Enhancing the Area-Efficiency of FPGAs with Hard
Circuits Using Shadow Clusters

Peter Jamieson, Jonathan Rose

Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto
Toronto, Ontario, Canada M5S 3G4

jamieson@eecg.toronto.edu,

Abstract— There is a dramatic logic density gap between
FPGAs and ASICs, and this gap is the main reason FPGAs are
not cost-effective in high volume applications. Modern FPGAs
narrow this gap by including “hard” circuits such as memories
and multipliers, which are very efficient whern they are used.
However, if these hard circuits are not used, they go wasted (in-
cluding the very expensive programmable routing that surrounds
the logic) and have a negative impact on logic density.

In this paper we propose a new architectural concept, called
shadow clusters, that seeks to mitigate this loss. A shadow cluster
is a standard FPGA logic “cluster” that is placed ‘“behind”
every hard circuit and can programmably, through simple, small
multiplexers, replace the hard circuit in the event it isn’t needed.

We measure the area-efficiency of FPGAs with and without
shadow clusters and show that a modern commercial architecture
(with a fixed ratio of multipliers to soft logic) would gain 4.7%
in area-efficiency by employing shadow clusters. Indeed, every
architecture we studied under ‘“reasonable” conditions never
showed a loss of area-efficiency. Furthermore, we show that
most area-efficient architecture that employs the shadow cluster
concept is 12.5% better than the most area-efficient architecture
without shadow clusters.

I. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) have penetrated
the digital IC market to the point where they are a compelling
choice for low and medium-volume chips. They have failed to
take over the market for large capacity, high-volume chips for
one simple reason: their high cost due to their large silicon
area. Recent research [1] has shown that simple LUT/FF
FPGA and programmable routing fabric requires about 35
times the area of a cell-based ASIC to implement the same
circuit. That same work showed that modern FPGAs [2],
[3] can narrow this gap by employing “hard” circuits such
as memories and multipliers in heterogeneous FPGAs as
illustrated in Fig. 1. The figure shows logic “tiles” that are
either basic soft logic or columns of either multipliers or
memories.

These hard circuits reduce the area gap in a significant
way, when actually used. If the circuit isn’t used, however,
then it is wasted making the area problem worse! Indeed,
the central question of FPGA architecture is when to include
more specific structures on the FPGA and how to make them
as flexible as possible so that most application circuits can
employ them.

In this paper, we propose a new architectural concept, called
shadow clusters, that is a way to create that flexibility, and is

0-7803-9729-0/06/$20.00 © 2006 IEEE

jayar@eecg.toronto.edu

SOFT SOFT
LOGIC LOGIC
SOFT SOFT
LOGIC LOGIC
SOFT SOFT
LOGIC LOGIC
SOFT SOFT
LOGIC LOGIC

Fig. 1. Representation of Modern Heterogeneous FPGA

~

—_
Shared) Shared
Input % Qutput
Routing Routing

Fig. 2. Illustration of Shadow Cluster Concept

illustrated in Fig. 2. A shadow cluster is a standard FPGA
logic “cluster” (typically consisting of a group of LUTs and
flip-flops) that exists within the same logical tile as a hard
circuit such as a multiplier. When the hard circuit cannot be
used by an application circuit, simple fabric-programmable
multiplexers “swap” in the shadow cluster which can be used
just like the regular soft logic fabric. While this may seem
like a terrible waste of area itself (because the shadow cluster
goes unused when the hard circuit is used), the additional area
is very small: well over 70% of the area of the soft logic of
an FPGA is dedicated to the routing that would be shared
between these two structures.

We demonstrate this concept by modeling the area of
FPGAs with and without shadow clusters and implementing
a suite of circuits, represented by their demand for soft
and hard logic. The efficacy of this concept depends on the
correct measurement of FPGA area, so we carefully size the
transistors in the FPGA and the hard circuits.

Two other key concepts are needed to implement the idea
correctly: architecting the logic block with shadow cluster
and hard circuit so that their demand for programmable
routing is about the same, and making the correct choice

FPT 2006

TABLE 1
FPGA ARCHITECTURAL PARAMETERS USED IN PAPER

Parameter | W N K Fein Feour Fs
| 180 10 4 0.18 0.1 3

Mult Size
18x18

Value

of how to map application circuits into hard or soft logic.
To concretize our measurements we focus on multiplier-based
hard circuits, which are now common in modern FPGAs, but
the concepts should apply to many kinds of circuits, including
block memory.

Previous solutions to improve the usage of hard circuits
include adding extra functionality to hard circuits (examples
include Altera’s DSP block and Xilinx’s XtremeDSP [3], [2])
and novel targetting of hard circuits in CAD flow stages [4],
[5], [6]. Another approach is taken in the Virtex-II where
programmable routing bits are shared between hard circuits
to save on programmable routing area [7].

