University of Toronto

Faculty of Applied Science \& Engineering
 Final Exam

Date - Dec 19, 2022: 2pm
Duration - 2 hr 30 min
ECE 331 - Analog Electronics
Exam Type: A
Non-programmable calculator is allowed
Lecturer - D. Johns

ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY

- Equation sheet is on the last page of this test.
- Unless otherwise stated, assume $g_{m} r_{o} \gg 1$
- Notation: 15 e 3 is equivalent to 15×10^{3}
- Grading indicated by []. Attempt all questions since a blank answer will certainly get 0 .
- If you need more space, write on the back of pages.

Last Name: \qquad

First Name: \qquad

Student \#: \qquad

Question	1	2	3	4	5	6	Total
Points:	6	6	6	6	6	6	36
Score:							

Q1.
[3]
[3]
(a) Find the input impedance for the circuit model shown below.

(b) Below is shown two different models for the same transistor WITH input resistance r_{π}. The model in (i) makes use of a CCCS while the model in (ii) makes use of a VCCS. Derive the relationship between g_{m}, β and r_{π} such that the 2 models are equivalent.

Solution

(a) At the $R_{i n}$ node, apply a voltage v_{x} and determine i_{x} going into that node and by definition, $R_{i n}=v_{x} / i_{x}$

$$
\begin{gathered}
i_{x}=g_{m} v_{g s} \\
i_{R 1}=g_{m} v_{g s}=i_{x} \\
v_{g s}=v_{x}-i_{R 1} R_{1}=v_{x}-i_{x} R_{1}
\end{gathered}
$$

Subtituting in for $v_{g s}$ in the first equation...

$$
\begin{gathered}
i_{x}=g_{m}\left(v_{x}-i_{x} R_{1}\right) \Rightarrow i_{x}\left(\left(1 / g_{m}\right)+R_{1}\right)=v_{x} \\
R_{i n}=v_{x} / i_{x}=\left(1 / g_{m}\right)+R_{1} \\
R_{i n}=1 / g_{m}+R_{1}=1 /(200 e-6)+(1 e 3)=6 \mathrm{k} \Omega
\end{gathered}
$$

(b)

$$
\begin{gathered}
g_{m} v_{\pi}=\beta i_{B} \\
i_{B}=v_{\pi} / r_{\pi} \Rightarrow g_{m} v_{\pi}=\beta\left(v_{\pi} / r_{\pi}\right) \\
g_{m}=\beta / r_{\pi}
\end{gathered}
$$

Q2. Consider the amplifier shown below where all the transistor lengths are 180 nm . Assume the current sources are ideal and all $r_{0} \rightarrow \infty$.

3]
(a) Calculate the drain currents and overdrive voltages for transistors $M_{2} / M_{3} / M_{4} / M_{5}$. (assume the bias voltage of v_{i} is set so that all transistors remain in the active region)
(b) Find the maximum $V_{o, \max }$ and minimum $V_{o, \min }$ voltage at the output, v_{o}, while keeping all transistors in the active region.

