
FPGA-based Monte Carlo Computation of Light
Absorption for Photodynamic Cancer Therapy
Jason Luu1, Keith Redmond1, William Chun Yip Lo2, Paul Chow1, Lothar Lilge2, Jonathan Rose1

1The Edward S. Rogers Sr. Department of Electrical and Computer Engineering
2Department of Medical Biophysics, Ontario Cancer Institute

University of Toronto, Toronto, Ontario, Canada

Abstract—Photodynamic therapy (PDT) is a method of
treating cancer that combines light and light-sensitive drugs
to selectively destroy cancerous tumours without harming the
healthy tissue. The success of PDT depends on the accurate
computation of light dose distribution. Monte Carlo (MC)
simulations can provide an accurate solution for light dose
distribution, but have high computation time that prevents
them from being used in treatment planning. To alleviate this
problem, a hardware design of an MC simulation based on
the gold standard software in biophotonics was implemented
on a large modern FPGA [1]. This implementation achieved
a 28-fold speedup and 716-fold lower power-delay product
compared to the gold standard software executed on a 3 GHz
Intel Xeon 5160 processor. The accuracy of the hardware was
compared to the gold standard using a realistic skin model.
An experiment using 100 million photon packets yielded a
light dose distribution that diverged by less than 0.1 mm. We
also describe our development methodology, which employs
an intermediate hardware description in SystemC [2] prior
to Verilog coding that led to significant design effort efficiency.

I. INTRODUCTION

Photodynamic therapy (PDT) is an emerging cancer treat-
ment that uses light-sensitive drugs, called photosensitizers,
to selectively remove cancerous tumours [3]. Treatment
efficacy can be increased by conforming the light dose
(photon fluence) contour lines to the shape of the clinical
target volume.

One of the most flexible, assumption-free, and accurate
methods to compute the fluence distribution is the Monte
Carlo (MC) method which calculates the fluence based on
the simulations of millions of photons. Unfortunately, this
method is time-consuming and this problem is compounded
because treatment planning for PDT is an iterative process
involving multiple parameters. This highlights the need for
accelerating the light dose computation to enable the use
of MC-based models for clinically robust PDT treatment
planning.

To explore this possibility, the first goal of this work is to
accelerate an MC simulation for PDT based on the widely
accepted gold standard software, called Monte Carlo for
Multi-Layered media (MCML) [4], on an FPGA. MCML can
simulate the propagation of photons through different tissue
layers to determine the light dose distribution in the tissue.
Fig. 1 depicts an example of a photon simulation using a
realistic, five-layer skin model [5]. It shows the paths of

Fig. 1. Photon propagation in a realistic, five-layer skin model using an
infinitely narrow beam at 633nm

photon packets within the tissue layers from an infinitely
narrow beam irradiating the tissue volume at the skin surface.

The second goal of this work is to assist other FPGA
developers in accelerating similar computationally intensive
applications. Therefore, the development methodology, time
required for each stage, techniques to leverage the features
of FPGAs, and pitfalls encountered will be presented.

The remainder of this paper discusses the FPGA-based
hardware design, named here FPGA-based MCML (FBM).
This paper first describes MCML and the main computations
to be accelerated. Next, the development process for FBM
is discussed. The hardware design of FBM and a number of
key design decisions are presented in detail. Finally, the val-
idation results and performance of FBM are analyzed based
on the five-layer skin model, followed by its implications.

II. BACKGROUND

A. Related Work

Attempts to accelerate MC simulations for modeling light
propagation in tissues have been mostly limited to software
parallelization schemes. For example, one such scheme
involved dividing the simulation into many independent
groups, each of which was executed on a different computer
or processor in parallel [6], [7]. A problem with this scheme
is the need for a large, dedicated network cluster for treat-
ment planning, which tends to consume more power, cost
more, and use more space compared to an FPGA board.

There has been some prior work on FPGA-based accel-
eration for related simulations. An MC-based simulation of
radiative heat transfer on a Virtex II Pro FPGA achieved
a 10.4-fold speedup compared to a 3 GHz workstation

[8]. A convolution-based algorithm used in radiation dose
calculations on an FPGA achieved a 20.7-fold speedup [9].
However, they adopted a very different design flow with
the use of Handel-C [10]. Also, their speedup values were
projected using results from ModelSim because their design
was too large to fit on their FPGA. Similarly, [11] presented
only a partial implementation of an MC-based computation
for radiotherapy without any speedup figures. A working
FPGA implementation of MC-based electron transport was
shown in [12], reporting speedup between 300 and 500-fold
compared to their custom software running on a 64-bit AMD
Opteron 2.4 GHz machine. Their work focused on radiation
transport computations, which have some similarities to our
work, but involve fundamentally different physical interac-
tions, such as electron impact ionization events due to high-
energy beams.

