### Problem Set 3C - Body Effect

#### **Question 1**

It is desired to create a voltage output from a small current source input (say from a photodetector). Shown below, the small current source input and its output impedance is shown as  $i_i$  and  $R_i$ , respectively.  $V_B$  is a dc bias voltage and assume the current source  $I_B$  is ideal.



- (a) Find the small-signal gain,  $v_o/i_i$  assuming no body effect (in other words,  $\chi = 0$ .
- (b) Find the small-signal gain,  $v_o/i_i$  assuming  $\chi = 0.2$ .

# Solution

(a) We can start by finding the output impedance,  $R_o$ Define  $R_{dx}$  to be the small signal resistance looking into the drain of  $M_1$  $R_{dx} = r_{o1} + (1 + g_{m1} * r_{o1}) * R_i = (20e3) + (1 + (1e-3) * (20e3)) * (10e3) = 230k\Omega$  $R_o = R_{dx} ||R_D = (230e3)||(100e3) = 69.7k\Omega$ Next, we find the short circuit current,  $i_{sc}$ We have the following small circuit circuit



Defining  $R_{sx}$  to be the impedance looking in to the source of  $M_1$  we have  $R_{sx} = (1/g_{m1})||r_{o1} = (1/(1e-3))||(20e3) = 952.4\Omega$ 

and we see a current divider, so we have

 $i_{sc}/i_i = R_i/(R_i + R_{sx}) = (10e3)/((10e3) + (952.4)) = 0.913A/A$  leading to  $(v_o/i_i)_a = i_{sc}/i_i * R_o = (0.913) * (69.7e3) = 63.64k\Omega$ 

(b) We go through the same analysis as in (a) except that we have  $g'_{m1} = g_{m1} * (1 + \chi) = (1e-3) * (1 + (0.2)) = 1.2e-3$ Define  $R_{dx}$  to be the small signal resistance looking into the drain of  $M_1$   $R_{dx} = r_{o1} + (1 + g'_{m1} * r_{o1}) * R_i = (20e3) + (1 + (1.2e-3) * (20e3)) * (10e3) = 270k\Omega$   $R_o = R_{dx} ||R_D = (270e3)||(100e3) = 72.97k\Omega$ Next, we find the short circuit current,  $i_{sc}$ Defining  $R_{sx}$  to be the impedance looking in to the source of  $M_1$  we have  $R_{sx} = (1/g'_{m1})||r_{o1} = (1/(1.2e-3))||(20e3) = 800\Omega$ and we see a current divider, so we have  $i_{sc}/i_i = R_i/(R_i + R_{sx}) = (10e3)/((10e3) + (800)) = 0.9259A/A$  leading to  $(v_o/i_i)_b = i_{sc}/i_i * R_o = (0.9259) * (72.97e3) = 67.57k\Omega$ 

### **Question 2**



For the circuit above

(a) Find  $v_o/v_i$  ignoring body effect (all  $\chi = 0$ ).

(b) Find  $v_o/v_i$  including body effect where for M2, M3,  $\chi = 0.2$ .

# Solution

(a) Define  $R_{op}$  to be the impedance looking up into the drain of  $M_3$  and define  $R_{on}$  to be the impedance looking down into the drain of  $M_2$ 

$$\begin{split} R_{op} &= r_{o3} + (1 + g_{m3} * r_{o3}) * r_{o4} = (10e3) + (1 + (500e-6) * (10e3)) * (20e3) = 130k\Omega \\ R_{on} &= r_{o2} + (1 + g_{m2} * r_{o2}) * r_{o1} = (10e3) + (1 + (500e-6) * (10e3)) * (20e3) = 130k\Omega \\ \end{split}$$
Define  $R_o$  to be the impedance to ground at node  $v_o$   $R_o = R_{op} ||R_{on} = (130e3)||(130e3) = 65k\Omega$ For  $i_{sc}$ , we have the following circuit



Define  $R_{S2}$  to be the impedance looking up into the source of  $M_2$ 

$$\begin{split} R_{S2} &= (1/g_{m2})||r_{o2} = (1/(500e-6))||(10e3) = 1.667 \text{k}\Omega \\ \text{The drain current of } M_1 \text{ current divides between } R_{S2} \text{ and } r_{o1} \text{ resulting in} \\ G_{Ma} &= -g_{m1} * (r_{o1})/(r_{o1} + R_{S2}) = -(1e-3) * ((20e3))/((20e3) + (1.667e3)) = -923.1e-6 \\ \text{and } i_{sc} &= G_{Ma} * v_i. \text{ The resulting gain is} \\ (v_o/v_i)_a &= G_{Ma} * R_o = (-923.1e-6) * (65e3) = -60 \text{V/V} \end{split}$$