Solution

$$
\begin{aligned}
& \text { (a) } I_{D 2}=I_{1} *\left((W / L)_{2} /(W / L)_{1}\right)=(20 e-6) *((20) /(10))=40 \mu \mathrm{~A} \\
& I_{D 5}=I_{2} *\left((W / L)_{5} /(W / L)_{6}\right)=(8 e-6) *((10) /(5))=16 \mu \mathrm{~A}=I_{D 4} \\
& I_{D 3}=I_{D 2}-I_{D 4}=(40 e-6)-(16 e-6)=24 \mu \mathrm{~A} \\
& I_{D 2}=40 \mu \mathrm{~A} ; I_{D 3}=24 \mu \mathrm{~A} ; I_{D 4}=16 \mu \mathrm{~A} ; I_{D 5}=16 \mu \mathrm{~A} \\
& \qquad V_{o v}=\sqrt{2 I_{D} /\left(\mu_{n} C_{o x}(W / L)\right)} \\
& V_{O V 2}=\operatorname{sqrt}\left(2 * I_{D 2} /\left(\mu_{n} C_{o x} *(W / L)_{2}\right)\right)=\operatorname{sqrt}(2 *(40 e-6) /((240 e-6) *(20)))=0.1291 \mathrm{~V} \\
& V_{O V 4}=\operatorname{sqrt}\left(2 * I_{D 4} /\left(\mu_{n} C_{o x} *(W / L)_{4}\right)\right)=\operatorname{sqrt}(2 *(16 e-6) /((240 e-6) *(10)))=0.1155 \mathrm{~V} \\
& V_{O V 3}=\operatorname{sqrt}\left(2 * I_{D 3} /\left(\mu_{p} C_{o x} *(W / L)_{3}\right)\right)=\operatorname{sqrt}(2 *(24 e-6) /((80 e-6) *(10)))=0.2449 \mathrm{~V} \\
& V_{O V 5}=\operatorname{sqrt}\left(2 * I_{D 5} /\left(\mu_{p} C_{o x} *(W / L)_{5}\right)\right)=\operatorname{sqrt}(2 *(16 e-6) /((80 e-6) *(10)))=0.2 \mathrm{~V} \\
& V_{O V 2}=0.1291 \mathrm{~V} ; V_{O V 3}=0.2449 \mathrm{~V} ; V_{O V 4}=0.1155 \mathrm{~V} ; V_{O V 5}=0.2 \mathrm{~V}
\end{aligned}
$$

(b) For $V_{o, \max }$

$$
V_{o, \max }=V_{D D}-V_{O V 5}=(1.8)-(0.2)=1.6 \mathrm{~V}
$$

For $V_{o, \text { min }}$
$V_{S 1}=V_{B 1}-\left(V_{t n}+V_{O V 4}\right)=(0.9)-((0.4)+(0.1155))=0.3845 \mathrm{~V}$
$V_{o, \min }=V_{S 1}+V_{O V 4}=(0.3845)+(0.1155)=0.5 \mathrm{~V}$
Note that we could have found this more directly from the gate voltage of M_{4} as

$$
V_{o, \min }=V_{B 1}-V_{t n}=(0.9)-(0.4)=0.5 \mathrm{~V}
$$

Q3. Consider the amplifier stage shown below and only consider the shown capacitors. All the transistors have the same g_{m} and r_{o}.

[3] (a) Find the small-signal dc gain, v_{o} / v_{i}.
(For the short circuit output current, assume all $r_{0} \rightarrow \infty$ while for the output impedance, use the accurate formula on the equation sheet - in other words, do not assume $g_{m} r_{0} \gg 1$ when finding the output impedance)

Solution

(a) For the short circuit current, $i_{s c}$ at node v_{o}, we have the following small-signal circuit

Assuming $r_{o} \rightarrow \infty$, we have
$R_{x}=1 / g_{m} 2$
$i_{s c}=i_{d 1}=v_{i} /\left(1 / g_{m 1}+R_{x}\right)=v_{i} /\left(1 / g_{m 1}+1 / g_{m 2}\right)$
$i_{s c}=500 e-6 v_{i}$
For $R_{\text {out }}$, we use to original figure and define R_{z} to be the impedance looking into the source of M_{1} and R_{y} is the impedance looking into the drain of M_{2}
$R_{z}=r_{o 1} /\left(1+g_{m 1} * r_{o 1}\right)=(6 e 3) /(1+(1 e-3) *(6 e 3))=857.1 \Omega$
$R_{y}=r_{o 2}+\left(1+g_{m 2} * r_{o 2}\right) * R_{z}=(6 e 3)+(1+(1 e-3) *(6 e 3)) *(857.1)=12 \mathrm{k} \Omega$
$R_{\text {out }}=r_{\text {o } 2}\left\|R_{y}=(6 e 3)\right\|(12 e 3)=4 \mathrm{k} \Omega$
Finally, we have
$v_{o}=i_{\text {sc }} R_{\text {out }}=\left(500 e-6 v_{i}\right)(4 \mathrm{k} \Omega)=2 v_{i}$
$v_{o} / v_{i}=2 \mathrm{~V} / \mathrm{V}$
[3] (b) Find the pole frequency due to C_{1} in rad/s. (Do not assume $g_{m} r_{o} \gg 1$)

Solution

(b) For finding the pole frequency due to C_{1}, we use the original circuit.

