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Basic Baseband PAM Concepts



slide 3 of 72University of Toronto
© D.A. Johns, 1997

General Data Communication System

 • Source coder removes redundancy from source
(i.e. MPEG, ADPCM, text compression, etc.)

 • Channel coder introduces redundancy to maximize 
information rate over channel.
(i.e. error-correcting codes, trellis coding, etc.)

 • Our interest is in channel coding/decoding and 
channel transmission/reception.

source source channel

channel

coder coder

sink source channel
decoder decoder
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Basic Baseband System

 • In 2B1Q, coder maps pairs of bits to one of four 
levels — 

coder
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Rectangular Transmit Filter

 • The spectrum of  is flat if random.

 • The spectrum of  is same shape as 
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Nyquist Pulses
 •  is the impulse response for transmit filter, 

channel and receive filter (⊗ denotes convolution)
(1)

(2)

 • The received signal, , is sampled at .

(3)

 • For zero intersymbol interference (i.e. )
(4)

h t( )

h t( ) ht t( )⊗hc t( )⊗hr t( )=

q t( ) Amh t mT–( )

m ∞–=

∞

∑ n t( )⊗hr t( )+=

q t( ) kT

qk Amh kT mT–( )

m ∞–=

∞

∑ u kT( )+= , u t( ) n t( )⊗hr t( )≡

qk Ak uk+=

h kT( ) δk (δk 0 1 0 0 0 …), , , , ,= =
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Nyquist Pulses
 • For zero ISI, the same criteria in the frequency 

domain is: ( )

(5)

 • Known as Nyquist Criterion
Example Nyquist Pulses (in freq domain)
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Nyquist Pulses
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Raised-Cosine Pulse

 •  determines excess bandwidth

fs 2⁄fs 2⁄–
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Raised-Cosine Pulses

 • More excess bandwidth — impulse decays faster.
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Raised-Cosine Pulse
 •  determines amount of excess bandwidth past 

 • Example:  implies that bandwidth is 25 
percent higher than  while  implies 
bandwidth extends up to .

 • Larger excess bandwidth — easier receiver 
 • Less excess bandwidth — more efficient channel use
Example
 • Max symbol-rate if a 50% excess bandwidth is used 

and bandwidth is limited to 10kHz
 •  implies 

α fs 2⁄

α 0.25=
fs 2⁄ α 1=

fs

1.5 fs 2⁄( )× 10 kHz= fs 13.333 103× symbols/s=
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Eye Diagram

 • “a” indicates immunity to noise
 • “b” indicates immunity to errors in timing phase
 • slope “c” indicates sensitivity to jitter in timing phase
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Eye Diagram
 • Zero crossing — NOT a good performance indicator
 • 100% bandwidth has little zero crossing jitter
 • 50% BW has alot of zero crossing jitter but it is using 

less bandwidth

 • Less excess BW — more intolerant to timing phase
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Example Eye Diagrams
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Example Eye Diagrams
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Matched-Filter

 • For zero-ISI,  satisfies Nyquist criterion.

 • For optimum noise performance,  should be a 
matched-filter.

 • A matched-filter has an impulse response which is 
time-reversed of 

(6)

where  is an arbitrary constant.

transmit filter

htc t( )

n t( )
white noise

Ak
hr t( )

receive filter

Âk
estimated
symbols

+
channel

recovered
clock

q t( ) qkr t( )

htc t( )⊗hr t( )

hr t( )

htc t( )

hr t( ) Khtc t–( )=

K
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Matched-Filter (proof)
 • Consider isolated pulse case (so no worry about ISI)

(7)

(8)

(9)

 • Want to maximize signal term to noise term
 • Variance of noise is

(10)

r t( ) A0htc t( ) n t( )+=

q0 r τ( )hr t τ–( )dτ
∞–

∞

∫
t 0=

r τ( )hr τ–( )dτ
∞–

∞

∫= =

q0 A0 htc τ( )hr τ–( )dτ
∞–

∞

∫ n τ( )hr τ–( )dτ
∞–

∞

∫+=

σn
2 N0 hr

2 τ–( )dτ
∞–

∞

∫=
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Matched-Filter (proof)
 • Assuming  and  fixed, want to maximize

