
Chapter 4

Characterization of Sequential

Circuits

Combinational circuits have limited application, and any general CAD tool or FPGA must

be able to deal with sequential circuits. In this chapter, we expand our characterization of

combinational circuits towards this goal.

Before we can proceed it is necessary to have a more detailed model of what we mean

by a sequential circuit. In Section 4.1 we describe such a model, de�ning sequential circuits

in terms of combinational building blocks. Section 4.2 describes the basic statistical char-

acterizations arising from the model and our empirical analysis with the MCNC benchmark

circuits, in particular the issue of \ghost" inputs and outputs arising in the decomposition of

a sequential circuit. Section 4.3 extends the combinational characterization of reconvergence

from the previous chapter to sequential circuits.

4.1 The Sequential Model.

We model a sequential circuit as a hierarchy of two or more combinational circuits connected

with 
ip-
ops and \back-edges." A single level sequential circuit is simply a combinational

circuit.

For this work we consider only synchronous sequential circuits with a single global clock.

This ensures that there is a well-de�ned notion of time in the logical operation of the circuit,

and we can de�ne \sequential levels" on the basis of time increments.

In addition to a single clock restriction, we ignore reset/preset/clear lines, assume uni-
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directional I/O pins, and do not allow internal tristate bu�ers. None of these are major

restrictions in a theoretical sense: our model can be generalized to allow for circuits to be

analyzed or generated hierarchically, so multiple clocks could be hidden within sub-circuits

generated separately without a great deal of di�culty. (The generalized model has not

yet been implemented in circ and gen.) Similarly, bidirectional pins and tristates can be

simulated in standard logic.

In a practical sense, however, we point out that bidirectional pins and the correct phys-

ical layout of busses in a design are important, and a commercial system would certainly

deal with them explicitly. This is particularly true for FPGA architectural experiments, as

tristates or other bu�ers could be consumable resources and bidirectional pins may (depend-

ing on the architecture) introduce greater stress on the routing network than do separate

input and output pins. Also, though clocks are often special resources, FPGAs have a lim-

ited number of them, and the software may have to deal with some clocks or reset lines as

ordinary logic signals. We leave implementation of these detailed features for future work.

For simplicity we assume that the only registers allowed are D-type 
ip-
ops (as is

common for most commercial FPGAs). Thus all nodes are of type PI (primary input),

LOG, (logic) or DFF (
ip-
op). Recall from the previous chapter that PO (primary output)

is a property of a logic node, not a separate node type.

Our abstract model of a sequential circuit is shown in Figure 4.1. The �gure shows

a 3-level sequential circuit. The de�nitions of primary input, primary output, and all

measures of fanout remain as described in Chapter 3. The sequential level, level(x) of node

x is de�ned as 0 if x is a primary input, 1 + level(y) for a 
ip-
op x with input y, and

MIN(level(yi)) over all inputs yi to x otherwise. Notice that all primary inputs must thus

occur in sequential level 0. De�ne an edge (x; y) to be a forward-edge if level(x)= level(y)

and a back-edge if level(x) > level(y). By de�nition, any other edge is necessarily from a

node at sequential level i to a DFF at level i+ 1, and we call it a FF-edge.

It is important to point out that, though this model could appear to apply only to

certain types of circuits which have a pipelined appearance, it does not actually preclude

other views of sequential connections. Rather we just de�ne sequential levels in this way.

With the introduction of sequential levels, we have to modify the de�nition of combi-

national delay: for node x, delay(x) = 0 if x is a PI or a DFF and one greater than the

maximum delay over its fanins, otherwise. The de�nition of edge-length is as before, even if
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Figure 4.1: Abstract model of a 3-level sequential circuit

the nodes are at di�erent sequential levels, except that edges to a DFF are always of length

one. The size of the circuit is n=nLOG+nPI+nDFF .

4.2 Characteristics of Sequential Circuits.

There are a number of new sequential characteristics arising directly from the model, and

we describe them here. Note that all empirical results are based on the MCNC circuits, as

mentioned previously in Section 3.1.