This work presents a working implementation of the gold
standard MC photon migration simulation called MCML
(described in the next section) on FPGA hardware. Our
work focuses on photon transport for PDT. An earlier paper
describing part of this work was published in a biomedical
journal, which focuses more on the biomedical aspects of
the project and also reports results based on older FPGAs
and processors for performance comparison [13].

B. MCML

1) Overview: The MCML code [4] provides an MC
model of steady-state light transport in multi-layered turbid
media. It assumes infinitely wide, planar layers and models
an incident pencil beam perpendicular to the surface of the
media. The program takes the media properties as inputs
and generates a photon distribution in the media as output.
Three physical quantities are scored spatially in MCML –
absorption, reflectance, and transmittance. For the purposes
of PDT treatment planning, only absorption is considered.

MCML exploits symmetry of the light source and homo-
geneity of the individual layers to reduce computation time.
In MCML, this means scoring the absorption in 2D (r,z)
instead of 3D (x, y, z). Absorption in the tissue is stored
in the A[r][z] array, which represents the photon absorption
probability density [cm−3] normalized to the total number
of photon packets launched. If the absorption probability
density is divided by the local absorption coefficient, photon
fluence [cm−2] can be calculated to generate the isofluence
lines, which represent regions with equal light dose. These
contour lines can be superimposed on top of the correspond-
ing tissue structures to show how close the simulated light
dose is to the desired dose in treatment planning.

Despite the use of photon packets in MCML, millions of
photon packets are required to generate low-noise isofluence
maps. Each photon packet undergoes three key steps that
are repeated continuously until it is terminated by a survival
roulette or by exiting the tissue: position update, direction
update, and fluence update.

2) Position Update: The position update step moves the
photon packet to its next interaction site by a step size
obtained from sampling a probability distribution based on

the photon packet’s mean free path between interaction
events. The step size s is calculated using Eq. (1)

s =
−ln(ξ)
μs + μa

(1)

where ξ is a uniform random variable, μs and μa are
scattering and absorption coefficients.

This step size may result in the photon packet traversing
a boundary. This condition is called a hit and is determined
by:

hit =

{
1 if s - (dl b/μz) <= 0

0 if s - (dl b/μz) > 0 (2)

where dl b is the distance to the closest boundary in the
direction of photon propagation and μz is the direction
cosine (z direction).

If the photon packet crosses a boundary, the step size is
reduced so that the photon packet arrives at the boundary.
The difference between the original step size and the reduced
step size is called sleft and is calculated using Eq. (3). sleft
is used as the step size for the photon packet’s next iteration.

sleft =

{
0 if hit = 0

s− (dl b/μz) if hit = 1 (3)

The new position for the photon is determined by first
multiplying the step size by the direction cosines in the x, y,
and z directions (μx, μy , μz respectively) then adding these
values to the old position.

3) Direction Update: The direction update step performs
two mutually exclusive operations depending on whether or
not the photon encounters a boundary during the position
update step. If the photon does not encounter a boundary,
the scattering angle is computed as follows:

μ′
x =

sin(θ)[μxμzcos(ψ) − μysin(ψ)]√
1 − μ2

z

+ μxcos(θ) (4)

μ′
y =

sin(θ)[μyμzcos(ψ) + μxsin(ψ)]√
1 − μ2

z

+ μycos(θ) (5)

μ′
z = −sin(θ)cos(ψ)

√
1 − μ2

z + μzcos(θ) (6)

where (μ′
x,μ′

y ,μ′
z) represents the new direction.

If the photon encounters a boundary, the direction update
step determines whether it reflects or traverses through,
and updates the direction accordingly. Whether or not a
photon reflects is determined by a series of complex Fresnel
calculations explained in detail in [4].

4) Fluence Update: The fluence update step adjusts the
photon packet’s weight to simulate absorption at the site of
interaction. The differential weight ΔW to be absorbed is
computed based on the current weight W as follows and is
accumulated in the absorption array A[r][z] at the location
of absorption:

ΔW = W
μa

μa + μs
(7)

where μa and μs are the optical coefficients of the current
layer.

5) Photon Termination: MCML terminates a photon
when it exits the tissue or through a survival roulette when
the photon weight has reached a predefined threshold value.
When the weight reaches the threshold, the survival roulette
generates a random number between 0 and 1. If the random
number is above 1/10, the photon packet is terminated;
otherwise, the weight of the photon packet is increased by
a factor of 10 to maintain the conservation of energy in the
system.