(11)

 • Use Schwarz inequality

(12)

with equality if and only if 

 • Maximizing (11) results in  — QED
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∞
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------------------------------------------------------=
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Matched-Filter — Why optimum?

f
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0 f
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f
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noise
htc f( ) hr f( )

hr f( )
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Too much noise,
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ISI and Noise
 • In general, we need the output of a matched filter to 

obey Nyquist criterion
 • Frequency response at output of matched filter is 

 leading to criterion

(13)

Example

 • Assume a flat freq resp channel and raised-cosine 
pulse is desired at matched-filter output

 • Transmit filter should be  
 • Receive filter should be 

Htc jω( ) 2

1
T--- Htc j2πf jm2πfs+( ) 2

m ∞–=

∞

∑ 1=

raised-cosine

raised-cosine
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Gaussian Noise
and

SNR Requirement
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Probability Distribution Function
 • Consider a random variable X
 • Cumulative distribution function (c.d.f.) — 

 (14)

(15)

Example

 • Consider a fair die

Fx x( )

Fx x( ) Pr X x≤( )≡ ∞– x ∞< <

1 Fx x( ) 0≥ ≥

1 2 3 4 5 6
0

1 6⁄
2 6⁄
3 6⁄

6 6⁄
5 6⁄
4 6⁄

Fx x( )

x
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Probability Density Function
 • Derivative of  is p.d.f. defined as 

 or (16)

 • To find prob that  is between  and 

(17)

 • It is the area under p.d.f. curve.
Example (fair die)

Fx x( ) fx x( )

fx x( )
Fx x( )d

xd---------------≡ Fx x( ) fx α( ) αd
∞–

α

∫=

X x1 x2

Pr x1 X< x2≤( ) fx α( ) αd
x1

x2

∫=

1 2 3 4 5 6
0

1
6
---δ

x

... 1
6
---δfx x( ) ... ......
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Uniform Distribution
 • p.d.f. is a constant

 • Variance is given by:  where  is range of 

random variables

 • Crest factor: 

Example

 • A uniform random variable chosen between 0 and 1 
has a mean, , and variance, 

σ2 ∆2

12
------= ∆

∆ 2⁄
x

fx x( )

∆ 2⁄–

1 ∆⁄
σ2 ∆2 12⁄=

CF max
σ

----------≡ ∆ 2⁄
∆ 12⁄
----------------- 3 1.732= = =

µ 0.5= σ2 1 12⁄=
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Gaussian Random Variables
Probability Density Function

 • Assuming  (i.e. variance is unity) and  
(i.e. mean is zero) then

(18)

σ2 1= µ 0=

fx x( ) 1
2π

----------e x2 2⁄–=

−3 −2 −1 0 1 2 3
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0.25

0.3

0.35 1
2π

----------

x

fx x( )

0.4

68%
99.7%



slide 26 of 72University of Toronto
© D.A. Johns, 1997

Gaussian Random Variables
 • Often interested in how likely a random variable will 

be in tail of a Gaussian distribution

(19)

(20)

Q x( ) Pr X x>( )≡ 1
2π

---------- e α2 2⁄– αd
x

∞

∫=

Q x( ) 1
2---erfc x 2⁄( )=
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Gaussian Random Variables
 • Probability of  being in tail of Gaussian distribution

 • If  or 
(21)

X

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

x

Q x( )
Q x( ) 1

2π
---------- e α2 2⁄– αd

x

∞

∫=

0.5 1
x 2π
-------------e x2 2⁄–

σ2 1=
µ 0=

good approx for x>4

σ2 1≠ µ 0≠

Pr X x>( ) Q x µ–( ) σ⁄( )=
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Example SNR Calculation
 • 100Base-T2 for fast-ethernet uses 5-PAM
 • Want to calculate the receive SNR needed for a 

symbol-error-rate of  (assume rest is ideal).

