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Q1. (a)[2] Assume the NMOS transistor parameters shown below. (Note: aF is ato Farads which is 10e−18 Farads)
Consider a transistor of size W = 3µm and L = 180nm that is biased in the active region with VDB = 0.
Find the values of Cgs , Cgd , and Cdb in units of fF.

Vtn 0.3V
unCox 250µA/V2

λ′n 50nm/V
Cox 8fF/µm2

tox 4nm
Lov 40nm

Cdb0/W 300aF/µm

Solution
Note that Cox is per sq µm so we need to leave W and L in µm units.
Cgs = (2/3)∗Cox ∗W ′ ∗L′+Cox ∗W ′ ∗L′ov = (2/3)∗ (8e−15)∗ (3)∗ (0.18) + (8e−15)∗ (3)∗ (40e−3) = 3.84fF

Cgd = Cox ∗W ′ ∗ L′ov = (8e−15) ∗ (3) ∗ (40e−3) = 960aF

Cdb = Cdb0/W ∗W ′ = (300e−18) ∗ (3) = 900aF

(b)[2] For the transistor in part (a), if Vov = 0.2, find the unity gain freq of the transistor in Hz (do not ignore Cgd )

Solution
gm = µnCox ∗ (W ′/L′) ∗ Vov = (250e−6) ∗ ((3)/(0.18)) ∗ (0.2) = 833.3µA/V

wt = gm/(Cgs + Cgd ) = (833.3e−6)/((3.84e−15) + (960e−18)) = 173.6Grad/s

ft = wt/(2 ∗ π) = (173.6e9)/(2 ∗ (3.142)) = 27.63GHz

If instead, you use the formula ft = 2µnVov/(4πL2), then you have
ft = 3∗(µnCox/(Cox ∗1012))∗Vov/(4∗3.14159∗(L2)) = 3∗((250e−6)/((8e−15)∗1012))∗(0.2)/(4∗3.14159∗
((180e−9)2)) = 46.05GHz

but in this case, Cgd is ignored as well as the gate-source overlap capacitance.

(c)[2] Besides noise, give 2 reasons why bias voltages for current mirrors are NOT sent a long distance in a
microchip. (Explain clearly).

Solution
The current mismatch could be large due to 2 main reasons
1) transistor Vt mismatch can be large due to matching transistors being a long distance away from each
other
2) dc currents in the ground or power lines can cause the transistor source voltages to be different for
matched transistors that are located far away from each other.
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Q2. (a)[4] Consider the wide-swing current mirror shown below where the desired output current is 30µA. Given
that the minimum desired output voltage is 0.5V and the L1 = 2L2 while W1 = 2W2.
Find the lengths, L1 and L2 such that the current mirror output resistance is 60MΩ

Vtn 0.3V
unCox 160µA/V2

λ′n 40nm/V

M1

M2

vo

VB1

VB2

ID = 30µA

Solution
Since M1 and M2 both have the same current, ID1 = ID2, and W1/L1 = W2/L2, we then have Vov1 = Vov2.
So we have
Vo,min = 0.5V = Vov1 + Vov2 = 2Vov1

Vov1 = Vo,min/2 = (0.5)/2 = 0.25V = Vov2

We can find the transconductance as
gm2 = 2 ∗ ID2/Vov2 = 2 ∗ (30e−6)/(0.25) = 240µA/V

We also have
ro1 = L1/(λ′nID1) and ro2 = L2/(λ′nID2)

and since L1 = 2L2 and the currents are the same, we have
ro1 = 2ro2
We also have
Rout ≈ gm2ro2ro1 = gm2(2r2o2)

ro2 = sqrt(Rout/(2 ∗ gm2)) = sqrt((60e6)/(2 ∗ (240e−6))) = 353.6kΩ

And from the ro formula, we have
L2 = ro2 ∗ λ′n ∗ ID2 = (353.6e3) ∗ (40e−9) ∗ (30e−6) = 424.3nm

L1 = 2 ∗ L2 = 2 ∗ (424.3e−9) = 848.5nm

(b)[2] For the above circuit, assume the bodies of both transistors are connected to ground.
When body effect is taken into account, do you expect the output resistance for this current mirror to
increase or decrease?
(assume the dc bias current remains unchanged and both transistors remain in the active region)
Explain your answer.