III. DEVELOPMENT OF FPGA-BASED MCML

The development process of this work is presented here
to assist other developers interested in accelerating similar
computationally intensive applications on an FPGA.

The development of FBM started with the MCML soft-
ware and ended with a working design on the DE3 FPGA
development board [1]. This mapping from software to
hardware required two additional types of specifications:
structural and cycle-accurate specifications.

The first stage of FBM development was an early archi-
tecture exploration of various datapaths to select one that
matched well with the resources available on the FPGA
chip. The second stage was the modelling of a cycle-
accurate pipeline of the architecture selected from the first
stage using SystemC [2]. The third stage consisted of a
Verilog conversion with precise structural specification to
produce a working hardware design. The final stage included
optimizations to produce a faster and more accurate design.

A. Early Architecture Modeling (2 person-months)

This stage focused on understanding the architectural
trade-offs available and selecting an appropriate architecture
along with the number and type of each core computational
unit for that architecture. To facilitate this task, the number
of LUTs, registers, multipliers, and memories required for
various implementations of each type of computation were
measured using empirical experiments. It became clear in
this stage that a conversion from floating-point to fixed-point
data representation was necessary in order to obtain both
good speedup and to accommodate the design on the target
FPGA platform. Furthermore, trigonometry and logarithm
operations were converted into lookup tables during this
stage. The majority of time in early architecture modeling
was spent modeling and tuning this fixed-point conversion
and lookup tables using an empirical approach to ensure
acceptable accuracy was maintained.

B. SystemC (5 person-months)

SystemC is a design and verification language that con-
sists of a set of C library extensions to model hardware
systems at a high level [2]. SystemC was used to add cycle-
accurate timing to the untimed early architecture model of
the previous stage. This stage consisted of two steps. The
first step was to define the inputs and outputs of each core,
using a latency of one cycle for simplicity. The second

step involved precisely modeling the latency by defining
the pipeline stages. A simple controller was implemented
in SystemC to control and test the simulation.

C. Hardware (1 person-month)

After the completion of the SystemC model of the design,
converting the models into Verilog, completing the system
controller, and including vendor-specific information were
straightforward. The short time required to proceed from
the software models in SystemC to a working hardware
implementation was surprising. One factor may have been
that the precise computation along with values for the
inputs, outputs, and key internal signals of each core were
already available from the SystemC stage thus speeding
up the development, verification, and testing of each core.
The end of this development stage resulted in a working
implementation of MCML on the Transmogrifier-4 (TM-4)
[14].

D. Optimization and Porting (4 person-months)

The initial, unoptimized hardware showed an increase in
error of 6% in the simulation output when the number of
photon packets exceeded the validation test range of the
earlier stages of development. To determine the source of
error, empirical tests on accuracy were done on the various
fixed-point conversions and the random number generator.
The most significant source of inaccuracy was the correlation
of values produced by the random number generator from
[15]. A more rigorous implementation [16] increased the
accuracy of the system (1 person-month). Various optimiza-
tion techniques, such as register-retiming, were applied to
improve the clock speed of the design (2 person-months).
Once the optimized hardware system was fully validated,
the design was migrated from the TM-4 [14] to the DE3
board to provide a more modern comparison than the older
Stratix [17] chips on the TM-4 (1 person-month).

IV. HARDWARE DESIGN

A. Modifications from Software

Simplifications were made to MCML to meet hardware
design requirements and to tailor the solution for PDT
treatment planning. First, since fluence is the quantity of
interest in PDT treatment planning, only absorption was
recorded; the reflectance and transmittance were ignored to
reduce the memory resource requirements in hardware. The
size of the absorption array was fixed at 256 by 256. Second,
the number of allowable layers in the medium was restricted
to five to reduce memory requirements.

To reduce the area of the design, 64-bit floating-point
operations were converted into 32-bit fixed-point operations
and lookup tables for trigonometric and logarithmic func-
tions were used.

This conversion to fixed-point required the creation of a
grid of valid photon positions, as a 32-bit fixed-point number
may only take on 232 values. This grid may have a different
scale in the r- and z-directions, which can be conceptualized
as having different units of measure. Therefore, it was

Stratix III EP3SL150

Master
Controller

Photon Simulator

Memories

JTAG I/O

(lookup tables, absorption array)

Fig. 2. Top-level system design

necessary to generate the step size in both the r- and z-
directions (sr and sz respectively), and conversion between
these two is performed using a scaling factor (sleft is
handled in a similar fashion). This improves the precision
of the simulation space with varying input geometries.

