 21 137
4692 19 155
6087 34 153

16 83 14 132
80 160 71

16 116 30

16 133 32

60 160 35 .
40 140 41 197
0 140 16 208
40 120 0 123
40 160 23 132
60 120 51 165

9313 42 202 33 133 38
6546 36 222 100 55
7748 86 248 100 220 85

10794 -43 52
8070 17 140
5562 88 268
6460 71 167
6417 29 166
4662 28 170
8828 2 156
4876 81 201
4837 28 143
6358 35% 175%

B =

G RO Ut O LUt ULt Ot ot O O UL Oy
w
w

-40 30| -41
14 100 25
80 180 90
80 160 .
40 140 24 .
0 83 16 108
16 150 53 .
75 175 63 174
50 150 34 117
134% 151%

<AHNIOTOZE- N OO muQw >

8
@
&
=]
wt

TABLE 11
ROUTABILITY COMPARISONS BETWEEN ORIGINAL BENCHMARK
CIRCUITS, GEN-CLONES AND RANDOM GRAPHS (‘.” INDICATES A
NO-FIT).

35% more wirelength and 38% more tracks than the origi-
nal circuit whereas the random graphs, even ignoring those
which failed entirely to fit in the device, used 175% more
wirelength and 134% more tracks. This is further reflected
in the implementation of the clone and random circuits on
the commercial device where (when they did fit) the clone
circuits used an average of 36% more routing resources and
the random graphs used 151% more routing resources.

Put differently, the random graphs based only on size
and edges are approximately 4 to 5 times the variation
from the original benchmark (in terms of place and route
metrics) as are the clone circuits generated using the entire
specification. This provides overwhelming evidence both
that the signature captures significant physical properties
of the netlist which cannot be simulated randomly, and
that the GEN tool is able to generate circuits to resemble
this signature.

The fact that the circuits do not exactly match the orig-
nal means primarily that we have not fully captured all
possible parameters with the current definition of circuit
signature (or that to do so is not possible). We believe
that a greater amount of local clustering is required (both
in characterization and in generatioin), and continue to ex-
plore methods to provide this.

This experiment compares each of a group of clone cir-
cuits to the seed circuit which shares its signature. In the
next section we will analyze the behaviour when we gener-
ate many clones of the same circuit.

ALTRO3 -- Typical case

I
S

w
=]

number of designs
N
o

o

T T — = T T T T T
25 20 -15 -10 -5 5 10 15 20 25

o

%difference from mean

Fig. 7. Typical distribution of wirelength around the mean for 100
circuits in an equivalence class (ALTRO03).

C. Variation within Equivalence Classes

It is interesting as well to discuss the variation between
different circuit clones in the same equivalence class, be-
cause it gives us an idea of the completeness of the signa-
ture characterization as we have defined it.

In the previous section, we measured how different a
clone was from its seed circuit. We used many circuits but
only one random data point for each circuit. Here we will
generate many clones of some specific circuits, and measure
the distribution of clone circuits around the seed. In this
context, we define bias to be the difference in wirelength
between the seed and the mean of a large set of clone cir-
cuits, and the variance to be the statistical variance around
the mean for those clone circuits.

The best case for GEN is to achieve low bias and positive
but controlled variance — i.e. the distribution of clones of
a seed circuit is centred on the seed itself, but with enough
variance that we are actually generating different circuits.
A high variance would imply that we are generating close
to random graphs (i.e. the circuits aren’t really in the same
equivalence class). A “too low” variance would mean we
have over-specified the problem - i.e. the signature actually
captures all properties of the circuit and we basically echo
the same circuit back as a clone. Bias most likely indicates
a missing issue either in the parameterization or in the
generation algorithm.

For each of eight seed circuits we generated 100 clones
as outlined in earlier sections. The typical case, as repre-
sented by 100 clone circuits generated from the seed circuit
ALTRO3 (Figure 7), is that almost all circuits are within 5%
from the average wirelength of the class. However, in line
with the previously reported bias, the average wirelength
of the class differed from the seed by 57%. Note that we’re
using larger circuits than in Table II, which contributes to
greater variation.

The greatest-variance case for the 8 circuits studied is
shown in Figure 8. Approximately 20% of circuits were
between 5% and 15% from the average.