 • Signal power, 

(22)

 • Using a reference of  as ,
(23)

10 10–

02–4– 2 4

probability of send1 8⁄ 1 4⁄ 1 4⁄ 1 4⁄ 1 8⁄

Ps

Ps
1
4--- 0W× 1

2--- 4W× 1
4--- 16W×+ + 6W= =

1W 0dB

Ps 10log10 6( ) 7.78dB= =
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Example SNR Calculation
 • Assume Gaussian noise added to receive signal.
 • Since symbols are distance 2 apart, a noise value 

greater than 1 will cause an error in receive symbol.
 • Want to find  of Gaussian distribution such that 

likelihood of random variable greater than 1 is .
 • Recall

(24)

 • Let  and set 
(25)

(2 value because variable might be  or )

(26)

σ

10 10–

Q x σ⁄( ) 0.5erfc x σ⁄( ) 2⁄( )=

x 1=

2Q 1 σ⁄( ) 10 10–=

1> 1–<

0.5 10 10–× Q 1 σ⁄( ) 0.5erfc 1 σ 2( )⁄( )= =
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Example SNR Calculation
 • Trial and error gives  implying that 

 • Noise with  has a power of (ref to )

(27)

 • Finally, SNR needed at receive signal is
(28)

 • Does not account that large positive noise on +4 
signal will not cause symbol error (same on -4).

 • It is slightly conservative
 • BER approx same as symbol error rate if Gray coded

1 σ 2( )⁄ 4.57=
σ 0.1547 1 6.46⁄= =

σ 0.1547= 1W

Pn 10log10 σ2( ) 16.2dB–= =

SNR 7.78dB 16.2dB–( )– 24dB= =
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m-PAM
 • For  bits/symbol   levels
 • Normalize distance between levels to 2 (so error of 1 

causes a symbol error)
 •  etc.

 • Noise variance of 

 • Symbols spaced  
— average power is: 

(29)

m ⇒ 2m

m 1=( ) 1±⇒ m 3=( ) 1± 3± 5± 7±, , ,⇒

σ 0.1547=( ) BER⇒ 10 10–=

1± 3± 5± … 2m 1–( )±, , , ,

Sm 4m 1–( ) 3⁄=

SNR 10
Sm

σ2------ 
 log 10 4m 1–

3σ2---------------
 
 
 

log= =
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m-PAM

(30)

 • equals 23.1 dB for , 

 • equals 28.2 dB for ,  (approx +6dB)
 • Can show 

 • Require 4 times more power to maintain same 
symbol error rate with same noise power (uncoded)

 • In other words,
— to send 1 more bit/symbol, need 6dB more SNR 
(but does not increase bandwidth)

SNR 10
Sm

σ2------ 
 log 10 4m 1–

3σ2---------------
 
 
 

log= =

m 2= BER 10 10–=

m 3= BER 10 10–=

Sm 1+ 4Sm 1+=
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Why Assume Gaussian Noise?
Central-Limit Theorem

 • Justification for modelling many random signals as 
having a Gaussian distribution

 • Assumes random variables have identical 
distributions.

 • No restrictions on original distribution (except finite 
mean and variance).

 • Sum of Gaussian random variables is also Gaussian.

Sum of independent random variables
approaches Gaussian as sum increases
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Uniform and Gaussian Signals
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Filtered Random Signals
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Wired Digital Communications
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Wired Digital Transmission
Long Twisted-Pair Applications (1km - 6km)
 • T1/E1 — 1.5/2Mb/s (2km)
 • ISDN — Integrated Services Digital Network
 • HDSL — High data-rate Digital Subscriber Line 
 • ADSL — Asymmetric DSL 
 • VDSL — Very high data-rate DSL

Short Twisted-Pair Applications (20m - 100m)
 • 100Mb/s Fast-Ethernet — TX, T4, T2
 • Gigabit Ethernet — Short haul, Long haul

Short Coax (300m)
 • Digital video delivery — 300Mb/s - 1.5Gb/s
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Cable Modelling
 • Modelled as a transmission line.