B. Implementation

1) Architecture: The hardware design consists of two
main components, namely a Master Controller and a Photon
Simulator. The Master Controller communicates with the
host computer, coordinates access to the memories, and
starts and terminates the simulations. The Photon Simulator
computes the position and direction of the photon packet,
the weight absorbed with the corresponding location of
absorption, and determines when to terminate each photon
packet. Fig. 2 shows the top-level system design of FBM.

The performance-critical portion of the design is the Pho-
ton Simulator, due to the low overhead (parsing of input file,
system initialization, and data transfer) in this simulation.
Two methods for accelerating the problem were considered:
maximizing the throughput of a single Photon Simulator
through the use of a deep pipeline, or minimizing the size of
a Photon Simulator and replicating it to achieve parallelism.
It was determined that due to the computationally complex
nature of the problem, replicating cores would not efficiently
produce speedup. Thus, one high-performance, pipelined
Photon Simulator was created.

A block diagram of the pipelined Photon Simulator is
presented in Fig. 3. The Photon Simulator is aggressively
pipelined, leading to a pipeline that is 100 stages deep in
total. The pipeline is full at all times except at the beginning
and the end of a simulation; however, the time during which
the pipeline is not full is less than 0.1% for any simulation
with at least 100,000 photon packets.

To represent a photon packet, the parameters shown in
Table I need to be maintained in every stage of the pipeline.
In order to keep track of each photon packet within the
pipeline, 357 registers are required, yielding a total of
35,700 registers to maintain photon packet information for
all photon packets in the pipeline. This easily fits in the
target EP3SL150 FPGA device [18], which contains 113,600
registers, leaving 77,900 for the remainder of the design.

2) Position Update Engine: The Position Update Engine
updates the x, y, and z coordinates of a photon packet,
and consists of three cores: the Step Size Core, Boundary

1. Step
Size
Core

2.Boundary
Checker

Core

3.
Movement

Core

4a. Reflect
Transmit

Core

4b.
Rotation

Core

5. Roulette
Core

New photon
packet

Position Update Engine

Direction
Update Engine

4d.Fluence
Update
Core

Previous photon
packet

4c. Shared
Arithmetic

Core

Fig. 3. Pipelined architecture of Photon Simulator

TABLE I
REGISTERED DATA DESCRIBING A PHOTON PACKET IN A PIPELINE

STAGE

Name Symbol Bit Width
x coordinate x-pos 32
y coordinate y-pos 32
z coordinate z-pos 32
direction cosine (x) µx 32
direction cosine (y) µy 32
direction cosine (z) µz 32
layer layer 3
hit boundary? hit 1
dead? dead 1
z step size sz 32
r step size sr 32
z step size remainder sleftz 32
r step size remainder sleftr 32
weight W 32

Checker Core, and the Movement Core. Fig. 4 shows the
dataflow diagram for the Position Update Engine.

The Step Size Core computes the mean free path (step
size) of the photon packet as shown in Eq. (1). The values
of sz and sr are assigned through appropriate scaling of this
step size.

Logarithm tends to be very sensitive to small numbers and
very insensitive to large numbers. The following common
identity was used to efficiently approximate the logarithm
used in Eq. (1) on the FPGA while retaining its sensitivity
property:

ln(ξ) = log2(ξ)/ log2(e)
= log2(xm ∗ 2xe)/ log2(e)
= (xe + log2(xm))/ log2(e)

(8)

where xe is the base-2 exponent of ξ and xm is the base-2
significand of ξ. ξ is a uniformly distributed random variable
with a range from 0 to 1 and is implemented using [16]. xe

is determined using a priority encoder on ξ because its value
is equivalent to the position of the most significant 1 bit in ξ.
log2(xm) is implemented using a 10-bit lookup table on the
10 trailing bits from the most significant 1 bit in ξ. Division
by the constant log2(e) is implemented by a multiplication
of its reciprocal.

Once the step size is known, the Boundary Checker
Core determines whether or not the photon packet will hit

Step Size Core (1 stage)

Logarithm

Random
Number

Generator

sr, sz

sleftr, sleftz

sleftz = 0?

R, Z-direction
constants

5:15:1

XX

5:12:1

z < 0?

− −

z-pos z-pos

Next layer
z-pos

Previous layer
z-pos

2:1
z

sz

sr sz scaling

++

X

Boundary Checker Core (60 stages)

/

sz >
dl_b

dl_bhit

sr, sz

5:12:1

Movement Core (1 stage)

XX

x, y, zsr, sz

+

x-pos, y-pos,
z-pos

x-pos, y-pos, z-pos

X

scaling
constant

Fig. 4. Detailed data-flow diagram for the Position Update Engine, where
dl b represents the distance to the closest boundary in the direction of
photon propagation. Overlapped shapes represent identical datapaths for a
group of signals.

a boundary using Eq. (2) and determine the step size
remainder using Eq. (3). Similar to the step size, sleftz
and sleftr are assigned an appropriately scaled value of
sleft.