The remainder of this paper is organized as follow: In
Section II, we describe relevant basic terminology of FPGA
architecture and introduce terminology that allows us to speak
about heterogeneous architectures. Section III describes more
detailed architectural issues relating to shadow clusters. In sec-
tion IV, we describe the experimental methodology that is used
to assess the area-efficiency of shadow clusters, and Section V
presents the results of these experiments and analysis.

II. FPGA ARCHITECTURAL BASICS AND TERMS

In this section, we define relevant architectural terminology
for FPGAs, for both classical soft logic and new terms for
describing heterogeneous architectures.

The basic soft logic tile of an FPGA consists of a logic block
surrounded by programmable routing. An array of tiles is
connected together to form the soft fabric of an FPGA (which
is illustrated in portions labeled “soft logic” in Figure 1). The
soft logic alone is capable of implementing all logic functions.
A typical soft logic tile consists of a cluster of several Basic
Logic Elements (BLEs) which in turn are often some form of
Lookup Table (LUT) together with a flip-flop [8].

The architecture of the soft logic fabric has many parame-
ters, including the number of BLEs (N) per soft logic cluster
tile, the input size of the LUT (K), the number of routing tracks
per channel (W), the input connectivity to the soft logic cluster
tile (Fi;n), the output connectivity (Fiout), the switch block
flexibility (F§) [9] among several other parameters.

For the soft logic fabric we use to illustrate the concepts
in this paper, we will select a single set of parameters
chosen to be close to the typical parameters of a modern
FPGA, including the use of direct-drive (also known as uni-
directional) routing [10]. The parameters we use in this paper
are given in Table I.

A. Hard Circuits in FPGAs

While the soft logic fabric described above can implement
any logic function, there are some functions that will be
particularly inefficient. For this reason, FPGA vendors have
added more specific hard circuits to efficiently execute these

TABLE 11
AVG. MULT. SUPPLY RATIOS FOR INDUSTRIAL FPGAS

FPGA Supply Ratio
Stratix I 1:66
Stratix II 1:45
VirtexII 1:23
Virtex4 SX 1:15
Virtex4 FX 1:60
Virtex4 LX 1:104

functions. Smaller specific circuits are added directly into the
soft logic cluster tile (such as carry chains, adders, and mul-
tiplexers [3], [2], [11]). Larger functions (such as memories
and multipliers [3], [2], [11] or even floating point units [12])
are incorporated as a differentiated tile, which separately abuts
the soft logic cluster tiles, as illustrated in Figure 1.

That figure illustrates that differentiated tiles are typically
added to the FPGA as a unique column of tiles. In the Stratix
IT [3] and Virtex4 FPGAs [2] the multipliers tiles are also
somewhat flexible and can implement different sizes of multi-
pliers as well as functionality such as multiply accumulation.
Throughout this paper we will use a radix 4 booth encoded
multiplier architecture [13].

B. Supply and Demand Ratio

A key architectural parameter of a heterogeneous FPGA
is the ratio of the number of hard circuit tiles to soft logic
cluster tiles, which we call the supply ratio, R. For example,
an FPGA architecture with a supply ratio equal to 1:10 will
have one multiplier for every ten soft logic clusters.

Table II gives the supply ratios for several commercial
FPGAs. These ratios are calculated by geometrically averaging
the supply ratios for each FPGA in the family. For all the
FPGA families other than the Virtex4 LX family the supply
ratio remains relatively constant over the family. In each case,
the supply ratio is normalized to a cluster size of N=10 (we
assume StratixII cluster has N=16) and a size 18x18 multiplier.

We observe that the supply ratio is increasing (more multi-
pliers) with each new FPGA generation. Additionally, Virtex4
consists of three families in which the multiplier supply ratio
is different for each family. This diversification is another
approach to the problem of wasted hard circuits and tries to
more closely target a range of applications and their multiplier
demands.

We can also describe a given digital design in terms of its
demand for hard circuits. We define the demand ratio, R4, as
the number of hard tiles to the number of soft logic cluster tiles
that a digital design requires when implemented on an FPGA,
if all circuits capable of being implemented in the hard tile
actually are.

When discussing either ratio (R, or R4) we will say that a
certain architecture or circuit has a greater supply or demand.
This means that there are more multipliers available on an
architecture or desired by a circuit. For example, a supply
ratio of 1:8 is a greater supply of hard circuits compared to a
supply ratio of 1:10.

L
—: BLE —
Ul
Shared | | 1 £)| Shared
Input |4 T 2 H Output
Routing| | H BLE T '52 Routing
e —
5
2
s

Fig. 3. Multiplier tile combined with a shadow cluster.

An FPGA which has a supply of hard circuits greater than
the demand of an application circuit will waste the hard circuit
and its surrounding programmable routing, while one with
fewer than needed will require the design’s hard circuit to
be built inefficiently in the soft fabric. A given FPGA will
be required to serve applications drawn from a distribution
of demand ratios, and so a single value for supply ratio will
never be perfect. Our new notion of shadow clusters seeks to
mitigate the negative affect of this variation in demand.