The impedance looking into the source of M_{2} is
$R_{w}=\left(r_{o 2}+r_{o 3}\right) /\left(1+g_{m 2} * r_{o 2}\right)=((6 e 3)+(6 e 3)) /(1+(1 e-3) *(6 e 3))=1.714 \mathrm{k} \Omega$
The impedance seen by the capacitor C_{1} is (making use of R_{z} found in (a) above)
$R_{C 1}=R_{w}\left\|R_{z}=(1.714 e 3)\right\|(857.1)=571.4 \Omega$
The pole frequency is

$$
\omega_{p 1}=1 /\left(R_{C 1} * C_{1}\right)=1 /((571.4) *(800 e-15))=2.188 \mathrm{Grad} / \mathrm{s}
$$

Q4. Consider the feedback amp shown below where the input is a current source, I_{S} with a parallel resistance of R_{s}.

[3] (a) Find $L, A_{L \infty}$ and $A_{C L}$. (Assume $A_{L 0}=0$)

Solution

Define R_{x} to be the impedance looking into the source of M_{1}
$R_{x}=1 / g_{m 1}+R_{1} /\left(g_{m 1} * r_{o 1}\right)=1 /(1 e-3)+(10 e 3) /((1 e-3) *(15 e 3))=1.667 \mathrm{k} \Omega$ Define R_{y} to be the impedance at the v_{o} node to ground when the loop is broken at v_{2} $R_{y}=r_{o 2}\left\|R_{2}\right\|\left(R_{3}+R_{S} \| R_{x}\right)=(20 e 3)\|(12 e 3)\|((10 e 3)+(12 e 3) \|(1.667 e 3))=4.534 \mathrm{k} \Omega$
Breaking the loop at v_{2}, we have

$$
\begin{aligned}
& v_{o} / v_{2}=-g_{m 2} * R_{y}=-(800 e-6) *(4.534 e 3)=-3.627 \mathrm{~V} / \mathrm{V} \\
& v_{1} / v_{o}=\left(R_{S} \| R_{x}\right) /\left(R_{S} \| R_{x}+R_{3}\right)=((12 e 3) \|(1.667 e 3)) /((12 e 3) \|(1.667 e 3)+(10 e 3))=0.1277 \mathrm{~V} / \mathrm{V} \\
& v_{2} / v_{1}=g_{m 1} *\left(r_{o 1} \| R_{1}\right)=(1 e-3) *((15 e 3) \|(10 e 3))=6 \mathrm{~V} / \mathrm{V} \\
& L=-v_{o} / v_{2} * v_{1} / v_{o} * v_{2} / v_{1}=-(-3.627) *(0.1277) *(6)=2.778
\end{aligned}
$$

If the loop is broken at v_{2} and an infinite gain amplifier is inserted, then the small-signal drain voltage of M_{1} is zero, so $i_{D 1}=0$ so $v_{g s 1}=0$ which means $v_{1}=0$ (all small-signal values) so we have
$A_{L \infty}=-R_{3}=-(10 e 3)=-10 \mathrm{k} \Omega$
$A_{C L}=A_{L \infty} *(L /(1+L))=(-10 e 3) *((2.778) /(1+(2.778)))=-7.353 \mathrm{k} \Omega$
[3] (b) Find $R_{\text {in }}$ and $R_{\text {out }}$