The Boundary Checker Core contains a total of 60 pipeline
stages. Thirty two of these stages come from the pipelined
computation of a division (30 stages), followed by the
computation of two multiplications (1 stage each). As the
critical path was found to be within the Boundary Checker
Core, an additional 28 pipeline stages were added to the
end of the Boundary Checker Core to allow Quartus II to
automatically perform register retiming.

Finally, the Movement Core computes the new values
of the x, y, and z positions based on the results of the
previous two cores. This phase involves a multiplication of
the appropriate step size by the direction cosines in the x, y,
and z directions respectively (μx, μy , μz). These values are
then added to the previous values for the position vector.

3) Direction Update Engine: The Direction Update En-
gine changes the direction cosines (μx, μy , and μz), and
consists of three cores: the Reflect-Transmit Core, the Ro-
tation Core, and the Shared Arithmetic Core. Each time
a photon packet proceeds through its main loop, it will
either encounter a boundary, or it will interact with the
medium, but it will never do both in a single iteration. This
behaviour allows the sharing of resources. Any access to
a shared arithmetic unit is passed through a MUX, which

significantly reduces the number of arithmetic units required
by the design.

The Rotation Core uses equations (4), (5), and (6) to
calculate the new direction of a photon packet when it does
not hit a boundary. The hardware design used to calculate
these values is shown in Fig. 5a. To avoid trigonometry in
hardware, lookup tables are used to generate sin(θ), cos(θ),
sin(ψ), and cos(ψ).

The pipeline for the Rotation Core was optimized to
reduce the number of registers and arithmetic units (multipli-
ers, dividers, and square root units) used. One optimization
technique used was common subexpression elimination: cal-
culating a result once and reusing it in multiple calculations.
A second technique employed was to share arithmetic units
with the Transmit-Reflect Core. As shown by the shaded
blocks in Fig. 5, each of the shared arithmetic units in the
Reflect-Transmit Core (Fig. 5b) is matched in the same stage
by the same unit in the Rotation Core (Fig. 5a). Finally,
by calculating results as late as possible (without increasing
total latency) the number of registers required to propagate
intermediate results was minimized.

The Reflect-Transmit Core determines the direction a
photon packet will travel upon reaching a boundary. It further
determines whether or not the photon packet will transmit
into the next layer (Fig. 6). The calculation of the Fresnel
formulas are resource intensive, but not critical for precision,
and thus is implemented as lookup tables.

If the photon packet reflects, and hence remains in the
current layer, μz is negated and all other photon packet
parameters remain the same. Should the photon packet
traverse through, the calculation shown in Fig. 5b) is used
to determine the new direction vector. In this case, the layer
value is also updated, and the dead flag is set if the photon
packet exits the tissue into air.

4) Fluence Update Core: The Fluence Update Core up-
dates the weight of each photon packet and adjusts the values
stored in the absorption array.

The maximum size of the simulation region was fixed
to be 256 × 256 elements in the r and z dimension (radial
symmetry is assumed in this model) due to the use of on-chip
memory for storing the absorption array. The resolution (dr
and dz) can be adjusted in the simulation input file. However,
by fixing the grid dimensions at 256 × 256 elements, two
divisions were turned into bit-shift operations, decreasing the
depth of the pipeline, and saving area. The width of the data
stored in the absorption array was set to 62 bits to both avoid
overflow as well as fit on the Stratix III chip. Note that this
is sufficient to accept the total weight of 100 million photon
packets deposited on a single array element.

One point of complexity in the Fluence Update Core
involved a potential Read After Write (RAW) hazard. There
is a two clock cycle delay between writing a value into the
on-chip memory and that value being available for reading.
Thus, to ensure that the latest value is always read, each
photon packet checks to see if the next two photon packets
map to the same location in the absorption array. If a match
is found, the photon packet forwards the value that will be

−

Stage 1

Stage 2

Stage 3

Stage 5

Stage 15

Stage 30

Stage 31

Stage 32

Stage33

Stage 34

Stage 35

X

μz μz

−

264 - 1

X

μx μz

√⁻

/

264 - 1

sinp
LUT

cosp
LUT

sint
LUT

cost
LUT

RNG RNG

X XX

μy μz

μy μx

− −

X

μx

+
Stage 36

+−

X XXX

X X X

μzμy

X

μz μz

264 - 1layer constants

5:1

X

Stage 4
−

264 - 1

√⁻

X X

layer constants

5:1

new μz

new μz new μy new μx

μx

new μx new μy

X X

a) Rotation Core b) Reflect-Transmit Core

...