Twisted-Pair Typical Parameters:

 •  due to the skin effect
 •  (relatively constant above 100kHz)
 •  (relatively constant above 100kHz)
 •

Gdx

Ldx

Cdx

Rdx

dx

R f( ) 1 j+( ) f 4⁄ Ω km⁄=

L 0.6 mH km⁄=

C 0.05 µF km⁄=

G 0=
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Skin Effect
 • “Resistance” is not constant with frequency and is 

complex valued.
 • Can be modelled as:

(31)

where  is a constant given by

(32)

 •  is conductor diameter,  is permeability,  is 
conductivity

 • Note resistance is inversely proportional to .
• Jordan and Balmain, “Electromagnetic Waves and Radiating Systems”, 

pg. 563, Prentice-Hall, 1968.

R ω( ) kR 1 j+( ) ω=

kR

kR
1

πdc
-------- µ

2σ
------ 

 
1 2⁄

=

dc µ σ

dc



slide 40 of 72University of Toronto
© D.A. Johns, 1997

Characteristic Impedance

(33)

 • Making use of (31) and assuming 

(34)

(35)

Now using approx  for 

(36)

 • At high freq,  appears as constant value 

Z0
R jωL+
G jωC+---------------------=

G 0=

Z0
kR ω 1 j+( ) jωL+

jωC---------------------------------------------- 
 

1 2⁄

=

Z0
L
C---- 1

kR

L ω
------------ 1 j–( )+ 

 
1 2⁄

=

1 x+( )1 2⁄ 1 x 2⁄+≈ x 1«

Z0
L
C----

kR

2 ωLC
------------------- 1 j–( )+≈

Z0 L C⁄
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Characteristic Impedance
 • From (33), when  (typically )

(37)

resulting in
(38)

 • Thus, when terminating a line, a resistance value 
around  should be used.

ωL R» ω 2π 16kHz×»

Z0h
L
C----=

Z0h 110 Ω≈

110 Ω

flog

Z0

110

1 f⁄

20kHz

(log)
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Cable Transfer-Function
 • When properly terminated, a cable of length  has a 

transfer-function of

(39)

where  is given by

(40)

 • Breaking  into real and imaginary parts,
(41)

(42)

 •  determines attenuation.
 •  determines phase.

d

H d ω,( ) e dγ ω( )–=

γ ω( )

γ ω( ) R jωL+( ) G jωC+( )=

γ ω( )

γ ω( ) α ω( ) jβ ω( )+≡

H d ω,( ) e dα ω( )– e jdβ ω( )–=

α ω( )

β ω( )
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Cable Transfer-Function
 • Assuming , then from (40)

(43)

 • Substituting in (31)

(44)

(45)

Now using approx  for 

(46)

G 0=

γ jωCR ω2LC–( )
1 2⁄

=

γ jω1.5kRC 1 j+( ) ω2LC–( )
1 2⁄

=

γ jω LC 1
kR

L ω
------------ 1 j–( )+ 

 
1 2⁄

=

1 x+( )1 2⁄ 1 x 2⁄+≈ x 1«

γ
kR

2
----- ωC

L
-------- j ω LC

kR

2
----- ωC

L
--------+ 

 +≈
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Cable Attenuation
 • Equating (41) and (46)

(47)

 • Therefore gain in dB is

(48)

 • Note that attenuation in dB is proportional to cable 
length (i.e. 2x distance doubles attenuation in dB)

 • Can reduce attenuation by using a larger diameter 
cable

 • Attenuation proportional to root-frequency

α ω( )
kR

2-----
C
L---- ω×≈

HdB d ω,( ) 8.68d–
kR

2-----
C
L---- ω××≈



slide 45 of 72University of Toronto
© D.A. Johns, 1997

Cable Attenuation
 • Gain in dB is proportional to  due to skin effect.