Solution
For M1, VSB = 0 so the body has no effect. For M2, VSB > 0 resulting in a body effect. If ∆VS2 is negative,
ID2 increases due to gm2 and ID2 also increases due to gmb2 which can be modelled as an INCREASE in
gm2 for M2.
As a result, the output impedance will increase since Rout ≈ gm2ro2ro1.
ro2 and ro1 do not change due to the body effect.
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Q3.
(a)[3] Find an equation for the input impedance Rin for the circuit shown below.

β is a constant and β is the current gain for the current controlled current source.

βibRb

RE

Rin
ib

Solution
Apply a voltage Vx and determine the current Ix and Rin ≡ Vx/Ix

βibRb

RE

Rin
ib

v1

Vx

Ix

ib + (0− v1)/RE + βib = 0

v1 = (1 + β)RE ib
ib = (Vx − v1)/Rb = (Vx − (1 + β)RE ib)/Rb

Vx = ib(Rb + (1 + β)RE )

ib = Ix
Rin = Vx/Ix = Vx/ib = Rb + (1 + β)RE

(b)[3] Find the value of V1 by recognizing that M1 is deep into the triode region so small-signal analysis can be
used.

2V

IB
1mA

V1

M1

2V Vtn = 0.3V
µnCox = 300µA/V
W = 10µm
L = 1µm

Solution
In triode, rds = 1/(µnCox (W /L)Vov )

VG = 2V

Vov = VG − Vtn = (2)− (0.3) = 1.7V

rds = 1/(µnCox ∗ (W /L) ∗ Vov ) = 1/((300e−6) ∗ ((10e−6)/(1e−6)) ∗ (1.7)) = 196.1Ω

v1 = IB ∗ rds = (1e−3) ∗ (196.1) = 0.1961V
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Q4.[6] For the circuit below, treat M1 as a switch with an infinite off resistance and an on-resistance of Rds = 200Ω.
Assume that VG1 is initially 0V and goes high at time ton = 1ms and low again at time toff = 2ms. Find the
output voltage, Vo , at times t1 = 2ms and t2 = 3ms.

M1

2V R2 C1
1µF1kΩ

R1

1kΩ
Vo

VG1

2ms 3ms0s 1ms

VG1

Solution
When switch M1 turns on, the initial voltage, V0+, is

V0+ = VB = (2) = 2V

and the final voltage, V∞ is

V∞ = VB ∗ (R2 + Rds)/(R2 + Rds + R1) = (2) ∗ ((1e3) + (200))/((1e3) + (200) + (1e3)) = 1.091V

τon = (R1||(R2 + Rds)) ∗ C1 = ((1e3)||((1e3) + (200))) ∗ (1e−6) = 545.5µs

Vo,t1 = V∞−(V∞−V0+)∗e(−(t1−ton)/τon) = (1.091)−((1.091)−(2))∗(2.718)(−((2e−3)−(1e−3))/(545.5e−6)) =
1.236V

τoff = R1 ∗ C1 = (1e3) ∗ (1e−6) = 1ms

Vo,t2 = 2− (2−Vo,t1) ∗ e(− (t2− t1)/τoff ) = 2− (2− (1.236)) ∗ (2.718)(− ((3e−3)− (2e−3))/(1e−3)) = 1.719V
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Q5.

M5

VB4

VB3

VB2

VB1

vi vo

M1

M2

M3

M4

VDD

gm1 = gm2 = 750µA/V
ro1 = ro2 = 25kΩ

gm3 = gm4 = 1mA/V
ro3 = ro4 = 20kΩ

gm5 = 2mA/V
ro5 = 10kΩ

For the circuit above, find the small-signal gain vo/vi in 2 ways as described below.

