University of Toronto

Term Test 1

Date — Oct 17, 2022: 12:10pm

Duration — 50 min

ECE 331 — Analog Electronics

Lecturer — D. Johns

ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY

- Equation sheet is on the last page of this test.
- Unless otherwise stated, assume $g_m r_o \gg 1$
- Notation: 15e3 is equivalent to 15×10^3
- · Non-programmable calculator is allowed; No other aids are allowed
- Grading indicated by []. Attempt all questions since a blank answer will certainly get 0.

Last Name:		
First Name:		
Student #:		

Question	1	2	3	Total
Points:	5	5	5	15
Score:				

Grading Table

Q1. Consider the circuit shown below

- [3] (a) Find the input impedance, R_{in} , when $\alpha = 0.9$.
- [1] (b) Find the input impedance, R_{in} , when $\alpha = 0.99$.
- [1] (c) Find the input impedance, R_{in} , when $\alpha = 1$

Solution

(a)

$$i_s = v_x/(r_s + R_S)$$

$$i_x + \alpha i_s = i_s$$

$$i_s = i_x/(1 - \alpha)$$

$$R_{in} \equiv v_x/i_x = (r_s + R_s)/(1 - \alpha)$$

$$R_{in} = (r_s + R_s)/(1 - \alpha) = ((1e3) + (10e3))/(1 - (0.9)) = 110$$
k Ω

(b)
$$R_{in} = (r_s + R_s)/(1 - \alpha) = ((1e3) + (10e3))/(1 - (0.99)) = 1.1 M\Omega$$

(c)
$$R_{in} = (r_s + R_s)/(1-1) \rightarrow \infty$$

Q2. Consider the circuit shown below where v_o is defined to be $v_{op} - v_{on}$ and all pmos transistors have $V_{ovp} = 0.2V$ while all nmos transistors have $V_{ovn} = 0.25V$. Also, $V_{CM} = 1V$ and $I_{D5} = 100\mu$ A.

$$V_{DD} = 2V$$
 $V_{tp} = -0.3V$
 $V_{tp} = -0.5V$
 $V_{tp} = -0.3V$
 $V_{tp} = -0.5V$
 $V_{tp} = -0.3V$
 $V_{tp} = -0.5V$
 $V_{tp} = -0.3V$
 $V_{tp} = -0.3V$

- [3] (a) Find the small-signal gain v_o/v_{id}
 - (b) Assuming the small-signal gain is so large that you can ignore the voltage swing on the input differential signal, find the max and minimum output voltage for v_{op} such that transistors remain in the active region.

Solution

[2]

(a) This a balanced circuit so we can find the gain of the half circuit M_1/M_3 assuming the source of M_1 is grounded.

In this circuit, $v_o/v_{id} = -(v_{on}/(v_{id}/2))$ due to the following...

Define $A_1 = v_{on}/(v_{id}/2)$ (A_1 is a negative gain)

$$v_{on} = A_1(v_{id}/2)$$
 and $v_{op} = A_1(-v_{id}/2)$

$$v_o = v_{op} - v_{on} = -A_1(v_{id}/2) - A_1(v_{id}/2) = -A_1v_{id}$$

So $v_o/v_{id} = -A_1$ where A_1 is the negative gain of the half circuit.

Carrying on, we have

$$I_{D1} = I_{D5}/2 = (100e - 6)/2 = 50\mu A$$

 $g_{m1} = (2 * I_{D1})/V_{ovn} = (2 * (50e - 6))/(0.25) = 400\mu A/V$
 $R_o = r_{o1}||r_{o3} = (50e3)||(70e3) = 29.17k\Omega$
 $v_{on}/(v_{id}/2) = -g_{m1} * R_o = -(400e - 6) * (29.17e3) = -11.67V/V$
 $v_o/v_{id} = -v_{on}/(v_{id}/2) = -(-11.67) = 11.67V/V$

$$v_o/v_{id} = 11.67 V/V$$

(b) With the assumption of a very large small-signal gain, we can assume the input voltage remains at the common-mode voltage, V_{CM} .

The maximum voltage for v_{op} occurs when M_4 is at the edge of triode/active. This occurs when the drain of M_4 one threshold voltage higher than the gate of M_4 (in other words, higher by $|V_{tp}|$).

$$v_{op,max} = V_{B2} + |V_{tp}| = (1.5) + |(-0.3)| = 1.8V$$

$$v_{op,max} = 1.8V$$

(another approach is to look for V_{SD} of M_4 reaching the overdrive voltage)

The minimum voltage for v_{op} occurs when M_2 is at the edge of triode/active. This occurs when the drain of M_2 is one threshold voltage below the gate of M_2

$$v_{op,min} = V_{CM} - V_{tn} = (1) - (0.25) = 0.75V$$

$$v_{op,min} = 0.75 \text{V}$$

[5] **Q3.** Consider the circuit shown below where all nmos transistors have $V_{ovn}=0.15$ V, all pmos transistors have $V_{ovp}=0.3$ V and $I_{D5}=100\mu$ A. Assume M_1/M_2 are perfectly matched but M_3/M_4 have a V_t mismatch of $\Delta V_t=5$ mV.