III. SHADOW CLUSTER ARCHITECTURE

Our goal is to improve the area-efficiency of a heteroge-
neous FPGA with hard circuits by reducing the penalty in area
of unused hard circuits. The proposed technique leverages the
fact that the largest area cost in FPGAs is in the programmable
routing. The idea is to add soft logic, which we call a shadow
cluster, in combination with the hard circuit, so that either the
hard circuit or the soft logic will be used and ensuring that the
expensive programmable routing is used. In this section, we
discuss the architectural design of both the hard circuit and
the shadow cluster.

Fig. 3 illustrates the shadow cluster concept with a tile
containing a shadow cluster and a multiplier. In this Figure,
the programmable input routing drives both the BLEs of the
shadow cluster and the multiplier, and a multiplexer selects
which output to employ, under the usual programmable control
(Clearly only one will be active at a time). We believe that
the input and output routing for both hard circuits and soft
logic cluster tiles are almost identical since both are designed
to flexibly route global routing to specific pins.

There are two architectural issues to deal with here: first,
the size of the multiplier tile compared to the regular soft
logic cluster tile, and the size of the shadow cluster to place
within the multiplier tile. For the remainder of this paper we
will focus specifically on multiplier hard circuits, and select
a specific size of multiplier to work with to illustrate our
concept.

To address the issue of size of the multiplier and soft logic,
consider that a key aspect of an FPGA’s architecture is the
number of routing tracks per channel — set as 180 in Table I.

The number of tracks must be sufficient to supply the routing
needs of circuits mapped to this FPGA.

A homogeneous soft logic fabric FPGA with a given soft
logic cluster tile size (N) and LUT size (K) in each tile will
require a specific number of tracks per channel to route most
benchmark circuits. The parameters N and K, in conjunction
with some of the routing architecture parameters, present a
certain number of pins to be routed to the programmable
routing, which we call the pin demand. This pin demand
includes the input pins entering the tile and output pins
emanating from the tile. The number of tracks needed in
an architecture is a function of pin demand and the other
routing architecture parameters given in Table I. This number
is usually determined experimentally by the FPGA architect.

To accommodate a hard multiplier tile with higher pin
demand than the soft logic cluster tile an architecture needs
more tracks per channel, or the FPGA will be difficult to
route for circuits that employ all those pins. Similarly, if the
multiplier pin demand is less than that of the soft logic cluster
tile, then the routing channel will be underutilized. Thus it
is important to choose the multiplier tile so that it presents
roughly the same pin demand per tile as the soft logic fabric.

For example, an FPGA architecture with ten 4-input LUTs
(like that in Table I) typically has an input pin demand of
22 [9]. To match this soft logic cluster tile’s input pin demand
to that of an n by n multiplier suggests setting n to 11, since
the multiplier has 2n inputs. However, since the number of
outputs for the soft logic cluster tile is 10 (usually the same
as N) and the multiplier would have 22 outputs, this would
result in a serious mismatch. It would be more appropriate to
make choices that more closely match the input and output
pin demands of the multiplier and the soft logic cluster tile.
A 9 by 9 multiplier (which has 18 inputs and 18 outputs for
a total of 36 pins) more closely matches to the 22 input, 10
output soft logic cluster tile (which has a total of 32 pins).

In this paper, we use an 18x18 multiplier. Since this has
36 input pins and 36 output pins, and our soft logic cluster
tile has 22 inputs pins and 10 output pins, the multiplier is
“stretched” over two tiles to better match the pin demand.

This same argument, in reverse form, tells us that the
shadow cluster should be the same size (number of BLEs) as
the soft logic cluster tile. So, each of the two tiles that together
contain the 18x18 multiplier will each have a 10 BLE shadow
cluster.

As an aside, we believe that the extra multiplexing and
area required to implement a shadow cluster will incur a
minor speed penalty. As can be seen in Figure 3, there is
no extra active path on the input side (and so only a minor
capacitive load increase may occur), and only a 2:1 multiplexer
is added on the output side, which is just one of many such
multiplexers. Any power concerns for shared inputs could be
dealt with simple power saving techniques like gating [14].

IV. MEASUREMENT METHODOLOGY

To determine the effectiveness of the shadow cluster concept
we employ an empirical approach: we measure the area

EPGA Architecture
-N, W, |, Fcout, Fcin

- Multiplier size

- Shadow ClustersH Resource

presence Mapper

- Supply Ratio v
Library of areas Area
- Routing :
_BLEs Calculation
- Multiplier

Implementation
Area of FPGA

Fig. 4. Experimental measurement flow

consumed by a set of benchmarks after mapping into a
heterogeneous FPGA with hard multipliers, with and without
shadow clusters. The following sections describe the mapping
of benchmarks into the heterogeneous FPGA and then the
determination of the FPGA’s area. The subsequent section
describes the set of benchmarks we employ. The benchmarks
are modeled as the number of soft logic clusters and hard
multipliers required.

A. Circuit Mapping Flow

Figure 4 gives the experimental flow we use to measure the
area for implementing benchmarks on an FPGA architecture.
The first step is to map a benchmark design to the different
FPGA tiles available on the FPGA, and then, calculate the
area of the FPGA based on the tiles used. We discuss the
calculation of the area in the next section.

