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Q1. Consider the amplifier stage shown below and only consider the shown capacitors.

M1 M2

I1

M3

C1

VDD

VDD

vi VB1

VB2

vo

v1 C1 = 1.4 pF

gm = 800µA/V

ro = 40 kΩ

All transistor have the same

(ideal)

gm and ro

(a)[3] Find the small-signal dc gain vo/vi?

Solution

rs1 = 1/gm1 = 1/(800e− 6) = 1.25 kΩ; rs2 = 1/gm2 = 1/(800e− 6) = 1.25 kΩ
Find the short-circuit current at vo relative to vi assuming all ro →∞.
isc/vi = 1/(rs1 + rs2) = 1/((1.25e3) + (1.25e3)) = 400µA/V
Find the output impedance at vo
Ro = ro3||((1 + gm2 ∗ rs1) ∗ ro2) = (40e3)||((1 + (800e− 6) ∗ (1.25e3)) ∗ (40e3)) = 26.67 kΩ
The gain is given by
vo/vi = isc/vi ∗Ro = (400e− 6) ∗ (26.67e3) = 10.67 V/V

(b)[3] Find the pole frequency at node v1 in rad/s?

Solution

Define Rx to be the impedance seen looking into the source of M2

Rx = rs2 + ro3/(gm2 ∗ ro2) = (1.25e3) + (40e3)/((800e− 6) ∗ (40e3)) = 2.5 kΩ
The impedance to gnd seen at node v1 is given by
Rv1 = rs1||Rx = (1.25e3)||(2.5e3) = 833.3 Ω

The pole freq is ωp1 = 1/(Rv1 ∗ C1) = 1/((833.3) ∗ (1.4e− 12)) = 857.1 Mrad/s

Q2. Consider feedback amp shown below where the input is a current source, IS with a parallel resistance
of RS .
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M1

M2

R1
10 kΩ

R2
12 kΩ

R3

10 kΩRS
12 kΩ

IS

VDD

VDD

VB
vo

v1

v2

gm1 = 800µA/V
ro1 = 22 kΩ
gm2 = 1.4 mA/V
ro2 = 20 kΩ

Rin

Rout

(a)[3] Find L, AL∞ and ACL. (Assume AL0 = 0)

Solution

Define Rx to be the impedance looking into the source of M1

Rx = 1/gm1 +R1/(gm1 ∗ ro1) = 1/(800e− 6) + (10e3)/((800e− 6) ∗ (22e3)) = 1.818 kΩ
Define Ry to be the impedance at the vo node with the loop broken
Ry = ro2||R2||(R3 +RS ||Rx) = (20e3)||(12e3)||((10e3) + (12e3)||(1.818e3)) = 4.552 kΩ
Starting at the gate of M2 (node v2) and going around the loop, we have
vo/v2 = −gm2 ∗Ry = −(1.4e− 3) ∗ (4.552e3) = −6.372 V/V
v1/vo = (RS ||Rx)/(RS ||Rx +R3) = ((12e3)||(1.818e3))/((12e3)||(1.818e3) + (10e3)) = 0.1364 V/V
v2/v1 = gm1 ∗ (ro1||R1) = (800e− 6) ∗ ((22e3)||(10e3)) = 5.5 V/V

L = −vo/v2 ∗ v1/vo ∗ v2/v1 = −(−6.372) ∗ (0.1364) ∗ (5.5) = 4.779

AL∞ = −R3 = −(10e3) = −10 kΩ

ACL = AL∞ ∗ (L/(1 + L)) = (−10e3) ∗ ((4.779)/(1 + (4.779))) = −8.27 kΩ

(b)[3] Find Rin and Rout
Solution

For Rout, R
′
out = Ry = 4.552 kΩ (from above) is the output resistance with the loop broken

LS = 0 and LO = L
Rout = R′out ∗ (1 + LS)/(1 + LO) = (4.552e3) ∗ (1 + (0))/(1 + (4.779)) = 787.6 Ω

For Rin, define Rin2 to be the input resistance that INCLUDES RS
R′in2 is the input resistance (including RS) with the loop broken
R′in2 = RS ||(R3 + ro2||R2)||Rx = (12e3)||((10e3) + (20e3)||(12e3))||(1.818e3) = 1.448 kΩ
Rin2 = R′in2 ∗ (1 + LS)/(1 + LO) = (1.448e3) ∗ (1 + (0))/(1 + (4.779)) = 250.6 Ω
Since Rin2 = RS ||Rin we have

