
Problem Set 3b - Cascode

Question 1

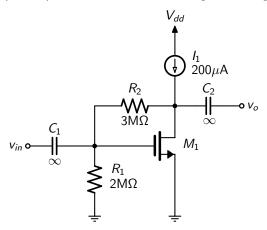
Given a two-stage common-source amplifier where the biasing current sources I_1 and I_2 have output resistances equal to those of M_1 and M_2 respectively, determine an expression for the voltage gain, v_o/v_s , in terms of g_{m1} , g_{m2} , r_{o1} and r_{o2} .

Answer

 $v_o/v_s = (g_{m1}g_{m2}r_{o1}r_{o2})/4$

Question 2

Given transistor M_1 which has $\mu_n C_{ox} = 240 \mu A/V^2$, $\lambda'_n = 50 nm/V$, $V_t = 0.5V$, $W = 1 \mu m$, and L = 200 nm:


a) Ignoring any DC current in R_2 and assuming $r_o \rightarrow \infty$, determine V_{GS} .

b) Determine the DC current in R_2 , determine V_{DS} , and justify your neglection of the DC current when calculating V_{GS} in part a).

c) Determine the small-signal voltage gain v_o/v_{in} . (Assume an ideal current source)

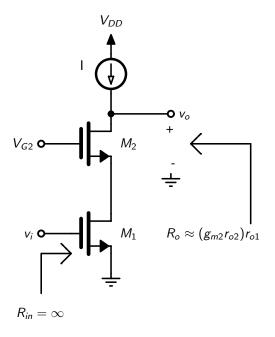
d) Assuming the negative swing of the output limits the overall output swing, what is the min output voltage, max output voltage and output peak-to-peak swing?

e) What is the corresponding input amplitude, max and min voltages at the gate?

Answer

- a) $V_{GS} = 1.077 V$
- b) $V_{DS} = 2.693 V$
- c) $v_o/v_{in} = -13.76 V/V$
- d) $V_{o,pp} = 3.945$ V; $V_{o,min} = 0.7207$ V; $V_{o,max} = 4.666$ V
- e) $V_{G,pp} = 0.2868$ V; $V_{G,min} = 0.934$ V; $V_{G,max} = 1.221$ V

Question 3

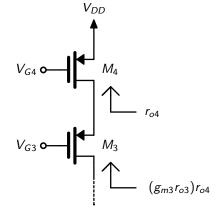

In a MOS cascode amplifier, the cascode transistor is required to raise the output resistance by a factor of 40 over that of a non-cascode amplifier. If the transistor is operated at $V_{ov} = 0.2$ V, what must its λ_n be? If the process technology specifies λ'_n as 50nm/V, what channel length must the transistor have?

Answer

 $\lambda_n = 0.25 V^{-1}$; L = 200 nm

Question 4

Design the cascode amplifier shown below to obtain $g_{m1} = 1 \text{mA/V}$ and $R_o = 400 \text{k}\Omega$. Use a $0.18 - \mu m$ technology for which $V_{tn} = 0.5\text{V}$, $\lambda'_n = 200 \text{nm/V}$ and $\mu_n C_{ox} = 400 \mu \text{A/V}^2$. Determine *L*, *W/L*, *V*_{G1}, *V*_{G2}, and *I*. Use identical transistors operated at $V_{ov} = 0.2\text{V}$, and design for the maximum possible negative signal swing at the output. What is the value of the minimum permitted output voltage?


Answer

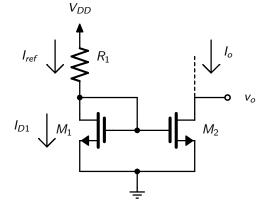
L = 400nm; W/L = 12.5; $V_{G1} = 0.7$ V; $V_{G2} = 0.9$ V; $I = 100 \mu$ A; $V_{o,min} = 0.4$ V

Question 5

Design the circuit shown below to provide an output of $I_D = 100\mu$ A. Use $V_{DD} = 3.3$ V, and assume the PMOS transistors to have $\mu_p C_{ox} = 60\mu$ A/V², $V_{tp} = -0.8$ V, L = 250nm, and $\lambda'_p = -50$ nm/V. The current source is to have the widest possible signal swing at its output. Design for $V_{ov} = 0.2$ V, and specify the width, W, of

the transistors and of V_{G3} and V_{G4} . What is the highest allowable voltage at the output? What is the value of output impedance, R_o ?

Answer


 $W = 20.83 \mu$ m; $V_{G4} = 2.3$ V; $V_{G3} = 2.1$ V; $V_{o,max} = 2.9$ V; $R_o = 2.5$ M Ω

Question 6

For $V_{DD} = 1.8$ V and using $I_{ref} = 100\mu$ A, it is required to design the circuit below to obtain an output current whose nominal value is $I_{ref} = 100\mu$ A.

a) Find R if M_1 and M_2 are matched with channel lengths of L = 500 nm, channel widths of $W = 4\mu$ m, $V_{tn} = 0.5$ V, and $\mu_n C_{ox} = 400 \mu$ A/V².

- b) What is the lowest possible value for V_o ?
- c) Assuming that for this process technology $\lambda'_n = 50$ nm/V, find the output resistance of the current source.
- d) Find the current change in output current resulting from a +0.5V change in V_o

Answer

a) $R = 10.5 k\Omega$ b) $V_{o,min} = 0.25 V$ c) $r_{o3} = 100 k\Omega$ d) $\Delta I_D = 5 \mu A$