A benchmark is modeled as requiring a number of soft
logic cluster tiles and multiplier tiles. A mapping step is
required because the FPGA’s multiplier supply ratio (defined
in Section II) will rarely be the same as the benchmark’s
multiplier demand ratio. Depending on the supply ratio, the
appropriate size of FPGA is determined.

Here it is important to note that we will follow the usual
practice in FPGA architecture research [15], and allow the size
of the FPGA to be matched to the size of each benchmark,
while enforcing the key FPGA architectural parameters to
be maintained. This is common practice because fixed-size
FPGAs otherwise create a result-obscuring quantization effect.
The key parameter to maintain in a heterogeneous FPGA
architecture when the device size is changing is the supply
ratio of hard circuits to the soft logic. Whenever the FPGA
size must be increased it is done by adding hard blocks and
soft logic clusters in this ratio.

Note that the multiplier hard circuit we employ in this
work is a simple 18x18 multiplier. It is not decomposable
into smaller multipliers such as the DSP block in Stratix I and
II [3], and so no special mapping is needed.

The mapping of the benchmark to the FPGA is determined
by setting the number of multipliers equal to the number
present in the benchmark, and then determining the number
of soft logic clusters based on the supply ratio. An alternative
is to fix the number of soft logic clusters to fit the benchmark
and use that to determine the number of multipliers, but that

TABLE III
PERCENTAGE AREA WITHIN A TILE AND RELATIVE AREA

Tile Type BLEs Mult. Routing Relative Size
per Tile

Cluster (N=10) 13% - 87% 1.0

Multiplier - 55% 45% 1.9

18x18 (1 of 2 tiles)

Multiplier + Shadow 6% 52% 42% 2.0

18x18 (1 of 2 tiles)

may result in a slower circuit because there are insufficient
hard multipliers for those in the benchmark.

In the case where the architecture has shadow clusters,
our mapping algorithm takes this into account where each
multiplier can be converted to use as a cluster if that benefits
the final area.

Once the number of tiles of each type is known, and the
area of each tile is known the total area for each benchmark
can be calculated. The next section describes how the area of
each tile type is determined.

B. Transistor and Cell Area Estimation of Tiles

We need to determine the relative area between regular
multiplier tiles, multiplier tiles with shadow clusters, and
regular soft logic cluster tiles. The sizes were determined in
a 90nm CMOS process that was available to us [16]. Two
methods of size determination are used: for all the FPGA-
specific components (programmable routing in the multiplier
tile and soft logic cluster tiles as well as the LUT-based
logic) we carefully sized a transistor-level circuit using an
automated transistor sizing approach. Space limitations prevent
the detailed description of this automation.

The area of the multiplier portion of the multiplier tile is
determined by using a cell-based approach with commercial
standard cells in the 90nm process [16]. The multiplier was
described in Verilog and synthesized using Synopsys Design
Compiler V-2004.06-SP1.

The area of the multiplier tile includes the cell-based mul-
tiplier and the programmable routing area. The programmable
routing is built to match the input and output pin demand of
the multiplier. For example, a 9x9 multiplier has 18 input pins,
so the input programmable routing area is determined for 18
inputs. The area of a multiplier tile that contains a shadow
cluster will contain, in addition, the area for the logic and
extra multiplexers needed for the shadowing.

Table III shows the make-up of different tiles (the soft logic
tile, the pure hard multiplier tile, and the shadowed multiplier
tile) on a percentage basis. The final column shows the size
of each tile relative to the soft logic cluster size N=10. Note
that the 18x18 multiplier is stretched over two tiles, and 1.9x
represents how much one half of the multiplier is compared
to the soft logic cluster tile.

Notice that, for the soft logic tile, the programmable routing
takes over 80% of the area, as we discussed in the introduction!
More importantly, it is important to note that the shadow

TABLE IV
BENCHMARKS DETAILS

Benchmark BLEs Mults Size Range Mults
fft 2374 32 8x8

iirA 289 5 8x8 to 10x10
iirB 297 5 8x16 to 16x16
firA 84 4 8x8

firB 1598 25 16x16

firC 998 17 8x8
diffeqA 221 5 32x32
diffeqB 512 5 32x32
stereoVisionA 17765 152 8x8
stereoVisionB 34379 528 4x7 to 16x9
rayTraceA 2118 18 7x8 to 16x16
rayTraceB 21557 31 16x16 to 29x33
oc45_cpu 2191 1 16x16
reedsolDecoderA 1151 13 4x4
reedsolDecoderB 1799 9 8x8
moleculeDynamics 10542 19 38x38 to 43x50
cordicA 591 0 -
cordicB 2830 0 -
multAccumulate A 2864 0 -
multAccumulateB 9828 0 -
crc33.d264 102 0 -
desArea 1481 0 -
desPerf 4592 0 -
stereoVisionC 7281 0 -
stereoVisionD 170 0 -
rayTraceC 766 0 -
rayTraceD 1807 0 -

cluster increases the area of the hard multiplier tile by only
1.1% (2.0/1.9) relative to the soft logic cluster tile.