(a)[3] Find vo/vi by assuming gmro � 1

Solution
Define Ron to be the impedance seen looking into the drain of M2

Ron = gm2 ∗ ro2 ∗ ro1 = (750e−6) ∗ (25e3) ∗ (25e3) = 468.8kΩ

Define Rop to be the impedance seen looking into the drain of M3

Rop = gm3 ∗ ro3 ∗ (ro4||ro5) = (1e−3) ∗ (20e3) ∗ ((20e3)||(10e3)) = 133.3kΩ

Rout = Rop||Ron = (133.3e3)||(468.8e3) = 103.8kΩ

Since gmro � 1, all of the iD5 current goes to the short circuit output at vo when finding isc so we have
isc/vi = gm5

leading to
vo/vi = −gm5 ∗ Rout = −(2e−3) ∗ (103.8e3) = −207.6V/V

(b)[3] Find vo/vi WITHOUT assuming gmro � 1

Solution
Assume the output node vo is shorted and find the drain voltage at vd5 relative to vi

The impedance looking into the source of M3, RS3 is given by

RS3 = (1/gm3)||ro3 = (1/(1e−3))||(20e3) = 952.4Ω

The impedance at the drain of M5 to ground is

Ro5 = ro5||ro4||RS3 = (10e3)||(20e3)||(952.4) = 833.3Ω

vd5/vi = −gm5 ∗ Ro5 = −(2e−3) ∗ (833.3) = −1.667V/V

We now have a common-gate amplifier to get to the output, vo , and the short circuit current is given by

isc = ((1 + gm3ro3)/ro3)vd5

So defining Gm = isc/vi , we have

Gm = ((1 + gm3 ∗ ro3)/ro3) ∗ vd5/vi = ((1 + (1e−3) ∗ (20e3))/(20e3)) ∗ (−1.667) = −1.75mA/V

To find Rout , we have

Ron = ro2 + (1 + gm2 ∗ ro2) ∗ ro1 = (25e3) + (1 + (750e−6) ∗ (25e3)) ∗ (25e3) = 518.8kΩ

Rop = ro3 + (1 + gm3 ∗ ro3) ∗ (ro5||ro4) = (20e3) + (1 + (1e−3) ∗ (20e3)) ∗ ((10e3)||(20e3)) = 160kΩ

Rout = Ron||Rop = (518.8e3)||(160e3) = 122.3kΩ

We can now find vo/vi as

vo/vi = Gm ∗ Rout = (−1.75e−3) ∗ (122.3e3) = −214V/V
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Q6.

Assume an opamp is ideal with the transfer-function,

A(s) =
kdc

(1 + s/ωp1)(1 + s/ωp2)

The straight-line Bode PHASE plot for the amplifier is shown below and the dc gain is given by kdc = 20e3
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(a)[2] Find the values for ωp1 and ωp2 in rad/s

Solution
The pole frequencies can be found by looking at the straight-line Bode phase plot.
Assuming the poles are widely spaced apart, the phase at where the poles occur are at −45◦, −135◦

Therefore, the pole locations are
ωp1 = 10rad/s

ωp2 = 100krad/s

(b)[4] If this opamp is used in an NON-INVERTING configuration, what is the smallest dc closed-loop amplifier
gain that will result in a phase margin of 65◦? (use the actual A(s) and NOT the straight-line Bode plot).

Solution
Given, we want PM = 65◦, we can find ω1

PM = 90− tan−1(ω1/ωp2)

ω1 = ωp2 ∗ tand(90− PM) = (100e3) ∗ tand(90− (65)) = 46.63krad/s

and define KPM = ω1/ωp2 = 0.4663

We can also use the following equation to find the dc loop gain that would result in this PM with these 2
poles ωp1 and ωp2.
ωp1 = (ω1(1 + K 2

PM )1/2)/L0 and solve for L0
L0 = (ω1 ∗ sqrt(1 + KPM

2))/ωp1 = ((46.63e3) ∗ sqrt(1 + (0.4663)2))/(10) = 5.145e3

However, the opamp dc gain is kdc = 20e3 so it should be reduced by β given by
β = L0/kdc = (5.145e3)/(20e3) = 0.2573
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This value of β would result in a dc closed-loop gain of 1/β which is
Acl = 1/β = 1/(0.2573) = 3.887V/V

A larger gain would have a phase-margin greater than 65◦ while a lower gain would have a phase-margin
less than 65◦.
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Equation Sheet

Constants: k = 1.38× 10−23 J K−1; q = 1.602× 10−19 C; VT = kT/q ≈ 26mV at 300 K; ε0 = 8.85× 10−12 F m−1; kox =
3.9; Cox = (koxε0)/tox ; ω = 2πf

NMOS: kn = µnCox (W /L); Vtn > 0; vDS ≥ 0; Vov = VGS − Vtn

(triode) vDS ≤ Vov ; vD < vG − Vtn; iD = kn(VovvDS − (v2
DS/2)); rds = 1/(µnCox (W /L)Vov )