 • Do not confuse with 1/f noise slow frequency roll-off.

f

10
0

10
2

10
4

−100

−80

−60

−40

−20

0

(dB)

Gain

frequency

first-order
lowpass

cable

same at -3dB
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Cable Phase
 • Equating (41) and (46)

(49)

 • The linear term usually dominates
 • The linear term implies a constant group delay.
 • In other words, the linear term simply accounts for 

the delay through the cable.
 • Ignoring linear phase portion, remaining phase is 

proportional to .
 • Note it has the same multiplying term as attenuation.

β ω( ) ω LC
kR

2-----
C
L---- ω×+≈

f
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IIR Filter Cable Match using Matlab
% this program calculates an iir num/den transfer-function
% approx for a transmission line with exp(sqrt(s)) type response.
clear;

% Order of IIR filter to match to cable
% nz is numerator order and np is denominator order
nz = 9;
np = 10;

% important parameters of cable
c = 0.05e-6 % capacitance per unit length in farads/km
l = 0.6e-3 % inductance per unit length in henries/km
kr = 0.25 % resistance per unit length in ohms/km (times (1+j)*sqrt(omega))
d = 0.1 % cable length in km
% above values adjusted to obtain -20dB atten for 100m at 125MHz
k_cable = (kr/2)*sqrt(c/l);

% the frequency range for finding tf of cable
fmin=1;
fmax=1e9;
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% specify frequency points to deal with
nmax=1000;
f=logspace(log10(fmin), log10(fmax), nmax);
w=2*pi*f;
s=j*w;

% ‘cable’ is desired outcome in exponential form
cable = exp(-d*k_cable*sqrt(2)*sqrt(s));

% Perform IIR approximate transfer-function match
% Since invfreqs miminizes (num-cable*den)
% first need an approximate den so that it can be used
% as a freq weighting to minimize (num/den - cable)
[num,den]=invfreqs(cable,w,nz,np, 1./w);
[denor]=freqs(den,1,w);
% re-iterate process with weighting for the denominator
% which now minimizes (num/den - cable)
[num,den]=invfreqs(cable,w,nz,np, (1./denor).^2);
[denor]=freqs(den,1,w);
[num,den]=invfreqs(cable,w,nz,np, (1./denor).^2);

% find approximate transfer function ‘cable_approx’ to ‘cable’
[cable_approx]=freqs(num,den,w);
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% also find pole-zero model
[Z,p,k]=tf2zp(num,den);

% PLOT RESULTS
clf;
figure(1);
subplot(211);
semilogx(f,20*log10(abs(cable)),’r’);
hold on;
semilogx(f,20*log10(abs(cable_approx)),’b’);
title(‘Cable Magnitude Response’);
xlabel(‘Freq (Hz)’);
ylabel(‘Gain (dB)’);
grid;

hold off;
subplot(212);
semilogx(f,angle(cable)*180/pi,’r’);
hold on;
semilogx(f,angle(cable_approx)*180/pi,’b’);
title(‘Cable Phase Response’);
xlabel(‘Freq (Hz)’);
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ylabel(‘Phase (degrees)’);
grid;

hold off;
figure(2);
subplot(211);
semilogx(f,20*log10(abs(cable)./abs(cable_approx)));
title(‘Gain Error Between Cable and Cable_approx’);
xlabel(‘Freq (Hz)’);
ylabel(‘Gain Error (dB)’);
subplot(212);
semilogx(f,(angle(cable)-angle(cable_approx))*180/pi);
title(‘Phase Error Between Cable and Cable_approx’);
xlabel(‘Freq (Hz)’);
ylabel(‘Phase Error (degrees)’);
grid;
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Cable Response
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IIR Matching Results
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Near and Far End Crosstalk

 • In FEXT, interferer and signal both attenuated by 
cable

 • In NEXT, signal attenuated but interferer is coupled 
directly in.

 • When present, NEXT almost always dominates.
 • Can cancel NEXT if nearby interferer is known.