C. Benchmarks

We have a set of real benchmarks applications written in
Verilog gathered from various sources including: The Open-
cores organization [17], SCU-RTL [18], Texas-97 [19], and
the Benchmarks for Placement 2001 [20]. We have also con-
verted applications developed locally from VHDL to Verilog.
These designs include Raytrace [21], Stereo Vision [22], and
Molecular Dynamic system [23]. Table IV shows the number
of BLEs, and the number and size range of multipliers in each
benchmark.

As discussed above, the benchmarks after logic synthesis
need only be represented as the number and size of multipliers
and the number of BLEs (which can be used to calculate the
number of soft logic cluster tiles) in each design. To obtain
the number of BLEs, we pass our real benchmarks through
Altera’s Quartus tool [24]. We determine the number of mul-
tipliers in each circuit by manually counting and identifying
multipliers.

Figure 5 show the demand ratios of the real benchmarks
ordered from least to greatest. The demand is calculated based
on a soft logic cluster size of N=10 and multiplier size of 18
by 18.

This data shows that 12 of 27 of the real benchmarks
have no multipliers (R4 = 0), which we believe is realistic
because only a subset of applications require multiplication.
The remainder of the benchmarks have demand ratios between
roughly 1:20 to 1:1 The arithmetic average of demand ratio

IS
o
T

@
T

3
T

o
i
T

%
|
T

o
[
T

Demand Ratio (#Mults:#Clusters)
9

=)

n 11 L

123 456 7 8 910111213 141516 17 18 19 20 21 22 23 24 25 26 27

2

Benchmarks Numbers

Fig. 5. Demand Ratios From Our Benchmarks.

TABLE V
DETAILS OF BENCHMARK SUITES

Name Num. Avg. Variance BLE Mult.
Bmarks Demand Range Range
B8 27 1:8 0.069 10542 t0 34379 0 to 528
SB45 250 1:45 0.012 10000 to 25000 O to 145
SBI5S.VO 250 1:15 0 10000 to 25000 0 to 350
SBI5.V1 250 115 0.0009 10000 to 25000 0 to 350
SBI5.V2 250 115 0.0030 10000 to 25000 0 to 350
SBI5.V3 250 115 0.0078 10000 to 25000 0 to 350
SB15_V4 10 1:15 0.0076 10000 to 25000 O to 350
for all the circuits is approximately Ry = 1:8, which is

significantly larger than any of the supply ratios for existing
industrial FPGAs as shown in Table II.

We also synthetically generate benchmark suites with dif-
ferent demand ratios than the original benchmarks for some
of our experimental results. These benchmark suites are drawn
from a distribution either based on the demand ratios shown in
Figure 5, which is our most realistic model to draw from, or a
distribution that we have created (to experiment with demand
ratio variance). We do this to achieve better statistical results,
and it also allows us to experiment with the effect of different
distributions in demand ratio, to postulate the effect of different
application domains.

Table V shows all the benchmark suites we will use in
our experiments. Within the table we report the average
demand ratio of the benchmark suite, the variance among the
benchmark’s demand ratios, the range of BLEs, and the range
of multipliers.

The benchmark suite, B8, consists of our original bench-
marks with the small benchmarks artificially inflated in size
(by multiplying the number of multipliers and BLEs by a
constant) to eliminate quantization noise in the experiments.
The benchmark suites SB45 and SB15_V2 are synthetically
created using a distribution based on our original benchmarks.
The remaining benchmark suites all have an average demand
ratio of 1:15 (the largest supply ratio present in the industrial
FPGAs), but these benchmarks were drawn from different
distribution curves to change the variance, where greater
variance (a larger decimal value for variance) means that
the benchmark’s demand ratios are more widely distributed

from the average. SB15_VO0 has no variance while SB15_V1,
SB15_V3, and SB15_V4 were drawn from inverse distribution
functions that include benchmarks with zero demand for
multipliers.

V. RESULTS

In this section, we measure the effectiveness of adding
shadow clusters to heterogeneous FPGAs with multiplier tiles,
under various scenarios of FPGA architecture (as expressed by
the supply ratio) and demand for multipliers (as expressed by
the demand ratio statistics of a particular benchmark suite).

We begin with modern FPGAs which have supply ratios
ranging from 1:15 at the high end and 1:104 at the low end as
shown in Table I. We will measure the effectiveness of adding
shadow clusters to these FPGAs under two demand scenarios:
the first assumes that the average demand ratio is exactly the
same as the supply ratio, assuming this is how industrial FPGA
architects target their applications.

A. Avg. Demand Ratio Equal to Commercial Supply Ratio

In the first scenario, the average demand ratio of the
benchmarks is set to be the same as the supply ratio of the
FPGA. Consider the supply ratio of the Virtex 4 SX, which is
1:15. Table VI shows the results for a suite of 10 benchmarks
(suite SB15_V4 from Table V) that have an average demand
ratio of 1:15.