4.2.1 Basic Characteristics

The division of a circuit into its combinational sub-circuits introduces the concepts of se-

quential shape, the number of nodes in each successive sequential level, and the number of

sequential levels. We also have counts of the numbers of 
ip-
ops and back-edges. Table 4.1

shows this information for a sample of sequential MCNC circuits.

The number of I/Os is greatly decreased for sequential circuits, and we �nd that the

Rent-like parameterization that we used before is no longer an adequate re
ection of the

I/O consumption for the circuit. In fact, we �nd that there is no real statistical correlation

between the size of the circuit and the number of I/Os. In the default pro�le for sequential
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Name Nodes IOs nDFF Edges nBack Levels Seq. Shape

s838 167 37 32 556 256 2 169 65

s953 214 39 29 739 184 3 191 65 3

styr 238 19 5 814 219 2 207 45

planet 266 26 6 910 300 2 169 110

sbc 372 96 27 1273 300 2 388 51

mm30a 467 63 90 1697 235 2 500 90

dsip 1362 425 224 5440 896 2 1590 224

s298 1930 9 8 6944 2218 2 1636 305

bigkey 1699 425 224 6108 1344 2 1591 560

clma 8361 127 31 30114 5596 3 5810 2640 3

Table 4.1: Sequential circuit characteristics for selected MCNC circuits.

circuits, we use one quarter of the combinational I/O calculation as an upper bound on the

number of I/Os, then choose the number of PI and PO for the circuit uniformly between 2

and the upper bound. In practice this yields reasonable values.

We �nd that the number of sequential levels is a small constant. Recall that a circuit

with one sequential level is a combinational circuit. Of 78 sequential MCNC circuits, 69

have two sequential levels, 6 have three levels, and there is one circuit each of 4, 7, and 8

sequential levels. In all cases we saw, the majority of the combinational logic lies in the

zeroth sequential level. We typically see successive sequential levels of logic having less than

half the logic of the preceding level.

The number of 
ip-
ops in a circuit also has little correlation to the amount of logic

in the circuit. This can occur for many reasons. For example, the designer of a state-

machine has the choice of encoding the state directly or in logarithmic size with extra

decoding logic. Thus the number of 
ip-
ops in the defaults �le is also calculated with a

wide degree of variation. We use a Gaussian distribution around a constant-de
ated square

root of the number of nodes as an approximation. See Appendix A. Note that this roughly

models the number of 
ip-
ops as the number of I/Os in a combinational circuit, not an

unreasonable thing looking at the model. In FPGAs, the number of available 
ip-
ops is

usually proportional to the number of LUTs (often 1:1), but this is more to do with the

design cost of adding the 
ip-
ops and with logic block homogeneity than with the raw

numbers of 
ip-
ops required by circuits.

The number of back-edges varies between one and two times the number of nodes at

the �rst sequential level, and we model it as such.
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Figure 4.2: Example decomposition of a 2-level sequential circuit.

4.2.2 Decomposing Sequential Circuits.

Our model de�nes a sequential circuit based on its combinational sub-circuits, back-edges,

and 
ip-
ops. As part of the characterization process, we want to decompose a sequential

circuit into its component parts. To describe the sequential interface within combinational

sub-circuits we introduce the concepts of a ghost input port and ghost output port. Intu-

itively, these are points that connect di�erent sequential levels (combinational sub-circuits).

These are best understood with a small example. Figure 4.2(a) shows a sequential circuit

with three primary inputs, one primary output, two 
ip-
ops (hence two 
ip-
op edges) and

two back-edges. The decomposition of this circuit is shown to the right: Figure 4.2(b) shows

the level-0 sub-circuit with 3 primary inputs and one primary output. We have two ghost

input ports (GI) which record the existence of back-edges from a succeeding level, and two

ghost output ports (GO) which record the location of back-edges connected to a preceding

level or, as in this case, edges to 
ip-
ops at a succeeding level. Similarly, Figure 4.2(c)

shows the level-1 sub-circuit with two primary inputs (which used to be 
ip-
ops) and two

ghost outputs. Note that GI and GO ports correspond more closely to edges than nodes,

since a single node can have up to k� 1 ghost inputs, and max out ghost outputs. We note

that in any sub-circuit, a zero-fanout node must have at least one GO or PO attached to

it.