To contrast the distribution of wirelength for circuits in
the same equivalence class with a distribution of circuits
not in the same equivalence class we generated 100 cir-
cuits using GEN. These circuits were forced to have 100 PI,
50 PO and 1000 LUTSs, but were otherwise unconstrained

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH 2002 109

ALTRO2 -- Most variance

50

40

30

20

number of designs

10 “

25 20 -15 10 -5 5 10 15 20 25
%difference from mean

Fig. 8. Worst-case distribution of wirelength around the mean for
100 circuits in an equivalence class (ALTR02)

$1000 -- Variation outside of equivalence class

50

40

30

20

NMETEEEE AT

-25 -10 -5 5 10 15 20 25

number of designs

%difference from mean

Fig. 9. Distribution of wirelength around the mean for 100 GEN
circuits using default parameterization model.

(except for the default distributions of the software as dis-
cussed in [2,3]). Note these are not random graphs; they
are GEN circuits whose signatures are drawn from default
distributions rather than from a common seed circuit. The
corresponding distribution of wirelength around the mean
is shown in Figure 9 and we see that the distribution is dra-
matically more varied. This is a positive result, providing
further evidence that when the full signature is varied, we
get significantly more variation than when the signature is
held constant for a given set of circuits.

To illustrate the difference in bias and variance between
GEN circuits and random circuits, we took one circuit
(ALTRO1), and generated one hundred clone circuits, and
one hundred random circuits (as defined in the preceding
section). The results are shown in Figure 10. Though the
set of GEN clones show definite bias (57%) from the seed cir-
cuit, the randomly generated circuits show a pronounced
170% bias, roughly 3.5 times that of GEN. Figure 10 in
many results is the key point of this paper, illustrating the
scale between “real” and “random” and the location of GEN
circuits on this scale.

Table IIT shows the wirelength W reported for the orig-
inal circuit, the average and standard deviations observed
for the individual sets of 100 clones in the equivalence class
of each seed circuit, and the percentage difference of the
mean from the seed circuit. Also shown are the corre-
sponding statistics for maximum track-count T as reported
by VPR.

Results Summary: With respect to currently generated

GEN vs. RAND wirelength distributions

«
8

0% is the seed circuiil

~
3

RANDOM []
CIRCUITS

2
8

GEN CIRCUITS

i |

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

@
2

@
8

N
8

number of designs
IS
3

3

o

% difference from seed circuit

Fig. 10. Bias and Variance for GEN vs. random circuits.

W W| W| WI|T T T T
avg sd | diff avg | sd|diff
altr01 [12219 [21579 | 901 | 77| 7{12.4|0.69| 77
altr02 | 4989 | 7859 | 354 | 58| 6| 9.6|0.66 | 60
altr03 | 8560 | 16215 | 353 | 89| 7|10.8|0.43| 55
altr04 | 8197 (12053 | 255 | 47| 8| 9.4|0.49| 17
altr05| 5711 | 7478 | 176| 31| 9| 7.7|0.48|-15
altr06 | 6246 | 9093 | 253 | 46| 6| 9.5|0.50 | 58
altr07 | 8983 (14716 | 515| 64| 6|11.4|0.61| 91
altr08 | 7494 | 12670 | 222| 69| 7|11.0|0.36 | 57
avg: | 60 avg: | 50

51000 9611 | 2156 8.3]1.30

TABLE III

WIRELENGTH AND TRACK STATISTICS FOR 8 ALTERA CIRCUITS AND
THEIR 100 CORRESPONDING CLONES, AND FOR 100 1000-LUT
RANDOM CIRCUITS.

GEN circuits can make several points. The “quality” of the
circuits, as measured by bias, is significantly better than
random circuits but not as close as we would like to the
seed circuit. The seed circuit is almost always requires
less overall wirelength than the clones we generate. How-
ever, the variance is well in line with both expectations and
our desire - we want varied circuits and +/- 5 percent is
basically the amount of variance we would want to gener-
ate for reasonable experiments. For randomly generated
benchmarks the variance is much more significant - larger
than would be desired.

V. APPLICATIONS USING CLONE CIRCUITS

In this section we address an important issue in CAD
benchmarking: given that algorithm A has out-performed
algorithm B by 10% on two different test circuits, what con-
clusion can we make? Is it reasonable to conclude that A is
better, or is this simply noise because both the algorithms
are heuristic? We have two fundamental problems. The
first is that the two circuits may not be representative of
the typical input to the program. For this we currently have
no solution. The second problem is that we are observing
noise in the behaviour of the algorithms for these circuits
because the algorithms are inherently heuristic: essentially
we have a result which has no statistical significance. It is
here that the use of clone circuits can play a role in our
ability to benchmark.