Rin = 1/(1/Rin2 − 1/RS) = 1/(1/(250.6)− 1/(12e3)) = 255.9 Ω

Q3. Consider the amplifier stage shown below where the input/output characteristic for the class B
output stage (from v2 to vo) is shown. For this class B output stage, the gain is k = 0.9 for |v2| > Vx
until |vo| reaches Vmax while the dead-band region results in vo = 0 for |v2| < Vx. The gain of the
opamp is Av = 8 V/V.
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QN

QP

vovi

v2

VCC

−VCC

v2

vo

Vx

−Vx

Vmax

−Vmax

Av = 8 V/V Vmax = 4.5 V

Vx = 0.65 V

k = 0.9

(a)[2] What is the dead-band region for vi to vo?

Solution

The dead-band region is reduced by the gain of the amplifier (the class-B output stage gain does
not affect the dead-band region).

Vx
′ = Vx/Av = (0.65)/(8) = 81.25 mV

(b)[2] What is the gain outside the dead-band region but before the output reaches Vmax?

Solution

The gain outside the dead-band region and before vo = Vmax is given by
k′ = L/(1 + L) where L is the loop gain in the region given by
L = Av ∗ k = (8) ∗ (0.9) = 7.2

k′ = L/(1 + L) = (7.2)/(1 + (7.2)) = 0.878 V/V

(c)[2] What is the value of vi when the output just reaches Vmax?

Solution

Outside the dead-band region, vo is given by the equation
vo = (vi − Vx′)k′ where Vx

′ is the new dead-band region and k′ is the closed-loop gain
Setting vo equal to Vmax = 4.5 V and solving for vi, we have

vi = (Vmax/k
′) + Vx

′ = ((4.5)/(0.878)) + (81.25e− 3) = 5.206 V

Q4. Assume an opamp is ideal with the transfer-function,
A(s) = kdc

(1+s/ωp1)(1+s/ωp2)(1+s/ωp3)

The straight-line Bode phase plot for the amplifier is shown below and the dc gain is given by
kdc = 1.5e3
Assume the poles are widely spaced apart.



ECE 331 Page 5 of 10 Dec 17, 2020: 6:30pm

10−210−1 100 101 102 103 104 105 106 107 108 109 1010

−270

−180

−90

0

logω [rad/s]

∠
A
(s

)
[d

e
g
re

e
s]

(s
tr
a
ig
h
t-
li
n
e
)

(a)[2] Find the values for ωp1, ωp2, and ωp3 in rad/s

Solution

The pole frequencies can be found by looking at the straight-line Bode phase plot.
Assuming the poles are widely spaced apart,
the phase at where the poles occur are at −45◦, −135◦, −225◦

Therefore, the pole locations are
ωp1 = 1 rad/s

ωp2 = 1 krad/s

ωp3 = 100 krad/s

(b)[4] Ignoring the effect of the highest frequency pole, if this amplifier is used in a non-inverting
configuration, what is the smallest dc closed-loop amplifier gain that will result in a phase
margin of 65 ◦? (use the actual A(s) and NOT the straight-line Bode plot).

Solution

The loop gain is A(s)β resulting in L(s) = A(s)β = kdcβ
(1+s/ωp1)(1+s/ωp2)

(ωp3 is ignored so it is set to ∞ in A(s))
∠L(jω) = − atan(ω/ωp1)− atan(ω/ωp2)
PM = ∠L(jω1)− (−180◦) where ω1 is defined as |L(jω1)| = 1
We know that for PM = 65 ◦, the unity gain freq ω1 will have the relationship ωp1 � ω1 < ωp2
so reconizing that ω1/ωp1 � 1, we can make the approximation
atan(ω1/ωp1) ≈ 90◦ leading to
PM = 90◦ − atan(ω1/ωp2) = 65 ◦