In the parameterization of the combinational sub-circuits, it is not su�cient simply to

record the number of ghost inputs and outputs, as this ignores a great deal of information

about the interface between sub-circuits. In particular, if we are to use this model as the
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basis for a generation algorithm, it is important to ensure that sub-circuits are compatible.

For a single GO and GI to be compatible, the combinational delay of the node with the GO

must be less than that of the node with the GI (i.e. it is legal/sensible to connect the GI

to the GO in the context of combinational delay). For two sub-circuits to be compatible,

there must exist a matching of GI and GO between them, all of which are compatible.

To deal with compatibility issues between sub-circuits, we introduce the GI and GO

shape within sub-circuits. De�ne the vector GIshape[i] as the number of ghost inputs at

combinational delay i, i=0::d, and GOshape[i] similarly for ghost outputs. These will intro-

duce a topological constraint on the connections between di�erent sub-circuits in addition

to simply the number of connections. In practice, we �nd that these vectors are important,

because they often uncover \quirky" aspects of di�erent circuits. Note that the GIshape for

one level and the GOshape for the other level in a 2-level circuit will roughly correspond,

but would only correspond exactly if all edges in the circuit were unit-edges, which is not

usually the case.

For the circuit in Figure 4.2(b) we have GIshape = (0,0,2) and GOshape = (0,2); Fig-

ure 4.2(c) has GIshape = (0,0) and GOshape = (0,2). We note that 
ip-
ops are not

included in the GIshape of a level, because they are already recorded in nDFF (a purely

semantic detail).

As an example, the circuit clma has 3 sequential levels:

Level 0:

GIshape = ( 526 1245 664 354 451 429 860 502 295 48 37 25 22 2 4 0 0 )

GOshape = ( 0 0 0 8 4 7 1 2 0 2 0 0 0 1 1 2 1 )

Level 1:

GIshape = ( 74 45 3 8 2 0 0 0 0 0 )

GOshape = ( 1289 1282 412 671 372 364 555 360 151 4 )

Level 2:

GIshape = ( 0 0 )

GOshape = ( 136 2 )

We �nd that the GI and GO shapes of MCNC sequential circuits do not statistically

show any common shape beyond GIshape[i] being roughly proportional to shape[i] within

sub-circuits. We have a heuristic process for generating reasonable GI and GO shapes which

are compatible, and the interested reader is referred to the gen source-code for details.

Note that the shape distributions for the combinational sub-circuits of sequential circuits

di�er from those of purely combinational circuits. This is because the second sequential

level often has many more 
ip-
ops (inputs) than is typical for a combinational circuit of
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the same size.

4.2.3 Extensions to the Sequential Model.

With ghost input and output ports now de�ned, it is worth pointing out that the sequential

model can be generalized to describe arbitrary levels of hierarchy, rather than just the

interface between multiple levels in a simple sequential circuit.

For example, we can de�ne a purely combinational circuit as a hierarchy of combinational

sub-circuits simply by combinational speci�cations and a compatible GI and GO interface

(without requiring that the circuit have 
ip-
op or back-edges). In combination with a

partitioner this would allow us to form a partition tree model of an input circuit.

It would also be interesting to use this mechanism to describe an interface to other forms

of circuits (e.g. memory), or to deal with circuits at the block diagram level.

The ability to generalize the use of ghost inputs in generation and outputs would open

the door to a hierarchical generation process.

In this dissertation, however, we will restrict ourselves to simple sequential circuits.

4.3 Generalizing Reconvergence.

In Section 3.4 we de�ned the reconvergence number of a node r in a combinational circuit

as the proportion of reconvergent nodes to total nodes in the out-cone of r. We also pointed

out the combinatorial signi�cance of the numerator as the log
2
t, where t is the number of

spanning out-trees rooted at r.

Recall a spanning out-tree T (G) of a directed graph G with respect to a designated root

node r is a spanning tree of G such that, for all x in G there is a (necessarily unique)

directed r-x path in T .