...

layer constants

5:1μy

Fig. 5. Dataflow diagram for a) the Rotation Core, and b) the Reflect-Transmit Core. Results computed from the Reflect-Transmit core are used when
a photon packet hits a boundary. Otherwise, the results from the Rotation Core are used. Shaded blocks indicate shared arithmetic units.

Up Fresnel
LUT

RNG

Down Fresnel
LUT

μz μz

2:1μz > 0

rnd <
rfres

2:1
rnd

rfres reflected transmitted

Fig. 6. Reflect-Transmit Core logic to determine whether a photon packet
transmits or reflects

written back to the memory, as opposed to using the value
read from memory.

5) Roulette Core: The Roulette Core determines when
to discontinue simulating a photon packet when the photon
packet has not yet exited the tissue, but has dropped below
the threshold weight. When a photon packet’s weight drops
below the threshold weight, a random number (between 0

and 1) is generated in the Roulette Core. If the random
number is above 1/8, the photon packet is terminated. If it is
below 1/8, the weight of the photon packet is increased by a
factor of 8 to maintain conservation of energy in the system.
Note that a power of 2 was used instead of the number 10
used in the software MCML for hardware efficiency, while
maintaining simulation accuracy.

V. EXPERIMENTS AND RESULTS

The design presented in this paper was first implemented
on a multi-FPGA platform called the Transmogrifier-4 (TM-
4) [14] and then migrated to the DE3 board, which has one
Stratix III (EP3SL150F1152C3) FPGA [18]. This section
only presents results from the DE3 platform.

For the purpose of validation and performance compari-
son, a realistic skin model [5] was selected as the simulation
input to the MCML program.

A. Validation

System validation consisted of two phases. The first phase
involved verifying the FBM simulation outputs against the

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

1.0E+05 1.0E+06 1.0E+07 1.0E+08

R
el

at
iv

e
Er

ro
r

Number of Photons

MCML run 1 vs MCML run 2 FBM vs. MCML

Fig. 7. Relative error as a function of the number of photon packets
simulated. The horizontal axis is in logarithmic scale.

gold standard MCML executed on an Intel Xeon processor.
Due to the pseudo-random nature of MC algorithms, it is
important to separate the error introduced by the hardware
implementation (including lookup tables and fixed-point
conversion) from the statistical uncertainty inherent in an
MC simulation. In other words, a fair comparison between
MCML and FBM can only be obtained by considering the
variance in the output of the MCML simulation, which is a
2D absorption array scoring the photon probability density
[cm−3] as a function of radius and depth. To quantify
differences between these arrays, the relative error E[r][z]
between corresponding elements was computed using Eq.
(9):

E[r][z] =
|As[r][z] −Ah[r][z]|

As[r][z]
(9)

where As is the gold standard absorption array produced by
MCML after launching 100 million photon packets and Ah

contains the corresponding elements in the absorption array
produced by FBM.

To summarize the effect of varying the number of photon
packets, the mean relative error is shown in Fig. 7, averaging
the relative error over all absorption array elements (256 ×
256) with values above a threshold of 0.00001 cm−3. The
threshold is necessary since the relative error is undefined
when As[r][z] is zero. Photon packet numbers ranging from
105 to 108 were simulated.

The second phase for system-level validation of the
FPGA-based hardware design involved analyzing the error
in the context of PDT treatment planning. Isofluence maps
were generated from the FBM output based on 108 photon
packets, as illustrated in Fig. 8. The relative shift in the
position of the isofluence lines was 0.1 mm in the hardware-
generated isofluence lines compared to those produced by
MCML for fluence levels as low as 0.00001 cm−2. This shift
is negligible within the context of PDT treatment planning
considering the typically much larger margin of safety for
surgical resection or treatment planning in radiation therapy.

TABLE II
POWER-DELAY PRODUCT OF STRATIX III VS 3 GHZ XEON FOR MCML

SIMULATION WITH 100 MILLION PHOTON PACKETS

Machine Power PDP Normalized PDP
Single-core Xeon 40 W 244 kJ 716
Stratix III 1.55 W 0.341 kJ 1

B. Area and Speedup

FBM on the Stratix III used 31,185 out of 56,800 ALMs
(Stratix III soft logic blocks), 92 out of 384 DSP blocks, and
4,751,360 out of 5,630,976 block memory bits.