The table first gives the benchmark name, its number of
soft logic cluster tiles in the benchmark, the number of 18x18
multipliers it requires, and the calculated demand ratio. The
next column gives the area of the FPGA without shadow
clusters required to implement the benchmark, assuming, as
discussed above, that the FPGA can grow to accommodate the
size of the benchmark. The next column gives the area required
for an FPGA with shadow clusters and the final column gives
the ratio between the “with” and “without” shadow clusters
area.

Table VI illustrates when shadow clusters give a benefit
- if the demand ratio is less than the supply ratio of the
architecture, they allow the multiplier tiles’ routing to be used
and result in an area-efficiency gain: the first 6 circuits in
Table VI gain 2% to 12% area-efficiency.

When the supply and demand ratios are equal or when
the demand ratio is greater than the supply then the shadow
clusters cause a loss of efficiency because the shadow logic
goes wasted. In each case where we lose area-efficiency,
the ratio is the same (0.986). The reason the ratio is the
same is that each benchmark is mapped to shadow and non-
shadow clustered FPGAs with enough hard multipliers for
each multiplier in the benchmark. This means that both the
shadow and non-shadow cluster architectures will have the
same number of multipliers and soft logic clusters due to the
supply ratio. In the shadow cluster architecture, each multiplier
wastes space for each shadow cluster in a multiplier, and this
waste is proportional to the supply ratio.

Overall, for benchmark suite (SB15_V4), the shadow cluster
FPGA is 5.4% more area-efficient than the non-shadow clus-
tered FPGA. It is worthwhile to note that the shadow cluster

TABLE VII
AREA-EFFICIENCY OF DIFFERENT BENCHMARKS ON ARCHITECTURES
WITH DIFFERENT SUPPLY RATIOS

| Area-efficiency Ratio

R, Ra=1:8 Ry=1:15 R4=1:45
(B8) (SBI5.V2) (SB45)
1:15 1.043 1.047 1.083
1:23 1.027 1.025 1.046
1:45 1.013 1.012 1.017
1:60 1.011 1.009 1.011
1:66 1.007 1.007 1.010
1:104 | 1.004 1.004 1.006

concepts wins, if slightly, under the scenario in which the
average demand ratio matches the supply ratio, and therefore
shows promise. The win arises because there is variance
about the demand, which is unarguably true for the various
designs targeting FPGAs. The amount of win is a function
of the supply ratio (which determines the amount of potential
waste with unused multipliers), the average demand ratio (as
discussed above) and the variance of the demand. In the next
section, we explore the effect of varying supply ratio and
demand ratio, keeping the variance constant.

B. Effect of Several Average Demand Ratios

Table VII illustrates the results of a series of experiments,
each one like that given in Table VI, but with different supply
ratio architectures and average demand ratios. Each number in
the table is the geometric average of the area ratios (without
shadow clusters/with shadow clusters) across all of the circuits
in a given benchmark suite. Table V shows the characteristics
of different suites, with different demand ratios. For example,
Table VII entry with Rs = 1:15 tested under a average demand
ratio of 1:45 has an area-efficiency ratio of 1.083, indicating
that a shadow cluster architecture is about 8.3% more area-
efficient than a non-shadowed architecture.

It is remarkable to note that every ratio in Table VII is
greater than one, indicating that shadow clusters never reduce
area-efficiency under all these scenarios! This suggests that
industrial architects should seriously consider employing this
notion.

These experiments compare FPGAs with fixed supply ratios
with and without shadow clusters. Of more interest is to
determine the best shadow clustered architecture (across all
supply ratios) against the best non-shadowed cluster architec-
ture (across all supply ratios), which follows below.

C. Best Shadowed and Non-Shadowed Architectures

In this section, we measure the area-efficiency of FPGAs
with supply ratios that vary for both shadowed and non-
shadowed architectures. We will compare a suite of archi-
tectures with different supply ratios against a non-shadowed
architecture with a fixed supply ratio of 1:15. We will refer to
this 1:15 non-shadowed architecture as the base_non_15 archi-
tecture. We chose this architecture as the basis for comparison