Recall that the combinational out-cone of r in G (which we now denote Gc
r) is de�ned

recursively as follows: r is in Gc
r and if x is in G

c
r and xy is a forward edge of G then the node

y and the edge xy are also in Gc
r. De�ne the sequential out-cone, Gs

r of r to be identical,

but without the restriction of xy being a forward edge. Then Gc
r is always a subgraph of

Gs
r.

Using the sequential out-cone, the numerator in our reconvergence calculation no longer

corresponds exactly to the number of spanning out-trees. Consider the sequential circuit
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Figure 4.3: Reconvergence in a circuit.

represented in Figure 4.3. The combinational out-cone of node 0 is shown within dotted

lines from 0. The number of reconvergent nodes in the combinational out-cone of node 0 is

3 (nodes 3, 9 and 11), and there are 23, or 8, spanning out-trees. However, the sequential

out-cone of node 0 additionally includes vertex 5, and edges (11,5), (5,6) and (9,4). The

number of reconvergent nodes in the sequential out-cone of node 0 is �ve, (nodes 3, 4, 6, 9,

and 11), but the number of spanning out-trees is 15, not 32. The reason for this is that the

choice of edges is no longer independent: no spanning out-tree can contain both (5,6) and

(7,11).

De�ne the n by n matrix K with respect to a digraph G as follows:

Kij =

8>>>><
>>>>:

in-degree(i) i = j

�1 i 6= j; (i; j)2 E

0 otherwise

We note that Kii is 0 if and only if i is a source in G, and that the sum of the entries

in any column i is 0. Furthermore, if the vertices are in topological order1, K is upper-

triangular if and only if G is acyclic.

Now consider the graph Gs
r (with n0 nodes) for digraph G with root r. Let Kr be the

minor with respect to r of the Kircho� matrix of Gs
r (i.e. the matrix formed by removing

1A topological order on the vertices of a directed acyclic graph G is any order � such that the existence

of edge xy implies that �(x) < sigma(y). Such an order always exists for an acyclic digraph.



CHAPTER 4. CHARACTERIZATION OF SEQUENTIAL CIRCUITS 52

row and column for r, resulting in a square matrix of dimension n0
�1). They we can apply

the following to count the number of spanning out-trees from r in Gs
r.

Theorem (Kircho�, c.f. [31]) The number of spanning out-trees rooted at r in a �nite

digraph G is equal to the determinant of Kr.

The basic idea of the proof is that as the determinant of this matrix is broken into

terms by a standard linear algebra decomposition, the number of leaf corresponds to the

number of trees from a given root vertex. The combinatorial justi�cation for this process

is explained fully in the book by Gibbons [31][pages 49-54], and the interested reader is

referred there for the details.

For our purposes here, it is su�cient to explain the process with our example (Fig-

ure 4.3).

The intuition is clearer for acyclic graphs. Ignoring all back edges, the out-cone of node

0 consists of the 12 nodes and solid edges shown inside the cone. The Kircho� matrix of

the out-cone of 0 is then

K =

0
BBBBBBBBBBBBBBBBBB@

0 �1 �1 0 0 0 0 0 0 0 0 0

0 1 0 �1 0 0 0 0 0 0 0 0

0 0 1 �1 �1 0 0 0 0 0 0 0

0 0 0 2 0 �1 0 0 0 0 0 0

0 0 0 0 1 0 0 �1 0 0 0 0

0 0 0 0 0 1 �1 0 0 0 0 0

0 0 0 0 0 0 1 0 �1 0 �1 0

0 0 0 0 0 0 0 1 �1 0 �1 0

0 0 0 0 0 0 0 0 2 �1 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 2 �1

0 0 0 0 0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCCCCA

:

Combinatorially, the number of spanning out-trees from G can be calculated as the

product of the in-degrees of the vertices of G (not including the root)|if the in-degree of

vertex x is 1, then that edge must be present in any spanning out-tree. If x has two or

more inputs then any one can be chosen independently of other choices of edges in T (G).

Since Kr is upper triangular, its determinant is the product of the diagonal elements. (Note,

because we chose the out-cone, the value is always at least 1.) Thus, the number of spanning

out-trees in the out-cone of 0, ignoring back edges, is 23 or 8.