FBM on the Stratix III clocked at 80 MHz achieved a 28-
fold speedup compared to a single-core 3 GHz Xeon 5160
processor with 8 GB of RAM and 4 MB of cache. The on-
chip simulation time was 6102 seconds for the processor
and 220 seconds for the FPGA. A third-party host-to-FPGA
communication core that is still under development was used
to port the TM-4 design over to the DE3. This core has
a performance problem and requires over three hours to
transfer one megabyte of data. The total amount of data that
needs to be transferred to and from the device is less than a
megabyte and should take less than one second given a well-
designed host interface. For this reason, the data-transfer
overhead was not included in the reported simulation time.

C. Power Comparison

Power consumption is another metric to compare com-
putational efficiency between the FPGA and the processor.
Only the power consumed by the processor or FPGA was
considered; off-chip memory, network, and disk power were
ignored. The thermal design power of the dual core Xeon
5160 processor [19] is specified by Intel to be 80W, and
we use half of this value as the power consumption for
a single core. Although 40 W may be pessimistic for the
single core, this value was chosen because the processor
will be heavily utilized during the computation in MCML.
The FPGA power consumption was determined using the
PowerPlay Power Analyzer tool in Quartus II version 8.1
[20]. The default settings for PowerPlay were used. Input pin
toggle rate was left at the default 12.5% to approximate the
power consumption of the FPGA. Note that although most
of the inputs remain almost constant during the simulation of
any large number of photon packets, the default settings were
chosen to give a more conservative estimate. Also, since the
host processor can perform other tasks while waiting for
the simulation on the FPGA to complete, its power was not
included in the power calculation for the FPGA. Table II
shows that FBM on the Stratix III has a 716-fold better
power-delay product than a single-core 3 GHz Xeon 5160
processor. Also, under these assumptions, a hypothetical
cluster of processors that matches the FPGA speedup will
still have the same 716-fold worse power-delay product
compared to the FPGA.

VI. CONCLUSIONS AND FUTURE WORK

Using the MCML program as the gold standard, custom
pipelined hardware was designed on the DE3 board to

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

0.00 0.20 0.40 0.60 0.80

D
ep

th
 (c

m
)

Radius (cm)(b)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.00 0.02 0.04 0.06 0.08 0.10 0.12

D
ep

th
 (c

m
)

Radius (cm)(a)

1000
100

10

1 0.01 1e-5

Fig. 8. Comparison of the isofluence lines generated by FBM and MCML using 100 million photon packets. Fluence levels range from 1000 cm−2

to 0.00001 cm−2 as indicated in parts (a) and (b) of the figure. ©, ♦, and �: MCML; •, +, and ×: FBM

achieve a 28-fold speedup and a 716-fold lower power-
delay product compared to a 3 GHz Intel Xeon processor.
The development time was approximately 1 person-year.
Isofluence distribution maps generated by FBM and MCML
were compared at 100 million photon packets, showing only
a 0.1 mm shift in the hardware-generated isofluence lines
from those produced by MCML for fluence levels as low as
0.00001 cm−2. This shift is negligible within the context of
PDT treatment planning.

The implications of the current study are twofold. First,
the pipelined design could form the basis on which more
complex MC simulations can be built. Secondly, the dra-
matic reduction in treatment planning time enables real-
time treatment planning based on the most recent images
of the clinical target volume, taking into account the chang-
ing tissue optical properties as the treatment progresses.
Currently, pre-treatment models assume constant values for
tissue optical properties and ignore the dynamic nature
of tissues, which could directly affect treatment outcomes
in interstitial PDT [21]. The significant performance gain
provided by the hardware approach allows PDT treatment
planning in heterogeneous, spatially complex tissues using
more sophisticated MC-based models.

ACKNOWLEDGEMENTS

The authors acknowledge David Galloway’s support with
JTAG ports package for the DE3 [1], the financial support
from CIHR (Grant No. 68951), NSERC (Discovery Grant
No. 171074) and the NSERC and OGS scholarships.

REFERENCES

[1] Terasic Technologies, “Altera DE3 Development and Education
Board user handbook,” Nov 2008, dE3 http://www.terasic.com.tw/
attachment/archive/260/DE3 User manual v1.2.pdf.

[2] T. Grtker, S. Liao, G. Martin, and S. Swan, System Design with
SystemC. Springer, 2002.

[3] T. Dougherty, “Photodynamic Therapy,” Photochemistry and Photo-
biology, vol. 58, no. 6, pp. 895–900, 1993.

[4] L. Wang, S. Jacques, and L. Zheng, “MCML-Monte Carlo modeling
of light transport in multi-layered tissues,” Computer Methods and
Programs in Biomedicine, vol. 47, no. 2, pp. 131–146, 1995.

[5] V. Tuchin, “Light scattering study of tissues,” Physics-Uspekhi,
vol. 40, no. 5, pp. 495–515, 1997.