Solution

For $R_{\text {out }}$,
$R_{\text {out }, 0}=R_{y}=(4.534 e 3)=4.534 \mathrm{k} \Omega$
where R_{y} was found in part (a) and is the output impedance with the loop broken.
Also, for this port, $L_{S}=0$ and $L_{O}=L$
$R_{\text {out }}=R_{\text {out }, 0} *\left(1+L_{S}\right) /\left(1+L_{O}\right)=(4.534 e 3) *(1+(0)) /(1+(2.778))=1.2 \mathrm{k} \Omega$
For the $R_{i n}$ port, we have the port impedance when the loop is broken
$R_{\text {in,0 }}=R_{x}\left\|\left(R_{3}+r_{o 2} \| R_{2}\right)=(1.667 e 3)\right\|((10 e 3)+(20 e 3) \|(12 e 3))=1.522 \mathrm{k} \Omega$
We also have for this port, $L_{S}=0$ while we need to find the new value of L_{O} since R_{S} is no longer attached to the circuit when the port is open.
We now have
$R_{y}^{\prime}=r_{o 2}\left\|R_{2}\right\|\left(R_{3}+R_{x}\right)=(20 e 3)| |(12 e 3)| |((10 e 3)+(1.667 e 3))=4.565 \mathrm{k} \Omega$
$v_{o} / v_{2}=-g_{m 2} * R_{y}^{\prime}=-(800 e-6) *(4.565 e 3)=-3.652 \mathrm{~V} / \mathrm{V}$
$v_{1} / v_{o}=R_{x} /\left(R_{x}+R_{3}\right)=(1.667 e 3) /((1.667 e 3)+(10 e 3))=0.1429 \mathrm{~V} / \mathrm{V}$
$v_{2} / v_{1}=g_{m 1} *\left(r_{o 1} \| R_{1}\right)=(1 e-3) *((15 e 3) \|(10 e 3))=6 \mathrm{~V} / \mathrm{V}$
$L_{O}=-v_{0} / v_{2} * v_{1} / v_{0} * v_{2} / v_{1}=-(-3.652) *(0.1429) *(6)=3.13$
resulting in
$R_{\text {in }}=R_{\text {in,0 }} *\left(1+L_{s}\right) /\left(1+L_{o}\right)=(1.522 e 3) *(1+(0)) /(1+(3.13))=368.4 \Omega$

Q5. A multipole amplifier has a dc gain of 55 dB and poles at $f_{p 1}=1 \mathrm{MHz}, f_{p 2}=20 \mathrm{MHz}$ and $f_{p 3}=400 \mathrm{MHz}$.
(a) If an extra dominant pole is added to the amplifer, at what frequency (in Hz) should it be added to obtain a phase-margin of roughly 45 degrees?
(b) If the pole at $f_{p 1}=1 \mathrm{MHz}$ is located in the circuit and extra capacitance is added at that node (other poles are unaffected) to move $f_{p 1}$ to become the dominant pole, where should $f_{p 1}^{\prime}$ be located to obtain a phase-margin of roughly 45 degrees?

Solution

(a) The relationship between $A_{o, d B}$ and A_{o} is
$A_{o, d B}=20 \log _{10}\left(A_{o}\right)$
$A_{o}=10^{\left(A_{o, d B} / 20\right)}=10^{(55 \mathrm{~dB} / 20)} 562.3$
So we have a dominant transfer-function of
$A(s)=\frac{A_{\circ}}{1+s / \omega_{p, \text { dom }}}$
and for roughly a 45 degree phase margin, we want the unity gain freq of $A(s)$ to equal the first non-dominant pole which in this case would be $f_{p 1}$.
We also know the unity gain freq of $A(s)$ is approx equal to $A_{o} \omega_{p, \text { dom }}$, so we have
$A_{o} \omega_{p, \text { dom }}=\omega_{p 1}$
or equivalently (in Hz)
$A_{o} f_{p, \text { dom }}=f_{p 1}$
$f_{p, \text { dom }}=f_{p 1} / A_{o}=(1 e 6) /(562.3)=1.778 \mathrm{kHz}$
(b) We now have the non-dominant pole is $f_{p 2}$ (since $f_{p 1}$ is moved to become the dominant pole) and we have

$$
f_{p 1}^{\prime}=f_{p 2} / A_{o}=(20 e 6) /(562.3)=35.57 \mathrm{kHz}
$$

Q6. Consider a feedback amplifier that has a low frequency gain of $100 \mathrm{kV} / \mathrm{V}$, a dominant pole at $10 \mathrm{rad} / \mathrm{s}$ and a non-dominant pole at $1 \mathrm{Mrad} / \mathrm{s}$
[3]
[3]
(a) Assuming the feedback factor, β, is independent of frequency, find the value of β that will result in a 70° phase margin.
(b) For the β found above, if a step voltage is applied to the input of the closed loop amplifier, estimate the time it takes to settle to 90% of the final value.