Based on a small-signal analysis approach, find the input offset of the amplifier (the sign of the offset is unimportant).

Solution

If all transistors are perfectly matched, $I_{D1} = I_{D2} = I_{D3} = I_{D4} = 50 \mu A$.

$$g_{m1} = (2 * I_{D1})/V_{ovn} = (2 * (50e - 6))/(0.15) = 666.7\mu A/V$$

$$g_{m3} = (2 * I_{D3})/V_{ovp} = (2 * (50e - 6))/(0.3) = 333.3 \mu A/V$$

If there is a ΔV_t mismatch between M_3/M_4 , then this is equivalent to M_3/M_4 remaining matched but having a differential voltage of ΔV_t being applied between the gates of M_3/M_4 . In this way, M_3/M_4 are a differential pair of transistors with an input differential signal of ΔV_t . (Call this input signal 1). So we have

$$v_{o,1} = v_{op} - v_{on} = g_{m3} R_o \Delta V_t$$

where
$$R_o = r_{o1} || r_{o3}$$

The input offset voltage, Vos, is defined to be the input differential voltage applied to the gates of M_1/M_2 that will force $v_o = 0$. So this is a second input signal that would result in the output signal being

$$v_{o,2} = v_{op} - v_{on} = g_{m1} R_o V_{os}$$

and we require that

$$v_{o,1} + v_{o,2} = 0$$

which results in

$$g_{m3}R_o\Delta V_t = -g_{m1}R_oV_{os}$$

$$V_{os} = -(g_{m3}/g_{m1})\Delta V_t$$

and ignoring the sign, we have

$$V_{os} = (g_{m3}/g_{m1}) * \Delta V_t = ((333.3e - 6)/(666.7e - 6)) * (5e - 3) = 2.5 \text{mV}$$

Equation Sheet

Constants:
$$k = 1.38 \times 10^{-23} \,\mathrm{J\,K^{-1}}; \ q = 1.602 \times 10^{-19} \,\mathrm{C}; \ V_T = kT/q \approx 26 \mathrm{mV} \ \mathrm{at} \ 300 \,\mathrm{K}; \ \epsilon_0 = 8.85 \times 10^{-12} \,\mathrm{F\,m^{-1}}; \ k_{ox} = 3.9; \ C_{ox} = (k_{ox}\epsilon_0)/t_{ox}; \ \omega = 2\pi f$$

NMOS:
$$k_n = \mu_n C_{ox}(W/L)$$
; $V_{tn} > 0$; $v_{DS} \ge 0$; $V_{ov} = V_{GS} - V_{tn}$
(triode) $v_{DS} \le V_{ov}$; $v_D < v_G - V_{tn}$; $i_D = k_n (V_{ov} v_{DS} - (v_{DS}^2/2))$; $r_{ds} = 1/(\mu_p C_{ox}(W/L)V_{ov})$
(active) $v_{DS} \ge V_{ov}$; $i_D = 0.5 k_n V_{ov}^2 (1 + \lambda_n v_{DS}')$; $v_{DS}' = v_{DS} - V_{ov}$; $g_m = k_n V_{ov} = 2I_D/V_{ov} = \sqrt{2k_n I_D}$; $r_s = 1/g_m$; $r_o = L/(|\lambda_n'|I_D)$

PMOS:
$$k_p = \mu_p C_{ox}(W/L)$$
; $V_{tp} < 0$; $v_{SD} \ge 0$; $V_{ov} = V_{SG} - |V_{tp}|$
(triode) $v_{SD} \le V_{ov}$; $v_D > v_G + |V_{tp}|$; $i_D = k_p (V_{ov} v_{SD} - (v_{SD}^2/2))$; $r_{ds} = 1/(\mu_p C_{ox}(W/L)V_{ov})$
(active) $v_{SD} \ge V_{ov}$; $i_D = 0.5 k_p V_{ov}^2 (1 + |\lambda_p| v_{SD}')$; $v_{SD}' = v_{SD} - V_{ov}$
 $g_m = k_p V_{ov} = 2I_D/V_{ov} = \sqrt{2k_p I_D}$; $r_s = 1/g_m$; $r_o = L/(|\lambda_p'|I_D)$