 • Envelope of squared gain of NEXT increases with 

Rx

Tx

Tx

Tx

Rx

Rx

NEXT

FEXT

f1.5
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Twisted-Pair Crosstalk
 • Crosstalk depends on turns/unit length, insulator, etc.
 • Twisted-pairs should have different turns/unit length 

within same bundle
0

40–

20–

60–

80–
0 10 20 30 40

Frequency (MHz)

NEXT
Loss
(dB)

15dB/decade loss

typical cat 3 wiring
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Transformer Coupling
 • Almost all long wired channels (>10m) are AC 

coupled systems 
 • AC coupling introduces baseline wander if random 

PAM sent
 • A long string of like symbols (for example, +1) will 

decay towards zero degrading performance
 • Requires baseline wander correction (non-trival)
 • Can use passband modulation schemes (CAP, QAM, 

DMT)
 • Why AC couple long wired channels??
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Transformer Coupling
Eliminates need for similar grounds
 • If ground potentials not same — large ground 

currents
Rejects common-mode signals
 • Transformer output only responds to differential 

signal current
 • Insensitive to common-mode signal on both wires

twisted-pair
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Generic Wired PAM Transceiver

 • Look at approaches for each block

hybrid
2-4 wire

canceler
echo

equalization
+

clock recovery

transmit

receive

twisted-pair
cable

line(1 of N levels)
driver

transmit
D/A

receive
A/D

Tx

Rx

R1R2

T1

Clk
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HDSL Application

 • 1.544Mb/s over 4.0km of existing telephone cables.
 • Presently 4-level PAM code (2B1Q) over 2 pairs 

(a CAP implementation also exists).
 • Symbol-rate is 386 ksymbols/s

Possible Bridged-Taps
 • Can have unterminated taps on line
 • Modelling becomes more complicated but DFE 

equalizes effectively
 • Also causes a wide variation in input line impedance 

to which echo canceller must adapt — difficult to get 
much analog echo cancellation
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HDSL Application
 • Symbol-rate is 386 ksymbols/s

Received Signal

 • For , a 200kHz signal is attenuated by .
 • Thus, high-freq portion of a 5Vpp signal is received 

as a 50mVpp signal — Need effective echo 
cancellation

Transmit Path
 • Due to large load variations, echo cancellation of 

analog hybrid is only 6dB
 • To maintain 40dB SNR receive signal, linearity and 

noise of transmit path should be better than 74dB.

d 4km= 40dB
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ISDN Application

 • Similar difficulty to HDSL but lower frequency
 • 160kb/s over 6km of 1 pair existing telephone cables
 • 4-level PAM coding — 2B1Q
 • Receive signal at  atten by 
 • Requires highly linear line-drivers + A/D converters 

for echo cancellation (similar to HDSL)

40kHz 40dB
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Fast-Ethernet Application

100Base-T4
 • 4 pair CAT3 — 3 pair each way, 25MS/s with coding

100Base-TX
 • 2 pair CAT5 — 3 level PAM to reduce radiation

100Base-T2
 • 2 pair CAT3 — 5x5 code, 25MS/s on each pair

CAT3 CAT5

crosstalk worse crosstalk better

HdB f( ) 2.32 f 0.238f+= HdB f( ) 1.967 f 0.023f 0.05 f⁄+ +=

12.5MHz 11dB↔ 12.5MHz 7dB↔
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Typical Transmit D/A Block

 • Polyphase filter to perform upsampling+filtering
HDSL
 • D/A and filter needs better than 12-bit linearity
 • Might be an oversampled 1-bit DAC

 • One example: ; 48 tap FIR; ;  DAC
Fast-Ethernet
 • Typically around 35 dB linearity + noise requirement

 • 100Base-T2 example: ; simple FIR; 75MHz 4-bit 
DAC; 3’rd-order LP cont-time filter

upsample

digital filter
+

analog
filterD/A

(1 of N levels)

transmit
T1

16 4 ∆Σ

3
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Line Drivers
 • Line driver supplies drive current to cable.
 • Commonly realized as voltage buffers.
 • Often the most challenging part of analog design.
 • Turns ratio of transformer determines equivalent line 

impedance.