TABLE VI
RESULTS FOR INDIVIDUAL BENCHMARKS ON SHADOWED AND NON-SHADOWED FPGAS WITH SUPPLY RATIO EQUAL TO 1:15

Benchmark # Soft Logic # Multipliers Demand Area no Area with Area-Efficiency
Name Clusters (18x18) Ratio Shadow Clusters Shadow Clusters Ratio
(10e5 u?) (10e5 u?)
SB15_V4._1 1849 0 0 170 152 1.118
SB15.V4.2 1420 0 0 131 117 1.119
SB15.V4.3 1638 0 0 151 135 1.086
SB15.V4_4 1042 0 0 96 87 1.110
SB15.V4.5 1904 0 0 174 156 1.115
SB15.V4.6 1925 89 1:21.6 175 171 1.023
SB15.v4.7 1523 141 1:10.8 204 207 0.986
SB15.V4.8 1304 121 1:10.8 175 177 0.986
SB15.V4.9 1528 284 1:54 411 417 0.986
SB15.V4.10 1502 349 1:4.3 506 513 0.986
Average 1:15 1.054
TABLE VIII
1.2 4
z SMALLEST IMPLEMENTATION ARCHITECTURE FOR BENCHMARK SUITES
g 1 77%& -
w * £ 4 Q“‘ ~
g ot 0..“‘ Non-shadow Shadow Cluster
< os - $44, Cluster Supply Supply Base vs
3 N Ratio Ratio Shadow
TR B8 1:11 1:9 12.5%
Z s SB15_V2 1:13 1:11 7.2%
g | SB45 1:28 1:19 4.6%
§ 0.2
< . clustered architectures with varying supply ratios smallest
0 1 10 15 120 125 130 135 implementing architecture has a supply ratio equal to 1:11.
fe It is interesting to note how the shadowing concept signifi-
Shadow Clusters, SB15_V2 e Non-shadow Clusters, SB15_V2 .. .
cantly changes the best supply ratio, in shadowed architectures

Fig. 6. Area-efficiency For Varying Supply Ratios

to illustrate the concept of best architecture, and in the next
section we will look at a range of benchmark suites using this
measurement methodology.

Figure 6 shows data points in two curves; the data points
marked by triangles compares shadowed architectures against
base_non_15. Each triangle point represents an experiment, and
shows the average area required to implement the benchmark
suite, SB15_V2, on the base_non_15 architecture divided by the
average implementation area on a shadow architecture with a
specific supply ratio (x-axis). A value greater than 1 means
that the architecture specified by the x-axis has better area-
efficiency than base_non_15.

Similarly, the data points marked by diamonds compares
non-shadowed architectures against base_non_15. Each dia-
mond point represents an experiment comparing the average
area required to implement the same benchmark suite on
base_non_15 divided by a non-shadowed architecture with a
specific supply ratio.

The triangle data of Figure 6 shows that the shadow cluster
architectures with supply ratios ranging from 1:4 through 1:16
are have better area-efficiency than base_non_15.

Of these architectures, the one with a supply ratio equal to
1:9 is, on average, the most area-efficient shadow cluster ar-
chitecture. The diamond data points, representing non-shadow

vs. non-shadowed, and how shadowing appears to support
lower ratios.

D. Effect of Demand Ratios

In this section, we study how the distribution of demand
ratios in our benchmark suites affects the area-efficiency of
FPGAs with shadow clusters. We measure the area-efficiency
of benchmark suites with different average demand ratios
mapped to shadow and non-shadow FPGAs with varying
supply ratios.

Table VIII shows a summary of our results in which
we record the supply ratio of shadow and non-shadow ar-
chitectures which result in, on average, the smallest area
implementation for each benchmark suite. Column 1 shows
the benchmark suites; Column 2 and 3 show the supply ratio
at which the non-shadow cluster architecture and shadow
architecture achieve the smallest implementation area, and
Column 4 shows what percentage smaller the smallest shadow
cluster architecture is compared to the smallest non-shadow
cluster architecture.

For our original benchmarks (B8), the smallest shadow
cluster architecture is 12.5% smaller than the smallest non-
shadow architecture. The benchmark suite SB45 implemented
on the smallest shadow cluster architecture is 4.6% smaller
than the smallest non-shadow cluster architecture. For each
benchmark suite, the smallest shadow cluster architecture is
more area-efficient than the smallest non-shadow cluster archi-

TABLE IX
SMALLEST IMPLEMENTATION ARCHITECTURE FOR DIFFERENT DEMAND

VARIANCES
Non-shadow Shadow Cluster

Variance Cluster Supply Supply Base vs

Ratio Ratio Shadow
SB15_V0 1:15 1:15 -1.4%
SB15_V1 1:10 1:10 4.5%
SB15_V2 1:13 1:11 7.2%
SB15_V3 1:11 1:9 11.4%

tecture, and in general, shadow cluster architectures improve
implementation area for each benchmark suite.

E. Demand Ratio Variance within Benchmark Suites

Next, we continue our study of the effects of demand ratio
distribution within our benchmark suites. Here, we measure
the effectiveness of shadow clusters for benchmark suites with
the same average demand ratio but different variances.

Table IX shows a summary of our results, similar to the
previous table, in which we report supply ratios of the architec-
tures that on average result in the smallest implementation of
benchmark suites with average demand ratio equal to 1:15 and
different variances. In the second row of the table, benchmark
suite SB15_V0 has no variance, and as we continue down
the rows in the table, variance increases, meaning the demand
ratios of each benchmark within the benchmark suite are more
widely distributed from the average. In general, as variance
within the benchmark suite increases (as we go down the
table) the area improvement for shadow cluster architectures
compared to non-shadow cluster architecture increases.