The following simple methodology follows naturally from

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH 2002 110

the definition of clone circuits and equivalence classes:
Given a small set of initial benchmark circuits, use the
process outlined in Section IV to generate a large number
of clone circuits equivalent to each seed circuit. Apply each
of the clone benchmarks to the problem under considera-
tion, and measure the appropriate statistical metric(s) to
distinguish the multiple approaches. Then, in addition to
the original circuits, consider the behaviour of the class as
a whole to the problem solution.

For example, if our goal is to analyze the effectiveness of
two placement algorithms we could apply each to 100 clone
circuits of each seed circuit and then compare the distribu-
tion of results between the two algorithms. If our goal is
to determine whether an experimental programmable logic
architecture requires 80 wires per row or if 60 is sufficient
we perform place-and-route on the two different parts and
analyze the number of fits and no-fits which result. In both
cases we can gain more finely grained information from the
large number of circuits than would be seen by looking only
at the small number of initial benchmarks.

We point out that simply generating large numbers of
circuits does not, in itself, allow us to make more accurate
experiments. In order to apply this methodology, we are
relying on the fact that the circuits being generated by
GEN do have similar properties, as exhibited by their low
variance, and that relative comparisons are thus justified.

In order to illustrate the use of GEN clones, we will ap-
ply the above methodology to distinguish two well-known
partitioning algorithms.

For the first algorithm we obtained an implementation of
the Fiduccia-Mattheyses partitioning algorithm [24] from
Charles Alpert’s website[25]. This code was originally at-
tributed to Shantanu Dutt and Wenyong Deng at the Uni-
versity of Minnesota Electrical Engineering Department
and modified by Alpert for various netlist formats.

The second partitioning algorithm is the original imple-
mentation of hMetis by Karypis et .al. [26], [27] from their
University of Minnesota website. Based on the literature,
this algorithm is expected, a priori, to have better results
than the FM algorithm.

We performed bipartitioning on 100 clones each of the
8 larger Altera benchmark circuits (800 circuits in total)
and the original circuits and recorded the cut-size reported
by each tool. We then calculated the mean and standard
deviation and calculated the 68% (mean +/- 1 std. dev.)
and 95% confidence intervals (mean +/- 2 std. dev.) for
each of the two algorithms on each of the 8 equivalence
classes.

The results of the experiment are displayed pictorially
in Figure 11. For a given circuit, we have 4 lines: from
top to bottom, the 68% and 95% confidence intervals for
hMetis and then the 68% and 95% confidence intervals for
FM (each calculated over the 100 circuits in the equiva-
lence class). We observe (as expected) that the hMetis
algorithm outperforms basic FM significantly: for half the
circuit classes the 68% confidence intervals do not even
overlap.

Given the large sample size, we can also get reasonable

ALTRIE

A TRIT

AL TROG e
ALTROS e

ALTRI4 _—
ALTRDZ
ATRIZ
ALTRIT

u] a0 00 150 20 280 e] e

Fig. 11. 95% and 65% confidence intervals for cut-size as reported
by hMetis (top) and FM (bottom), taken over equivalence clases for
8 seed circuits.

LOW [HIGH [LOW% |HIGH%

altr01| 36.5| 48.3 13.9 18.4
altr02| 10.5| 17.3 8.3 13.6
altr03 | 29.2| 34.4 14.1 16.6
altr04 | 19.7| 24.1 13.7 16.9
altr05 6.3| 10.1 6.8 10.9
altr06 | 20.2| 25.3 13.1 16.5
altr07| 20.8| 29.2 10.2 14.3
altr08 | 18.9| 23.5 10.0 12.4
11.3 15.0

TABLE IV

95% CONFIDENCE INTERVALS FOR THE DIFFERENCE IN MEAN CUT-SIZE
BETWEEN HMETIS AND FM.

confidence intervals for the difference in mean cut-size be-
tween the two algorithms. Table IV shows this data. The
average of the eight 95% confidence intervals for the differ-
ence in sample means is (11.3, 15.0), so we are 95% confi-
dent that hMetis will outperform FM by between 11% and
15%. Though not the point of this paper, it is clear that
hMetis is a superior algorithm to the basic FM implemen-
tation.