Solution

(a) The loop gain given by

$$
L(s)=\frac{A_{o} \beta}{\left(1+s / \omega_{p 1}\right)\left(1+s / \omega_{p 2}\right)}
$$

where $A_{o}=100 \mathrm{kV} / \mathrm{V}, \omega_{p 1}=10 \mathrm{rad} / \mathrm{s}, \omega_{p 2}=1 \mathrm{Mrad} / \mathrm{s}$
We want to find ω_{x} where $\angle L\left(j \omega_{x}\right)=-110^{\circ}$ since that would result in a phase-margin of 70°.
Since $\omega_{p 2} \gg \omega_{p 1}$ and $A_{o} \gg 1$, we can assume $\omega_{x} \gg \omega_{p 1}$ so we can write

$$
\begin{gathered}
\angle L\left(j \omega_{x}\right)=-90^{\circ}-\tan ^{-1}\left(\omega_{x} / \omega_{p 2}\right)=-110^{\circ} \\
\tan ^{-1}\left(\omega_{x} / \omega_{p 2}\right)=20^{\circ} \Rightarrow \omega_{x}=0.364 \omega_{p 2}=364 \mathrm{krad} / \mathrm{s}
\end{gathered}
$$

The loop gain unity gain frequency should occur at ω_{x} implying that $\left|L\left(j \omega_{x}\right)\right|=1$

$$
\begin{gathered}
\left|L\left(j \omega_{x}\right)\right|=\frac{A_{o} \beta}{\left(\omega_{x} / \omega_{p 1}\right) \sqrt{\left(1+\left(\omega_{x} / \omega_{p 2}\right)^{2}\right)}}=1 \\
\beta=\frac{\left(\omega_{x} / \omega_{p 1}\right) * \operatorname{sqrt}\left(1+\left(\omega_{x} / \omega_{p 2}\right)^{2}\right)}{A_{o}}=0.3873
\end{gathered}
$$

(b) The open loop gain looks mostly like a first-order system with the loop gain

$$
L(s) \approx \frac{A_{o} \beta}{1+s / \omega_{p 1}}
$$

When this loop gain is closed, its 3dB freq is given by

$$
\begin{gathered}
\omega_{3 d B} \approx \omega_{p 1} A_{o} \beta \\
\omega_{3 d B}=\omega_{p 1} * A_{o} * \beta=(10) *(100 e 3) *(0.3873)=387.3 \mathrm{krad} / \mathrm{s} \\
\tau=1 / \omega_{3 d B}=1 /(387.3 \mathrm{e} 3)=2.582 \mu \mathrm{~s}
\end{gathered}
$$

To settle to 90% of the final value

$$
\begin{gathered}
0.9=\left(1-e^{(-t / \tau)}\right) \Rightarrow e^{(-t / \tau)}=0.1 \Rightarrow t / \tau=2.3 \\
t=2.3 * \tau=2.3 *(2.582 e-6)=5.938 \mu \mathrm{~s}
\end{gathered}
$$

Equation Sheet

Constants: $k=1.38 \times 10^{-23} \mathrm{JK}^{-1} ; q=1.602 \times 10^{-19} \mathrm{C} ; V_{T}=k T / q \approx 26 \mathrm{mV}$ at $300 \mathrm{~K} ; \epsilon_{0}=8.85 \times 10^{-12} \mathrm{Fm}^{-1} ; k_{o x}=$ 3.9; $C_{o x}=\left(k_{o x} \epsilon_{0}\right) / t_{o x} ; \omega=2 \pi f$