-

1:n R2 2⁄

V2 2.5V±=

V1 V2 n⁄=
I1 nI2=

I2 25mA±=

V2

+

-
V1

+

I1

R2 100Ω=

I2

R2 2⁄

Vfe

R1 2⁄

R1 2⁄

Vne

R1 R2 n2⁄=

Typical Values

Vne
2
n---V2=
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Line Driver Efficiency 
 • Efficiency improves as power supply increased

Example (assume can drive within 1V of supplies)
 • From typical values, max power delivered by line 

driver is 
12V Case
 • Consider 12V supply — use , , 

 leading to 
(and drive an 800 ohm load)

3V Case
 • Consider 3V supply — use , , 

 leading to 
(and drive an 8 ohm load!!!)

Pline+R 2 2.5× 25mA× 125mW= =

n 0.5= Vne max, 10V=
I1,max 12.5mA= P 12 12.5mA× 150mW= =

n 5= Vne max, 1V=
I1,max 125mA= P 3 125mA× 375mW= =
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Line Driver

 • In CMOS, W/L of output stage might have transistors 
on the order of 10,000!

 • Large sizes needed to ensure some gain in final 
stage so that feedback can improve linearity — might 
be driving a 30 ohm load

 • When designing, ensure that enough phase margin is 
used for the wide variation of bias currents

 • Nested Miller compensation has been successfully 
used in HDSL application with class AB output stage

 • Design difficulties will increase as power supplies 
decreased
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2-4 Wire Hybrids
 • Dual-duplex often used to reduce emission.
 • However, dual-duplex requires hybrids and echo 

cancellation.

 • If , no echo through hybrid
 • Can be large impedance variation.

diff amp

line driver

RT

R1
R1

Tx

Rx
twisted-pair

V1

V2

1:nT1
RL

RL RT=
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Typical HDSL Line Impedances
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Hybrid Issues
 • Note zero at dc and pole at 10kHz.
 • Low frequency pole causes long echo tail

(HDSL requires 120 tap FIR filter)
Alternatives
 • Could eliminate  circuit and rely on digital echo 

cancellation but more bits in A/D required.
OR
 • Can make  circuit more complex to ease A/D 

specs.
 • Less echo return eases transmit linearity spec.
 • Might be a trend towards active hybrids with or 

without extra A/D and D/A converters (particularly for 
higher speeds).

R1

R1
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Typical Receive A/D

 • Often, VGA is controlled from digital signal.
 • Anti-aliasing can be simple in oversampled systems.
 • Continuous-time filters are likely for fast-ethernet
 • Example: 100Base-T2 suggests a 5’th order cont-

time filter at 20MHz with a 6-bit A/D at 75MHz.
 • Challenge here is to keep size and power of A/D 

small.

analogA/D
Rxvoltage

controlled
amplifier

control signal

filter

anti-aliasingR1
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Echo Cancellation

 • Typically realized as an adaptive FIR filter.
 • Note input is transmit signal so delay lines and 

multiplies are trivial.
 • HDSL uses about a 120 tap FIR filter
 • Coefficient accuracy might be around 20 bits for 

dynamic range of 13 bits.

z 1– z 1– z 1–

out

transmit (1 of N levels)

b0 b1 bmbm-1

bi k 1+( ) bi k( ) µe k( )xi k( ) LMS+=

x0 x1 xmxm-1
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Echo Cancellation
 • Fast-ethernet might be around 30 taps and smaller 

coefficient accuracy
 • Can also perform some NEXT cancellation if signal of 

nearby transmitter is available (likely in 100Base-T2 
and gigabit ethernet)

Alternatives

 • Higher data rates may have longer echo tails.
 • Might go to FIR/IIR hybrid to reduce complexity.
 • Non-linear echo cancellation would be VERY useful 

in reducing transmit linearity spec.
 • However, these non-linearities have memory and 

thus Volterra series expansions needed.
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Equalization
HDSL
 • Echo canceller required before equalization so 

fractional spaced equalizer not practical
 • Typically 9 tap FFE and 120 tap DFE
 • Long DFE also performs dc recovery (baseline 

wander)
Fast Ethernet
 • Often fractional-spaced EQ - 30 taps
 • DFE — 20 taps (dc recovery)