A. Non-clone uses of GEN

The preceding example used clone circuits in order to
smooth variance and to improve statistical significance in
the comparison of two algorithms. There are many other
applications where we need to create circuits from scratch,
without duplicating the physical properties of an existing
benchmark: for example, if we need a circuit with 10000
nets and don’t have any seed circuits to clone. In these
cases we utilize the specification language of GEN to specify
several basic properties such as the number of nodes, edges,
inputs and outputs, plus combinational delay, and the re-
maining portions of the incomplete signature are filled in
from the GEN default scripts (the characterization param-
eters previously mentioned in Section IIT).

We and others [28], [29], [19] have successfully used such
circuits in many applications. Currently the quality of the
circuits is good enough that such experiments are reason-
able, but we note that the variance does increase with the
size of the circuit generated — as the size of the circuit
increases away from the size of the benchmarks used for
generating the default parameter distributions the quality
does degrade. Future work to solve this problem involves
primarily two issues: a better capturing of a locality pa-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH 2002 111

rameter or distribution which allows us to build hierarchi-
cal circuits and a re-tuning of the default parameterization
to larger benchmark circuits.

VI. CONCLUSIONS AND FURTHER WORK

In this paper we have defined a new model for describ-
ing sequential circuits as a hierarchy of combinational sub-
circuits. The model includes the parameters of ghost in-
puts, ghost outputs and their delay-shapes. The model can
also be used to describe more general forms of hierarchy
than simply that between sequential levels. We have given
an algorithm for generating realistic sequential benchmark
netlists given the exact parameterization of a circuit in this
model. This builds on previous research in which we gave
a similar algorithm for the simpler problem of purely com-
binational circuits.

In addition, we have described a public-domain pro-
totype software system which implements the sequential
model with a characterization program (CIRC V3.1) and
a generation program (GEN V3.1). These prototype tools
have been installed at Altera, Xilinx, Actel, HP and over
50 other academic and industrial sites, and have were also
used to contribute benchmarks to an informal partitioning
competition at the 1996 Design Automation Conference.
GEN has been used for benchmarking purposes in [28], [29]
and as a component of more recent automatic benchmark-
ing efforts [19].

Using CIRC and GEN, we have “cloned” a number of in-
dustrial benchmark circuits, and showed that GEN-circuits
are significantly closer (3 to 5 times) to real circuits for
placement metrics than carefully generated random graphs.
We analyzed the variance of circuits showing that the vari-
ation within an equivalence class was at acceptable and
desirable levels, and that true variation existed between
different equivalence classes. Using GEN as a tool, we ap-
plied the generation of many circuits to a methodology to
compare two partitioning algorithms with greater statisti-
cal significance that would otherwise be possible.

GEN is also capable of generating circuits “from scratch”
using a set of default scripts based on analysis of bench-
mark circuits, and which can be user-modified.

We see a number of areas for future exploration. One is
to modify the base generation algorithm to automatically
impose a partition hierarchy on the circuit as it is being
built, possibly similar to Darnauer and Dai’s [3] use of the
Rent-exponent to introduce hierarchy in their partitioning
benchmarks. Though GEN will currently output circuits
of up to about 100,000 LUTSs, we believe generating high-
quality large benchmarks will require some degree of im-
posed symmetry and hierarchy within the netlist. A second
area for future work would be to generate “system”-level
hierarchy, by including datapath and other structured logic
which can be synthesized or produced with LPM modules
and random logic components from GEN. Other practical
additions would be logical values (LUT contents) for sim-
ulation, addition of secondary signals and multiple clock
domains and embedded RAM.

ACKNOWLEDGMENTS

The authors would like to thank Vaughn Betz for use
of vPR. Thanks to Altera Corporation for providing the
first author with a summer internship, during which parts
of this research were performed, and for allowing access
to their benchmark circuits during that time, and to the
Hewlett Packard Corporation and the Actel Corporation
for financial support.

REFERENCES

[1] M. D. Hutton, J. P. Grossman, J. S. Rose, and D. G. Corneil,
“Characterization and Parameterized Random Generation of
Combinational Benchmark Circuits,” IEEE Trans. CAD, vol.
17, no. 10, pp. 955-996, Oct, 1998.

[2] M. D. Hutton, J. P. Grossman, J. S. Rose, and D. G. Corneil,
“Characterization and Parameterized Random Generation of
Digital Circuits,” in 33rd ACM/SIGDA Design Automation
Conference (DAC), June., 1996, pp. 94-99.