ω1 = ωp2 ∗ tan (((90− PM)/180) ∗ π) = (1e3) ∗ tan (((90− (65))/180) ∗ (3.142)) = 466.3 rad/s

and we now find β by making use of |L(jω1)| = 1
β = (ω1/ωp1) ∗ (

√
1 + (ω1/ωp2)2)/kdc = ((466.3)/(1)) ∗ (

√
1 + ((466.3)/(1e3))2)/(1.5e3) = 0.343

The closed-loop gain, Acl is given by Acl = A0/(1 + A0β) where A0 = kdc resulting in the min
Acl given by

Acl = kdc/(1 + kdc ∗ β) = (1.5e3)/(1 + (1.5e3) ∗ (0.343)) = 2.91 V/V



ECE 331 Page 6 of 10 Dec 17, 2020: 6:30pm

(we could also have used Acl ≈ 1/β since kdcβ � 1)

The minimum closed-loop gain that results in PM = 65 ◦ is Acl = 2.91 V/V

Q5. Consider the CMOS push-pull output stage shown below. The size for the NMOS output tran-
sistor has W1 = 90µm and L1 = 90 nm while the PMOS output transistor has W7 = 180µm and
L7 = 105 nm. It is desired that IQ = 800µA while I1 = I2 = 66.67µA.

M1

M2M3

M4M5

M7

M8M9

M10M11

I1

I2

RL

vi vo

VDD

VDDVDD

VDD

−VDD

−VDD
−VDD−VDD

NMOS error amp

PMOS error amp

(a)[3] Find the width and length for M2,M3,M8,M9 so that the desired currents are obtained.

Solution

M2 and M3 are matched and M8 and M9 are matched so we just need the sizes of M2 and M8.
The length of M2 should match the length of M1 so L2 = L1 = (90e− 9) = 90 nm
We also have a current mirror between M2 and M1 when vo = 0 given by
IQ = ID1 = (W1/W2) ∗ (I1/2) resulting in

W2 = ((I1/2)/IQ) ∗W1 = (((66.67e− 6)/2)/(800e− 6)) ∗ (90e− 6) = 3.75µm

The length of M8 should match the length of M7 so L8 = L7 = (105e− 9) = 105 nm
We also have a current mirror between M8 and M7 when vo = 0 given by
IQ = ID7 = (W7/W8) ∗ (I2/2) resulting in

W8 = ((I2/2)/IQ) ∗W7 = (((66.67e− 6)/2)/(800e− 6)) ∗ (180e− 6) = 7.5µm
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(b)[3] When simulating this power amp, it is found that the gain of the NMOS error amp is too large
and should be reduced to improve the stability of the circuit. What changes can be made to the
circuit to reduce the error amp gain by a factor of 2 while keeping IQ unchanged?

Solution

The gain of the error amp is Av = gm5 ∗ (ro5||ro3). To reduce the gain, we can either reduce
gm5 or the output impedances. It is generally preferable to reduce gm (as there are 2 output
impedances involved and also, you would need either more current or a shorter length but the
length of M3 has to match the length of M1).
To reduce gm5 by a factor of 2, you need to reduce the W5 by a factor of 4 (due to the square root
relationship assuming the current remains unchanged). Of course, W4 would also be reduced by
a factor of 4.
Reduce both W4 and W5 by a factor of 4

Q6. Consider a class AB BJT output stage as shown below with an output load, RL = 30 Ω and a
maximum amplitude of ±12 V (limited by the input swing). The power transistors (QN and QP )
both have IS,pow = 200 fA and βpow = 50 while the bias transistor (Q1) has IS = 20 fA and β1 = 180 .
Assume VT = 25 mV

IB

QN

QP

Q1

R2

R1
RL

vi

vo

VCC = 14 V

VCC = 14 V

−VCC = −14 V

(a)[2] Assuming a quiescent current (in the power transistors) of 12 mA, find the 3 values of the input
voltage corresponding to when the output is either -12 V, 0 V or 12 V.