Accurate:
$$R_{out} = r_o + (1 + g_m r_o) R_S$$

 $i_{sc} = (-g_m r_o v_i) / (r_o + (1 + g_m r_o) R_S)$
 $v_{oc} = -g_m r_o v_i$

$$g_m r_o \gg 1 \;\; R_{out} = (1 + g_m R_S) r_o \ i_{sc} = -v_i / ((1/g_m) + R_S) \ v_{oc} = -g_m r_o v_i$$

$$R_{out} = (r_o + R_D)/(1 + g_m r_o)$$

$$i_{sc} = (g_m r_o v_i)/(r_o + R_D)$$

$$v_{oc} = (g_m r_o v_i)/(1 + g_m r_o)$$

$$R_{out} = (1/\sigma_o) + (R_D/\sigma_o r_o)$$

$$R_{out} = (1/g_m) + (R_D/g_m r_o)$$

$$i_{sc} = (g_m r_o v_i)/(r_o + R_D)$$

$$v_{oc} = v_i$$

$$R_{out} = r_o$$

 $i_{sc} = ((1 + g_m r_o)/r_o)v_i$
 $v_{oc} = (1 + g_m r_o)v_i$

$$R_{out} = r_o$$

 $i_{sc} = g_m v_i$
 $v_{oc} = g_m r_o v_i$

Diff Pair:
$$A_d = g_m R_D$$
; $A_{CM} = -(R_D/(2R_{SS}))(\Delta R_D/R_D)$; $A_{CM} = -(R_D/(2R_{SS}))(\Delta g_m/g_m)$; $V_{OS} = \Delta V_t$; $V_{OS} = (V_{OV}/2)(\Delta R_D/R_D)$; $V_{OS} = (V_{OV}/2)(\Delta (W/L)/(W/L))$ Large signal: $i_{D1} = (I/2) + (I/V_{oV})(v_{id}/2)(1 - (v_{id}/2V_{oV})^2)^{1/2}$

1st order: step response
$$y(t)=Y_{\infty}-(Y_{\infty}-Y_{0+})e^{-t/\tau};$$
 unity gain freq for $T(s)=A_M/(1+(s/\omega_{3dB}))$ for $A_M\gg 1\Rightarrow \omega_t\simeq |A_M|\omega_{3dB}$

Freq: for real axis poles/zeros
$$T(s) = k_{dc} \frac{(1+s/z_1)(1+s/z_2)\dots(1+s/z_m)}{(1+s/\omega_1)(1+s/\omega_2)\dots(1+s/\omega_n)}$$
 OTC estimate $\omega_H \simeq 1/(\sum \tau_i)$; dominant pole estimate $\omega_H \simeq 1/(\tau_{max})$ STC estimate $\omega_L \simeq \sum 1/\tau_i$; dominant pole estimate $\omega_L \simeq 1/(\tau_{min})$

Miller:
$$Z_1 = Z/(1-K)$$
; $Z_2 = Z/(1-1/K)$

Mos caps:
$$C_{gs} = (2/3)WLC_{ox} + WL_{ov}C_{ox}$$
; $C_{gd} = WL_{ov}C_{ox}$; $C_{db} = C_{db0}/\sqrt{1 + V_{db}/V_0}$; $\omega_t = g_m/(C_{gs} + C_{gd})$; for $C_{gs} \gg C_{gd} \Rightarrow f_t \simeq (3\mu V_{ov})/(4\pi L^2)$

Feedback:
$$A_f = A/(1+A\beta)$$
; $x_i = (1/(1+A\beta))x_s$; $dA_f/A_f = (1/(1+A\beta))dA/A$; $\omega_{Hf} = \omega_H(1+A\beta)$; $\omega_{Lf} = \omega_L/(1+A\beta)$; Loop Gain $L \equiv -s_r/s_t$; $A_f = A_{\infty}(L/(1+L)) + d/(1+L)$; $Z_{port} = Z_{\rho^o}((1+L_S)/(1+L_O))$: $PM = \angle L(j\omega_t) + 180$; $GM = -|L(j\omega_{180})|_{db}$; Pole splitting $\omega'_{\rho 1} \simeq 1/(g_m R_2 C_f R_1)$; $\omega'_{\rho 2} \simeq (g_m C_f)/(C_1 C_2 + C_f(C_1 + C_2))$

Pole Pair:
$$s^2 + (\omega_o/Q)s + \omega_o^2$$
; $Q \le 0.5 \Rightarrow$ real poles; $Q > 1/\sqrt{2} \Rightarrow$ freq resp peaking

Power Amps: Class A :
$$\eta = (1/4)(\hat{V_O}/IR_L)(\hat{V_O}/V_{CC})$$
; Class B : $\eta = (\pi/4)(\hat{V_O}/V_{CC})$; $P_{DN_max} = V_{CC}^2/(\pi^2R_L)$; Class AB : $i_n i_p = I_Q^2$; $I_Q = (I_S/\alpha)e^{V_{BB}/(2V_T)}$; $i_n^2 - i_L i_n - I_Q^2 = 0$

2-stage opamp:
$$\omega_{p1} \simeq (R_1 G_{m2} R_2 C_c)^{-1}; \ \omega_{p2} = G_{m2}/C_2; \ \omega_z = (C_c (1/G_{m2} - R))^{-1}; \ SR = I/C_c = \omega_t V_{ov1}; \ \text{will not SR limit if } \omega_t \hat{V_O} < SR$$