[6] A. Colasanti, G. Guida, A. Kisslinger, R. Liuzzi, M. Quarto, P. Riccio,
R. G., and F. Villani, “Multiple Processor Version of a Monte Carlo
Code for Photon Transport in Turbid Media,” Computer Physics
Communications, vol. 132, pp. 84–93, 2000.

[7] S. Coyle, K. Thomas, T. Naughton, M. Charles, and W. Toms, “Dis-
tributed Monte Carlo Simulation of Light Transportation in Tissue,” in
Parallel and Distributed Processing Symposium, 2006. Proceedings.
20th IEEE International Symposium on, 2006, p. 4.

[8] M. Gokhale, J. Frigo, C. Ahrens, J. Tripp, and R. Minnich, “Monte
Carlo Radiative Heat Transfer Simulation on a Reconfigurable Com-
puter,” Lecture notes in computer science, pp. 95–104, 2004.

[9] K. Whitton, X. Hu, Y. Cedric, and D. Chen, “An FPGA Solution for
Radiation Dose Calculation,” in Field-Programmable Custom Com-
puting Machines, 2006. Proceedings. 14th Annual IEEE Symposium
on, 2006, pp. 227–236.

[10] Agility, “Handel-c language reference manual,” 2007, http://www.
agilityds.com/literature/HandelC Language Reference Manual.pdf.

[11] V. Fanti, R. Marzeddu, C. Pili, P. Randaccio, and J. Spiga, “Monte
Carlo Computations for Radiotherapy with the use of Dedicated
Processors,” in Nuclear Science Symposium Conference Record, 2006.
IEEE, vol. 4, 2006.

[12] A. S. Pasciak and J. R. Ford, “High-speed Evaluation of Track-
structure Monte Carlo Electron Transport Simulations,” Physics in
Medicine and Biology, vol. 19, no. 53, pp. 5539–5553, 2008.

[13] W. Lo, K. Redmond, J. Luu, P. Chow, J. Rose, and L. Lilge, “Hard-
ware Acceleration of a Monte Carlo Simulation for Photodynamic
Therapy Treatment Planning,” Journal of Biomedical Optics, vol. 14,
p. 014019, 2009.

[14] J. Fender, J. Rose, and D. Galloway, “The transmogrifier-4: an FPGA-
based hardware development system with multi-gigabyte memory ca-
pacity and high host and memory bandwidth,” in Field-Programmable
Technology, 2005. Proceedings. 2005 IEEE International Conference
on, 2005, pp. 301–302.

[15] Thomas Tkacik, “A hardware random number generator,” Aug 2002,
open Core Design from Motorola Incorporated http://www.opencores.
org/projects.cgi/web/systemc rng/overview.

[16] P. L’Ecuyer, “Maximally Equidistributed Combined Tausworthe Gen-
erators,” Mathematics Of Computation, vol. 65, no. 213, pp. 203–213,
1996.

[17] Altera Corporation, “Stratix device handbook,” Jan 2006, stratix http:
//www.altera.com/literature/hb/stx/stratix handbook.pdf.

[18] Altera Corporation, “StratixIII device handbook,” Nov 2007, stratix 3
http://www.altera.com/literature/hb/stx3/stratix3 handbook.pdf.

[19] Intel Corporation, “Dual-core intel xeon processor 5160 (4m cache,
3.00 ghz, 1333 mhz fsb),” Dec 2008, xeon 5160 Data Sheet http:
//ark.intel.com/cpu.aspx?groupId=27219.

[20] Altera Corporation, “Quartus ii 8.1: Powerplay power analysis,” Nov
2008, quartus II Introduction http://www.altera.com/literature/hb/qts/
qts qii53013.pdf.

[21] A. Johansson, N. Bendsoe, K. Svanberg, S. Svanberg, and
S. Andersson-Engels, “Influence of treatment-induced changes in
tissue absorption on treatment volume during interstitial photodynamic
therapy,” Medical Laser Application, vol. 21, no. 4, pp. 261–270,
2006.

	Introduction
	Background
	Related Work
	MCML
	Overview
	Position Update
	Direction Update
	Fluence Update
	Photon Termination

	Development of FPGA-based MCML
	Early Architecture Modeling (2 person-months)
	SystemC (5 person-months)
	Hardware (1 person-month)
	Optimization and Porting (4 person-months)

	Hardware Design
	Modifications from Software
	Implementation
	Architecture
	Position Update Engine
	Direction Update Engine
	Fluence Update Core
	Roulette Core

	Experiments and Results
	Validation
	Area and Speedup
	Power Comparison

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