(active) vDS ≥ Vov ; iD = 0.5knV
2
ov (1 + λnv

′
DS ); v ′DS = vDS − Vov ;

gm = knVov = 2ID/Vov =
√

2knID ; rs = 1/gm; ro = L/(|λn
′|ID)

PMOS: kp = µpCox (W /L); Vtp < 0; vSD ≥ 0; Vov = VSG − |Vtp|
(triode) vSD ≤ Vov ; vD > vG + |Vtp|; iD = kp(VovvSD − (v2

SD/2)); rds = 1/(µpCox (W /L)Vov )
(active) vSD ≥ Vov ; iD = 0.5kpV

2
ov (1 + |λp|v ′SD); v ′SD = vSD − Vov

gm = kpVov = 2ID/Vov =
√

2kpID ; rs = 1/gm; ro = L/(|λp
′|ID)

RS

vi

Rout

vo

RDvi

Rout

vo vi

vo

Rout

Accurate: Rout = ro + (1 + gmro)RS

isc = (−gmrovi )/(ro + (1 + gmro)RS )
voc = −gmrovi

Rout = (ro + RD)/(1 + gmro)
isc = (gmrovi )/(ro + RD)
voc = (gmrovi )/(1 + gmro)

Rout = ro
isc = ((1 + gmro)/ro)vi

voc = (1 + gmro)vi

gmro � 1 Rout = (1 + gmRS )ro
isc = −vi/((1/gm) + RS )
voc = −gmrovi

Rout = (1/gm) + (RD/gmro)
isc = (gmrovi )/(ro + RD)
voc = vi

Rout = ro
isc = gmvi

voc = gmrovi

Diff Pair: Ad = gmRD ; ACM = −(RD/(2RSS ))(∆RD/RD); ACM = −(RD/(2RSS ))(∆gm/gm);
VOS = ∆Vt ; VOS = (VOV /2)(∆RD/RD); VOS = (VOV /2)(∆(W /L)/(W /L))
Large signal: iD1 = (I/2) + (I/Vov )(vid/2)(1− (vid/2Vov )2)1/2

1st order: step response y(t) = Y∞ − (Y∞ − Y0+)e−t/τ ;
unity gain freq for T (s) = AM/(1 + (s/ω3dB )) for AM � 1⇒ ωt ' |AM |ω3dB

Freq: for real axis poles/zeros T (s) = kdc
(1 + s/z1)(1 + s/z2) ... (1 + s/zm)

(1 + s/ω1)(1 + s/ω2) ... (1 + s/ωn)
OTC estimate ωH ' 1/(

∑
τi ); dominant pole estimate ωH ' 1/(τmax )

STC estimate ωL '
∑

1/τi ; dominant pole estimate ωL ' 1/(τmin)

Miller: Z1 = Z/(1− K ); Z2 = Z/(1− 1/K )

Mos caps: Cgs = (2/3)WLCox + WLovCox ; Cgd = WLovCox ; Cdb = Cdb0/
√

1 + Vdb/V0;
ωt = gm/(Cgs + Cgd ); for Cgs � Cgd ⇒ ft ' (3µVov )/(4πL2)

Feedback: Af = A/(1 + Aβ); xi = (1/(1 + Aβ))xs ; dAf /Af = (1/(1 + Aβ))dA/A; ωHf = ωH (1 + Aβ); ωLf = ωL/(1 + Aβ);
Loop Gain L ≡ −sr/st ; Af = A∞(L/(1 + L)) + d/(1 + L); Zport = Zpo ((1 + LS )/(1 + LO)): PM = ∠L(jωt) + 180;
GM = −|L(jω180)|db;
Pole splitting ω′p1 ' 1/(gmR2Cf R1); ω′p2 ' (gmCf )/(C1C2 + Cf (C1 + C2))

Phase Margin: PM = 90◦ − tan−1(ω1/ωp2); KPM ≡ ω1/ωp2; ωp1 ≈ (KPMωp2(1 + K 2
PM )1/2)/L0

Body Effect: Vt = Vt0 + γ(
√

2φf + VSB −
√

2φf ); γ =
√

2qNAεs/Cox ; gmb = χgm; χ = γ/(2
√

2φf + VSB )