Greater variance means there are more circuits with demand
ratios farther from the mean. Therefore, there are more circuits
with demand ratios lower than supply ratio, including bench-
marks with zero demand for multipliers that will benefit from
the presence of shadow clusters and outweigh the losses for
high demand benchmarks that waste shadow clusters.

For SB15_V0 with a variance of 0 (meaning that all bench-
marks have a demand ratio equal to 1:15) we can see that the
shadow cluster architecture results in a larger implementation
area. This 1.4% increase in area represents the area cost for
adding shadow clusters to an architecture with a 1:15 supply
ratio.

VI. CONCLUSIONS

In this paper, we have presented an architectural concept,
called shadow clusters, that improves the area-efficiency of
FPGAs by mitigating the area loss due to unused pro-
grammable routing surrounding hard circuit tiles. The key
reason this concept benefits architectures is that the area cost
for programmable routing is not wasted for unused hard circuit
tiles when shadow clusters are present, and the range of

designs targeting FPGAs include many that do not use all the
available hard circuits.

We measured the effectiveness of shadow clusters showing
that, under realistic scenarios, they always improve area-
efficiency of existing industrial FPGAs. Additionally, our
results show that shadow clusters improve area-efficiency to
various degrees as a function of the supply ratio and its relation
to the average demand ratio and variance of demand ratios
within a benchmark suite.

REFERENCES

[1] 1. Kuon and J. Rose, “Measuring the gap between fpgas and asics,” in
FPGA’06, Feb 2006, pp. 21-30.

[2] Virtex-4 Family Overview, Xilinx, March 2005.

[3] Stratix Il Device Handbook, Altera, 2004.

[4] G. Morris, G. Constantinides, and P. Cheung, “Using dsp blocks for rom
replacement: A novel synthesis flow,” in FLP’05, Aug 2005, pp. 77-82.

[5] J. Cong and S. Xu, “Performance-driven technology mapping for het-
erogeneous fpgas,” IEEE Transaction on Computer Aided Design of
Integrated Circuits and Systems, vol. 19, no. 11, pp. 1268-1280, Nov.
2000.

[6] S.J. Wilton, “Implementing logic in fpga memory arrays: Heterogeneous
memory architectures,” in IEEE Custom Integrated Circuits Conference,
May 2002, pp. 142-149.

[71 Virtex-II Pro Platform FPGAs: Functional Description, Xilinx, Oct
2003.

[8] A. Singh and M. Marek-Sadowska, “Efficient circuit clustering for area
and power reduction in fpgas,” in Proceedings of FPGA’02, 2002, pp.
59-66.

[9] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-

Submicron FPGAs. Kluwer Academic Publishers, 1999.

G. Lemieux and D. Lewis, “Directional and single-driver wires in fpga

interconnect,” in /EEE International Conference on Field-Programmable

Technology, Dec 2004, pp. 41-48.

Eclipse Family Data Sheet, QuickLogic, 2003.

M. J. Beauchamp, S. Hauck, K. Underwood, and K. Hemmert, “Embed-

ded floating point units in fpgas,” in FPGA’06, Feb 2006, pp. 12-20.

A. D. Booth, “A signed binary multiplication technique,” Quarterly

Journal of Mechanics and Applied Mathematics, pp. 236-240.

S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, and

J. Yamada, “1-V power supply high-speed digital circuit technology with

multithreshold-voltage CMOS,” IEEE Journal of Solid-State Circuits,

vol. 30, no. 8, pp. 847-854, 1995.

J. S. Rose, R. J. Francis, P. Chow, and D. Lewis, “The Effect of Logic

Block Complexity on Area of Programmable Gate Arrays,” in [EEE

Custom Integrated Conference, May. 1989, pp. 5.3.1 — 5.3.5.

STMicroelectronics, “90nm CMOS090 Design Platform,”

http://www.st.com/stonline/prodpres/dedicate/soc/asic/90plat.htm.

“www.opencores.org.”

“www.engr.scu.edu/mourad/benchmark/RTL-Bench.html.”

“www-cad.eecs.berkeley.edu/Respep/Research/vis/texas-97/.”

“www.cs.nthu.edu.tw/~ylin/.”

J. Fender and J. Rose, “A high-speed ray tracing engine built on a

field-programmable system,” in IEEE International Conf. On Field-

Programmable Technology, 2003, pp. 188-195.

A. Dharabiha, J. Rose, and W. MacLean, “Video-rate stereo depth

measurement on programmable hardware,” in IEEE Computer Society

Conference on Computer Vision & Pattern Recognition, 2003, pp. 203—

210.

N. Azizi, I. Kuon, A. Egier, A. Darabiha, and P. Chow, “Reconfigurable

molecular dynamics simulator,” in Proceedings of the IEEE Symposium

on Field-Programmable Custom Computing Machines, April 2004, pp.

197-206.

Altera, Quartus II Handbook, Volumes 1, 2, and 3, 2004.

[10]
[11]
[12]
[13]

[14]

[15]

[16] 2005,

[17]
[18]
[19]
[20]
[21]

[22]

(23]

[24]