Solution

Define αpow = βpow/(βpow + 1) = (50)/((50) + 1) = 0.9804
Define ISα,pow = IS,pow/αpow = 204 fA

The quadratic equation for class-AB BJT amplifiers is ...
i2n − iLin − I2Q = 0
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When iL = 0, in = IQ
When iL � IQ, we can ignore the I2Q term leading to
in ≈ iL
In addition, we can find the pnp emitter current from
ip = I2Q/in which is found from the equation inip = I2Q

To find the input voltage, we make use of
vo = vi + VEB,P leading to vi = vo − VEB,P
We need to find the 3 values of VEB,P which are found from the ip values using...
VEB,p = VT ∗ ln(ip/(ISα))

vo = 0 V :
iL = 0 leading to ip = IQ = (12e− 3) = 12 mA
VEB,p = VT ∗ log (ip/ISα,pow) = (25e− 3) ∗ log ((12e− 3)/(204e− 15)) = 0.6199 V

vi = vo − VEB,p = (0)− (0.6199) = −0.6199 V

vo = 12 V :
iL = vo/RL = (12)/(30) = 0.4 A leading to in ≈ iL = 0.4 A
ip = I2Q/in = (12e− 3)2/(0.4) = 360µA
VEB,p = VT ∗ log (ip/ISα,pow) = (25e− 3) ∗ log ((360e− 6)/(204e− 15)) = 0.5323 V

vi = vo − VEB,p = (12)− (0.5323) = 11.47 V

vo = −12 V :
iL = vo/RL = (−12)/(30) = −0.4 A leading to ip ≈ −iL = 0.4 A (by symmetry)
VEB,p = VT ∗ log (ip/ISα,pow) = (25e− 3) ∗ log ((0.4)/(204e− 15)) = 0.7076 V

vi = vo − VEB,p = (−12)− (0.7076) = −12.71 V

(b)[4] Design the bias circuit for a quiescent current (in the power transistors) of 12 mA and a minimum
current of 1.2 mA through the Vbe multiplier circuit.

Solution

Define Vo,max = 12 V as the maximum peak output voltage
Define Imin = 1.2 mA as the min current through Vbe multiplier
IB is sized by choosing IB to be Imin + IBn,max where IBn,max is the largest current into the
base of QN .
IBn,max = (Vo,max/RL) ∗ (1/(βpow + 1)) = ((12)/(30)) ∗ (1/((50) + 1)) = 7.843 mA

IB = Imin + IBn,max = (1.2e− 3) + (7.843e− 3) = 9.043 mA

When Imin is going to the Vbe multiplier, we choose to let half flow through R2 and half flow
through IC1 of Q1 (this is a reasonable design choice).
As more current flows into the Vbd multiplier, IC1 will absorb most of the extra current
So IR = Imin/2 = (1.2e− 3)/2 = 600µA

We have from part(a) that for vo = 0, and IQ = 12 mA then VEB,p = 0.6199 V
and due to matching, VBE,n = VEB,p = 0.6199 V leading to
VBB = VBE,n + VEB,p = (0.6199) + (0.6199) = 1.24 V

Define α1 = β1/(β1 + 1) = (180)/((180) + 1) = 0.9945
Define ISα,1 = IS/α1 = 20.11 fA
(since β1 is so large, we could have ignored the effect of α1 here)
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At vo = 0, in = IQ resulting in QN base current given by
IBn,Q = IQ/(βpow + 1) = (12e− 3)/((50) + 1) = 235.3µA
IC1 = IB − IR − IBn,Q = (9.043e− 3)− (600e− 6)− (235.3e− 6) = 8.208 mA
Vbe1 = VT ∗ log (IC1/ISα,1) = (25e− 3) ∗ log ((8.208e− 3)/(20.11e− 15)) = 0.6684 V
R1 = Vbe1/IR = (0.6684)/(600e− 6) = 1.114 kΩ (Assuming IB1 ≈ 0)
VBB = Vbe1 + (Vbe1/R1) ∗R2 = Vbe1 ∗ (1 +R2/R1)
R2 = ((VBB/Vbe1)− 1) ∗R1 = (((1.24)/(0.6684))− 1) ∗ (1.114e3) = 952.5 Ω
R1 = 1.114 kΩ; R2 = 952.5 Ω
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Equation Sheet

Constants: k = 1.38× 10−23 J K−1; q = 1.602× 10−19 C; VT = kT/q ≈ 26mV at 300 K; ε0 = 8.85× 10−12 F m−1;
kox = 3.9; Cox = (koxε0)/tox; ω = 2πf

NMOS: kn = µnCox(W/L); Vtn > 0; vDS ≥ 0; Vov = VGS − Vtn
(triode) vDS ≤ Vov; vD < vG − Vtn; iD = kn(VovvDS − (v2DS/2))