NMOS: $k_{n}=\mu_{n} C_{o x}(W / L) ; V_{t n}>0 ; v_{D S} \geq 0 ; V_{o v}=V_{G S}-V_{t n}$ (triode) $v_{D S} \leq V_{o v} ; v_{D}<v_{G}-V_{t n} ; i_{D}=k_{n}\left(V_{o v} v_{D S}-\left(v_{D S}^{2} / 2\right)\right) ; r_{d s}=1 /\left(\mu_{p} C_{o x}(W / L) V_{o v}\right)$
(active) $v_{D S} \geq V_{o v} ; i_{D}=0.5 k_{n} V_{o v}^{2}\left(1+\lambda_{n} v_{D S}^{\prime}\right) ; v_{D S}^{\prime}=v_{D S}-V_{o v}$;
$g_{m}=k_{n} V_{o v}=2 I_{D} / V_{o v}=\sqrt{2 k_{n} I_{D}} ; r_{s}=1 / g_{m} ; r_{o}=L /\left(\left|\lambda_{n}{ }^{\prime}\right| I_{D}\right)$
PMOS: $k_{p}=\mu_{p} C_{o x}(W / L) ; V_{t p}<0 ; v_{S D} \geq 0 ; V_{o v}=V_{S G}-\left|V_{t p}\right|$
(triode) $v_{S D} \leq V_{o v} ; v_{D}>v_{G}+\left|V_{t p}\right| ; i_{D}=k_{p}\left(V_{o v} v_{S D}-\left(v_{S D}^{2} / 2\right)\right) ; r_{d s}=1 /\left(\mu_{p} C_{o x}(W / L) V_{o v}\right)$
(active) $v_{S D} \geq V_{o v} ; i_{D}=0.5 k_{p} V_{o v}^{2}\left(1+\left|\lambda_{p}\right| v_{S D}^{\prime}\right) ; v_{S D}^{\prime}=v_{S D}-V_{o v}$
$g_{m}=k_{p} V_{o v}=2 I_{D} / V_{o v}=\sqrt{2 k_{p} I_{D}} ; r_{s}=1 / g_{m} ; r_{o}=L /\left(\left|\lambda_{p}{ }^{\prime}\right| I_{D}\right)$

Accurate: $R_{\text {out }}=r_{o}+\left(1+g_{m} r_{o}\right) R_{S}$
$i_{s c}=\left(-g_{m} r_{o} v_{i}\right) /\left(r_{o}+\left(1+g_{m} r_{o}\right) R_{S}\right)$
$v_{o c}=-g_{m} r_{o} v_{i}$
$g_{m} r_{o} \gg 1 R_{\text {out }}=\left(1+g_{m} R_{S}\right) r_{o}$
$i_{s c}=-v_{i} /\left(\left(1 / g_{m}\right)+R_{S}\right)$
$v_{o c}=-g_{m} r_{o} v_{i}$

$R_{\text {out }}=\left(r_{o}+R_{D}\right) /\left(1+g_{m} r_{o}\right)$
$i_{s c}=\left(g_{m} r_{o} v_{i}\right) /\left(r_{o}+R_{D}\right)$
$v_{o c}=\left(g_{m} r_{o} v_{i}\right) /\left(1+g_{m} r_{o}\right)$
$R_{\text {out }}=\left(1 / g_{m}\right)+\left(R_{D} / g_{m} r_{o}\right)$
$i_{s c}=\left(g_{m} r_{o} v_{i}\right) /\left(r_{o}+R_{D}\right)$
$v_{o c}=v_{i}$