The situation is more complicated when we allow cycles. Adding the vertex 5 and

edges (11,5), (5, 6) and (9,4) increases the dimension of K by 1, and makes Kr no longer
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upper triangular; correspondingly, the choice of edges is no longer independent; no spanning

subtree can contain both (5,6) and (7,11). Thus we utilize the thorem of Kircho�, with

K =

0
BBBBBBBBBBBBBBBBBBBB@

0 �1 �1 0 0 0 0 0 0 0 0 0 0

0 1 0 �1 0 0 0 0 0 0 0 0 0

0 0 1 �1 �1 0 0 0 0 0 0 0 0

0 0 0 2 0 0 �1 0 0 0 0 0 0

0 0 0 0 2 0 0 0 �1 0 0 0 0

0 0 0 0 0 1 �1 0 0 0 0 0 0

0 0 0 0 0 0 2 �1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 �1 0 �1 0

0 0 0 0 0 0 0 0 1 �1 0 �1 0

0 0 0 0 �1 0 0 0 0 2 �1 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 �1 0 0 0 0 0 2 �1

0 0 0 0 0 0 0 0 0 0 0 0 1

1
CCCCCCCCCCCCCCCCCCCCA

and jK0j = 15. There are 15 spanning out trees from 0, not 32|more than the 8 in the com-

binational out-cone, but signi�cantly less than the 32 obtained from counting reconvergent

nodes in the sequential out-cone as if they were independent.

It should be clear that the number of spanning out trees can be seen as a true measure

of the reconvergence of r, more so than the counting method. With this in mind, we de�ne

the sequential reconvergence number, Rs of a vertex v in G as

Rs(v) = logk det(Kr(v))=jG
s
rj;

where K is calculated on Gs
r, and k is the maximum in-degree (LUT-size) of the circuit G.

So the reconvergence of any node v is the logarithm of the number of spanning out-trees

normalized by the size of the out-cone Gs
v. The purpose of taking the logarithm, as before,

is to scale the number to within a comprehensible range for large graphs; this, with the

normalization by the size of the out-cone, generates 0 � Rs(v) < 1 for G mapped into

2-LUTs and 0 � Rs(v) < k for G mapped into k-LUTs.

Note that Rs = 0 if and only if the out-cone is already a tree.

To calculate the sequential reconvergence number of a graph we take, as in the combi-

national case, the weighted average of the reconvergence numbers of its primary inputs.

Note that the combinational reconvergence number of a sequential circuit is still well-

de�ned. It is equivalent to performing the calculation on the circuit G with all back-edges

removed or ignored. It is often, but not always, true that Rc < Rs; it depends on the
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relative growth of the out-cone compared to the additional reconvergence in it.

Implementation Details.

Calculating the determinant of an n by n matrix uses O(n3) time. In circ we use a sparse-

matrix implementation, which greatly decreases the required computation time. However,

it is still not practical to calculate Rs for circuits with more than about 5,000 LUTs.

We take care to deal with the numerical stability of the determinant calculation with row

pivoting, but above 2,000 LUTs, we sometimes encounter ill-conditioned matrices. Circ

will warn the user in these cases.

Empirical Calculations of Rc
and Rs

.

We calculated the combinational and sequential reconvergence numbers for all MCNC cir-

cuits. A sample of these is shown in Table 4.2. For comparison, we give Rc for both 2-LUT

and 4-LUT mapped circuits, and Rs for 4-LUT mapped circuits.

We note, as in the combinational case, that any results here are biased by the contents

of the MCNC benchmark set, which has limited documentation and could be missing large

classes of logic. Thus our comments can only be based on the data that is available.

Observe that, as in the combinational case, there is a reasonable amount of grouping

among the di�erent types of logic. The arithmetic logic falls in the lower part of the

spectrum, and �nite state machines in the higher end. Within these bands, we notice,

for example, the closeness of the reconvergence numbers for di�erent implementations of

multipliers, and for multipliers of di�erent sizes. This data indicates that the reconvergence

number is useful information, and captures some part of the fundamental nature of circuits.

It would be very interesting to do these comparisons with greater information about the

circuit functionality than we have, but the MCNC circuits have no documentation beyond

these brief one-line descriptions.