(active) vDS ≥ Vov; iD = 0.5knV
2
ov(1 + λvDS); gm = knVov = 2ID/Vov =

√
2knID; rs = 1/gm;

ro = L/(|λ′|ID)

PMOS: kp = µpCox(W/L); Vtp < 0; vSD ≥ 0; Vov = VSG − |Vtp|
(triode) vSD ≤ Vov; vD > vG + |Vtp|; iD = kp(VovvSD − (v2SD/2))

(active) vSD ≥ Vov; iD = 0.5kpV
2
ov(1 + |λ|vSD); gm = kpVov = 2ID/Vov =

√
2kpID; rs = 1/gm;

ro = L/(|λ′|ID)

BJT: (active) iC = ISe
(vBE/VT )(1 + (vCE/VA)); gm = α/re = IC/VT ; re = VT /IE; rπ = β/gm; ro = |VA|/IC ;

iC = βiB; iE = (β + 1)iB; α = β/(β + 1); iC = αiE; Rb = (β + 1)(re +RE); Re = (RB + rπ)/(β + 1)

R
S

v
i

isc ≈ −(1/gm +RS)−1vi
Rx ≈ (1 + gmRS)ro

Approx due to
gmro � 1

R
Dv

i

voc ≈ vi
Rx ≈ 1/gm +RD/(gmro)

R
D

v
i

vo

vo/vi ≈ gm(ro||RD)

Diff Pair: Ad = gmRD; ACM = −(RD/(2RSS))(∆RD/RD); ACM = −(RD/(2RSS))(∆gm/gm);
VOS = ∆Vt; VOS = (VOV /2)(∆RD/RD); VOS = (VOV /2)(∆(W/L)/(W/L))

Large signal: iD1 = (I/2) + (I/Vov)(vid/2)(1− (vid/2Vov)
2)1/2

1st order: step response y(t) = Y∞ − (Y∞ − Y0+)e−t/τ ;
unity gain freq for T (s) = AM/(1 + (s/ω3dB)) for AM � 1⇒ ωt ' |AM |ω3dB

Freq: for real axis poles/zeros T (s) = kdc
(1 + s/z1)(1 + s/z2) . . . (1 + s/zm)

(1 + s/ω1)(1 + s/ω2) . . . (1 + s/ωn)
OTC estimate ωH ' 1/(

∑
τi); dominant pole estimate ωH ' 1/(τmax)

STC estimate ωL '
∑

1/τi; dominant pole estimate ωL ' 1/(τmin)

Miller: Z1 = Z/(1−K); Z2 = Z/(1− 1/K)

Mos caps: Cgs = (2/3)WLCox +WLovCox; Cgd = WLovCox; Cdb = Cdb0/
√

1 + Vdb/V0;
ωt = gm/(Cgs + Cgd); for Cgs � Cgd ⇒ ft ' (3µVov)/(4πL

2)

Feedback: Af = A/(1 + Aβ); xi = (1/(1 + Aβ))xs; dAf/Af = (1/(1 + Aβ))dA/A; ωHf = ωH(1 + Aβ); ωLf =

ωL/(1 +Aβ);
Loop Gain L ≡ −sr/st; Af = A∞(L/(1 + L)) + d/(1 + L); Zport = Zpo((1 + LS)/(1 + LO)): PM =

∠L(jωt) + 180; GM = −|L(jω180)|db;
Pole splitting ω′p1 ' 1/(gmR2CfR1); ω′p2 ' (gmCf )/(C1C2 + Cf (C1 + C2))

Pole Pair: s2 + (ωo/Q)s+ ω2
o; Q ≤ 0.5⇒ real poles; Q > 1/

√
2⇒ freq resp peaking

Power Amps: Class A : η = (1/4)(V̂O/IRL)(V̂O/VCC); Class B : η = (π/4)(V̂O/VCC); PDN max = V 2
CC/(π

2RL);
Class AB : inip = I2Q; IQ = (IS/α)eVBB/(2VT ); i2n − iLin − I2Q = 0

2-stage opamp: ωp1 ' (R1Gm2R2Cc)
−1; ωp2 = Gm2/C2; ωz = (Cc(1/Gm2 −R))−1;

SR = I/Cc = ωtVov1; will not SR limit if ωtV̂O < SR