[3] J. Darnauer and W. Dai, “A Method for Generating Random
Circuits and Its Application to Routability Measurement,” in
4th ACM/SIGDA Int’l Symp. on FPGAs, Feb., 1996, pp. 66-72.

[4] W. E. Donath, “Placement and average interconnection lengths
of computer logic,” IEEE Trans. Comp., vol. CAS-26, no. 4, pp.
272-277, 1979.

[5] K.Iwama and K. Hino, “Random generation of test instances for
logic optimizers,” in Proc. 31st Design Automation Conference
(DAC), 1994, pp. 430-434.

[6] V. Betz and J. Rose, “VPR: A new packing, placement
and routing tool for FPGA research,” in 7th Int. Conf.
on Field-Programmable Logic, 1997, pp. 213-222, See also
http://www.eecg.toronto.edu/~jayar/.

[7] Altera Corporation. 101 Innovation Drive, San Jose CA 95134,
“1999 Data Book,” .

[8] S. Yang, “Logic Synthesis and Optimization Benchmarks, Ver-
sion 3.0,” Tech. Report. Microelectronics Centre of North Car-
olina. P.O. Box 12889, Research Triangle Park, NC 27709 USA,
1991.

[9] M. D. Hutton, J. S. Rose, and D. G. Corneil, “Generation of
Synthetic Sequential Benchmark Circuits,” in 5th ACM/SIGDA
Int’l Symp. on FPGAs (FPGA’97), Feb., 1998, pp. 149-155.

[10] M. D Hutton and J. S. Rose, “Equivalence Classes of Clone
Circuits for Physical Design Benchmarking,” in 1999 Int. Symp.
on Circuits and Systems (ISCAS), 1999.

[11] M. D Hutton and J. S. Rose, “Applications of Clone Circuits to
Issues in Physical Design,” in 1999 Int. Symp. on Circuits and
Systems (ISCAS), 1999.

[12] M. D. Hutton, Characterization and Generation of Digital
Benchmark Circuits, Ph.D. thesis, University of Toronto, 1997.

[13] N. Kapur, D. Ghosh, and F. Brglez, “Towards a new bench-
marking paradigm in EDA: analysis of equivalence class mutant
circuit distributions,” in ACM Int’l Symp. on Physical Design
(ISPD97), 1997.

[14] D. Ghosh, N. Kapur, J. Harlow, and F. Brglez, “Synthesis of
wiring-signature-invariant equivalence class circuit mutants and
applications to benchmarking,” in Design Automation and Test
in Burope (DATE), Feb, 1998, pp. 656—-663.

[15] J. Harlow and F. Brglez, “Design of experiments for evalua-
tion of BDD packages using controlled circuit mutations.,” in
Proc. IEEE/ACM International Workshop on Logic Synthesis
(IWLS), June, 1998.

[16] F. Brglez and R. Drechsler, “Design of Experiments in CAD:
Context and New Data Sets for ISCAS’99,” in 1999 Int. Symp.
on Circuits and Systems (ISCAS), 1999.

[17] D. Ghosh and F. Brglez, “Equivalence classes of circuit mutants
for Experimental Design,” in 1999 Int. Symp. on Circuits and
Systems (ISCAS), 1999.

[18] D. Stroobandt, P. Verplaetse, and J. Van Campenhout, “Gen-
erating Synthetic Benchmark Circuits for Evaluationg CAD
Tools,” IEEE Trans. CAD., vol. 19, no. 9, pp. 1011-1022, 2000.

[19] J. Pistorius, E. Legai, and M. Minoux, “PartGen: A Gener-
ator of Very Large Circuits to Benchmark the Partitioning of
FPGAs,” IEEE Trans. CAD., vol. 19, no. 11, pp. 1314-1321,
2000.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH 2002 112

[20] S. J. E. Wilton, J. Rose, and Z. G. Vranesic, “Memory-
to-Memory Connection Structures in FPGAs with Embedded
Memory Arrays,” in 5th ACM/SIGDA Int’l Symp. on FPGAs
(FPGA97), 1997, pp. 10-16.

E. R. Gasner, E. Koutsofios, S. C. North, and K-P. Vo, “A
Technique for Drawing Directed Graphs,” IEFEE. Trans. Soft.
Eng., vol. 19, no. 3, pp. 214-230, 1993.