v_{i}
$A_{d}=g_{m} R_{D} ; A_{C M}=-\left(R_{D} /\left(2 R_{S S}\right)\right)\left(\Delta R_{D} / R_{D}\right) ; A_{C M}=-\left(R_{D} /\left(2 R_{S S}\right)\right)\left(\Delta g_{m} / g_{m}\right)$;
$V_{O S}=\Delta V_{t} ; V_{O S}=\left(V_{O V} / 2\right)\left(\Delta R_{D} / R_{D}\right) ; V_{O S}=\left(V_{O V} / 2\right)(\Delta(W / L) /(W / L))$
Large signal: $i_{D 1}=(I / 2)+\left(I / V_{o v}\right)\left(v_{i d} / 2\right)\left(1-\left(v_{i d} / 2 V_{o v}\right)^{2}\right)^{1 / 2}$
1st order: step response $y(t)=Y_{\infty}-\left(Y_{\infty}-Y_{0+}\right) e^{-t / \tau}$;
unity gain freq for $T(s)=A_{M} /\left(1+\left(s / \omega_{3 d B}\right)\right)$ for $A_{M} \gg 1 \Rightarrow \omega_{t} \simeq\left|A_{M}\right| \omega_{3 d B}$
Freq: for real axis poles/zeros $T(s)=k_{d c} \frac{\left(1+s / z_{1}\right)\left(1+s / z_{2}\right) \ldots\left(1+s / z_{m}\right)}{\left(1+s / \omega_{1}\right)\left(1+s / \omega_{2}\right) \ldots\left(1+s / \omega_{n}\right)}$
OTC estimate $\omega_{H} \simeq 1 /\left(\sum \tau_{i}\right) ;$ dominant pole estimate $\omega_{H} \simeq 1 /\left(\tau_{\max }\right)$
STC estimate $\omega_{L} \simeq \sum 1 / \tau_{i} ;$ dominant pole estimate $\omega_{L} \simeq 1 /\left(\tau_{\text {min }}\right)$
Miller: $Z_{1}=Z /(1-K) ; Z_{2}=Z /(1-1 / K)$
Mos caps: $C_{g s}=(2 / 3) W L C_{o x}+W L_{o v} C_{o x} ; C_{g d}=W L_{o v} C_{o x} ; C_{d b}=C_{d b 0} / \sqrt{1+V_{d b} / V_{0}} ;$
$\omega_{t}=g_{m} /\left(C_{g s}+C_{g d}\right) ;$ for $C_{g s} \gg C_{g d} \Rightarrow f_{t} \simeq\left(3 \mu V_{o v}\right) /\left(4 \pi L^{2}\right)$
Feedback: $A_{f}=A /(1+A \beta) ; x_{i}=(1 /(1+A \beta)) x_{s} ; d A_{f} / A_{f}=(1 /(1+A \beta)) d A / A ; \omega_{H f}=\omega_{H}(1+A \beta) ; \omega_{L f}=\omega_{L} /(1+A \beta)$; Loop Gain $L \equiv-s_{r} / s_{t} ; A_{f}=A_{\infty}(L /(1+L))+d /(1+L) ; Z_{\text {port }}=Z_{p^{\circ}}\left(\left(1+L_{S}\right) /\left(1+L_{o}\right)\right): P M=\angle L\left(j \omega_{t}\right)+180$; $G M=-\left|L\left(j \omega_{180}\right)\right|_{d b} ;$
Pole splitting $\omega_{p 1}^{\prime} \simeq 1 /\left(g_{m} R_{2} C_{f} R_{1}\right) ; \omega_{p 2}^{\prime} \simeq\left(g_{m} C_{f}\right) /\left(C_{1} C_{2}+C_{f}\left(C_{1}+C_{2}\right)\right)$
Pole Pair: $s^{2}+\left(\omega_{o} / Q\right) s+\omega_{o}^{2} ; Q \leq 0.5 \Rightarrow$ real poles; $Q>1 / \sqrt{2} \Rightarrow$ freq resp peaking
Power Amps: Class A : $\eta=(1 / 4)\left(\hat{V}_{O} / I R_{L}\right)\left(\hat{V}_{O} / V_{C C}\right)$; Class B : $\eta=(\pi / 4)\left(\hat{V}_{O} / V_{C C}\right) ; P_{D N _m a x}=V_{C C}^{2} /\left(\pi^{2} R_{L}\right)$;
Class $\mathrm{AB}: i_{n} i_{p}=I_{Q}^{2} ; I_{Q}=\left(I_{S} / \alpha\right) e^{V_{B B} /\left(2 V_{T}\right)} ; i_{n}^{2}-i_{L} i_{n}-I_{Q}^{2}=0$
2-stage opamp: $\omega_{p 1} \simeq\left(R_{1} G_{m 2} R_{2} C_{c}\right)^{-1} ; \omega_{p 2}=G_{m 2} / C_{2} ; \omega_{z}=\left(C_{c}\left(1 / G_{m 2}-R\right)\right)^{-1}$;
$S R=I / C_{c}=\omega_{t} V_{\text {ov } 1}$; will not SR limit if $\omega_{t} \hat{V}_{O}<S R$