There are several reasons that the �nite state machines tend to have large reconvergence

numbers: they often have very few I/Os, and their �rst sequential level often has a very

exaggerated conical shape. Because of the small number of I/Os we often see that the sizes

of the combinational and sequential out-cones are close, also explaining why they tend to

have large Rc.

We point out the growth in the amount of reconvergence in a circuit as k increases, which
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Name Rc Rc Rs Circuit

(k=2) (k=4) (k=4) Description

elliptic 0.47 0.85 0.26 elliptic eqn solver

dsip 0.27 0.81 0.28 encryption
mult16b 0.36 0.56 0.30 16-bit multiplier

mult16a 0.54 0.62 0.36 16-bit multiplier

mult32a 0.54 0.61 0.36 32-bit multiplier
s208.1 0.38 0.39 0.45 digital fractional multiplier

s344 0.38 0.59 0.57 4-bit multiplier

ecc 0.66 0.96 0.58 error-correcting
lion 0.52 0.79 0.63 fsm

bbtas 0.76 0.84 0.73 fsm

tra�c 0.50 0.73 0.78 fsm, tra�c light
bigkey 0.53 0.89 0.83 key encryption

sbc 0.47 0.53 0.83 snooping bus controller

dk27 0.77 1.00 0.88 fsm

dk15 0.65 0.88 0.92 fsm

s382 0.63 1.04 0.92 fsm, tra�c light

bbara 0.70 0.94 0.93 fsm
mm30a 0.69 1.12 0.95 min-max

mark1 0.58 0.76 1.03 fsm

s526n 0.63 1.04 1.03 fsm, tra�c light
mm4a 0.66 1.12 1.04 min-max

tseng 0.49 0.78 1.04 bus-controller

keyb 0.72 0.99 1.14 fsm

opus 0.66 0.85 1.14 fsm

dk14 0.65 1.17 1.15 fsm

ph-dcd 0.61 1.02 1.19 phase decoder

di�eq 0.57 0.97 1.20 di�erential eqn solver

gcd 0.37 0.66 1.22 compute gcd

s832 0.65 0.90 1.22 fsm

bbsse 0.69 1.04 1.23 fsm

ex6 0.66 1.11 1.23 fsm

mm9b 0.68 1.15 1.23 min-max
sse 0.69 1.04 1.23 fsm

s820 0.67 0.96 1.24 fsm from a PLD

dk17 0.71 1.09 1.25 fsm

sand 0.77 1.06 1.25 fsm

styr 0.77 1.09 1.25 fsm

s510 0.77 0.75 1.33 fsm controller

dk512 0.80 1.39 1.34 fsm

s1 0.76 1.29 1.44 fsm

s1488 0.83 1.32 1.45 fsm controller

pma 0.80 1.32 1.46 fsm

s1494 0.82 1.37 1.47 fsm controller

planet 0.84 1.36 1.50 fsm

s298 0.84 1.60 1.60 fsm from a PLD

bbrtas 0.93 1.65 1.65 fsm

Table 4.2: Reconvergence for selected MCNC circuits.

is as one would expect: the number of nodes in an out-cone decreases, but the number of

reconvergent paths remains unchanged (except when entirely \consumed" by a larger LUT).
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There is a reasonably strong correlation between Rc and Rs, however not enough that

one can predict the other. There are a number of cases where the two are drastically

di�erent. We reiterate our belief that Rs has a more theoretically pleasing value because of

its combinatorial interpretation. However, as noted earlier, we can only e�ectively calculate

it up to about 5,000 LUTs. Beyond that point Rc becomes the only available value.

Reconvergence and Routability

It is interesting to compare the routability of circuits with their reconvergence numbers.

However, routability is (obviously) sensitive to both the number of nodes and the number

of edges in the circuit so we need a large number of circuits which are very close in size.

Such a subset does not exist in the MCNC circuits.

Some such experiments were possible with the Altera benchmark circuits, where we do

have large numbers of similarly sized circuits. We �nd that R can be used in combination

with other parameters to form a model of routability, but that any predictions are still

dominated by other parameters which prevent us from isolating reconvergence. Further

details of this particular study constitute proprietary information, but we leave the direction

of research for future work.