R. E. Tarjan, Data Structures and Network Algorithms, Society
for Industrial and Applied Mathematics, 1983.

Xilinx Inc. San Jose CA 95134, “The Programmable Gate Array
DataBook, 1999,” .

C. M. Fidduccia and R. M. Mattheyses, “A linear time heuristic
for improving network partitions,” in 19th IEEE Design Au-
tomation Conference (DAC), 1982, pp. 175-181.

C. Alpert, “The ISPD Circuit Benchmark Suite,”
Int’l Symp. on Physical Design (ISPD98), 1998,
http://vlsicad.cs.ucla.edu/~cheese/.

G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel
hypergraph partitioning: application in the VLSI domain,” in
34th IEEE Design Automation Conference (DAC), 1997, pp.
526-529, To appear, IEEE Trans. VLSI Systems.

G. Karypis and V. Kumar, “hmetis: a hypergraph partitioning
package, v1.5.3,” Tech. Rep. Nov. 1998, University of Minnesota,
Department of Computer Science and Engineering, Army HPC
Research Center, Minneapolis, MN 55455, 1998.

J. Swartz, V. Betz, and J. S. Rose, “A fast routability-driven
router for FPGAs,” in 6th ACM/IEEE Int’l Symp. FPGAs
(FPGA’98), 1998, pp. 140-149.

Y. Sankar and J. S. Rose, “Trading Quality for Compile-Time:
Ultra-Fast Placement for FPGAs,” in 7th ACM/IEEE Int’l
Symp. FPGAs (FPGA’99), 1999, pp. 157-166.

M. R. Hartoog, “Analysis of Placement Procedures for VLSI
Standard Cell Layout,” in Proc. 28rd Design Automation Con-
ference (DAC), 1986, pp. 314-319.

21]

(22]
(23]
(24]

in ACM
See also

(25]

[26]

(27]

Michael D. Hutton (S’94-M’97) received
his B.Math and M.Math degrees in Computer
Science from Waterloo University, Ontario,
Canada, in 1989 and 1990, respectively, and
his Ph.D. in Computer Science from the Uni-
versity of Toronto in 1997.

He is currently at Altera Corp., San Jose,
CA, as a Senior Member of Technical Staff. His
research interests include programmable logic
device architectures, algorithms for computer-
aided design synthesis, placmement and rout-
ing, and general combinatorics and graph theory.

Jonathan S. Rose (S'79-M’80) is a Professor
of Electrical and Computer Engineering at the
University of Toronto, and a Senior Director of
the Altera Toronto Technology Centre.

He received the Ph.D. degree in Electri-
cal Engineering in 1986 from the University of
Toronto. From 1986 to 1989, he was a Research
Associate in the Computer Systems Labora-
tory at Stanford University. In 1989, he joined
the faculty of the University of Toronto. He
spent the 1995-1996 year as a Senior Research
Scientist at Xilinx, in San Jose, CA, working on the Virtex FPGA
architecture. From 1989 until 1999 he was an NSERC University Re-
search Fellow. He is the co-founder of the ACM FPGA Symposium,
and remains part of that Symposium on its steering committee. In
October 1998, he co-founded Right Track CAD Corp.which delivered
architecture for FPGAs and PLDs as well as Packing, Placement and
Routing software for FPGAs and PLDs to PLD/FPGA and ASIC
vendors. He was President and CEO of Right Track until May 1,
2000. Right Track was purchased by Altera, and became part of the
Altera Toronto Technology Centre, where Rose is currently one of two
directors. He has worked for Bell-Northern Research and a number
of FPGA companies on a consulting basis. A paper co-authored with
Steve Brown won a distinguished paper award at the 1990 ICCAD

Conference.

His research covers all aspects of FPGAs including architecture,
CAD, Field-Programmable Systems, and graphics and vision appli-
cations of rapid prototyping systems.

Derek G. Corneil Derek G. Corneil received
his Ph.D. from the Department of Computer
Science at the University of Toronto in 1968
and returned to the department after a Post
Doctoral Fellowship in Eindhoven, The Nether-
lands. He served as the Chair of the depart-
ment from 1985-90.

His main research interests are the theoreti-
cal and algorithmic aspects of graph theory as
well as computational geometry and other ar-
eas of combinatorics. He serves on the editorial
boards of Discrete Applied Mathematics, ARS Combinatoria and the
SIAM monographs on Combinatorics and Applications.