(b) To include the body effect, we have

 $g'_m 2 = g_{m2} * (1 + \chi) = (500e - 6) * (1 + (0.2)) = 600e - 6$  $g'_m 3 = g_{m3} * (1 + \chi) = (500e - 6) * (1 + (0.2)) = 600e - 6$ 

Define  $R_{op}$  to be the impedance looking up into the drain of  $M_3$  and define  $R_{on}$  to be the impedance looking down into the drain of  $M_2$ 

$$\begin{split} R_{op} &= r_{o3} + \left(1 + g'_{m}3 * r_{o3}\right) * r_{o4} = (10e3) + \left(1 + (600e - 6) * (10e3)\right) * (20e3) = 150k\Omega \\ R_{on} &= r_{o2} + \left(1 + g'_{m}2 * r_{o2}\right) * r_{o1} = (10e3) + \left(1 + (600e - 6) * (10e3)\right) * (20e3) = 150k\Omega \\ \end{split}$$
Define *R<sub>o</sub>* to be the impedance to ground at node *v<sub>o</sub> R<sub>o</sub>* = *R<sub>op</sub>*||*R<sub>on</sub>* = (150e3)||(150e3) = 75k\Omega

For  $i_{sc}$ , we define  $R_{52}$  to be the impedance looking up into the source of  $M_2$  when the drain of  $M_2$  is grounded  $R_{52} = (1/g'_m 2)||r_{o2} = (1/(600e-6))||(10e3) = 1.429k\Omega$ 

The drain current of  $M_1$  current divides between  $R_{52}$  and  $r_{o1}$  resulting in

 $G_{Ma} = -g_{m1} * (r_{o1})/(r_{o1} + R_{52}) = -(1e-3) * ((20e3))/((20e3) + (1.429e3)) = -933.3e-6$ and  $i_{sc} = G_{Ma} * v_i$ . The resulting gain is  $(v_o/v_i)_b = G_{Ma} * R_o = (-933.3e-6) * (75e3) = -70V/V$ 

#### **Question 3**

Consider the common-drain (or source follower) shown below.

$$V_{DD} = 2V$$

$$\mu_n C_{ox} = 200 \mu A/V^2$$

$$W = 5 \mu m; L = 100 nm$$

$$V_{tn} = 0.25V$$

$$\gamma = 0.4V^{1/2}$$

$$\phi_f = 0.3V$$

$$I_B = 500 \mu A$$

- (a) Ignoring the body effect, find the voltage at  $v_o$  when  $v_i = V_{DD}$
- (b) Repeat (a) but include the body effect and find the output voltage (an iterative approach is needed here).

## Solution

(a) First find  $V_{ov}$  using the equation  $I_D = 0.5 \mu_n C_{ox} (W/L) V_{oy}^2$ and we see that  $I_D = I_B = (500e-6) = 500\mu A$  $V_{ov} = sqrt(2 * I_D / (\mu_n C_{ox} * (W/L))) = sqrt(2 * (500e-6) / ((200e-6) * ((5e-6) / (100e-9)))) = 0.3162V$ So we have  $V_{GS} = V_{ov} + V_{tn} = (0.3162) + (0.25) = 0.5662V$ and when  $v_i = V_{DD}$ , we have  $v_{o,a} = V_{DD} - V_{GS} = (2) - (0.5662) = 1.434V$ Note that  $v_o = V_{SB}$  since  $v_o$  is at the source voltage and  $V_B = 0$ (b) When including the body effect,  $V_{tn}$  will change. So we define  $V_{tn0} = 0.25 V$  $V_{tn0}$  is the threshold voltage with  $V_{SB} = 0$ Also, the value for  $V_{ov}$  is the same we found in (a)  $V_{ov} = 0.3162 V$ Now, we make use of the body equation for the threshold voltage  $V_{tn} = V_{tn0} + \gamma \left[ \sqrt{2\phi_f + V_{SB}} - \sqrt{2\phi_f} \right]$ as well as the equation  $V_{SB} = v_o = V_{DD} - (V_{ov} + V_{tn})$ Now we use an iterative approach to find the value of  $V_{tn}$  and therefore the value for  $v_o = V_{SB}$ Our first guess for  $V_{SB}$  can be any value but lets start with the value we found when we ignored the body effect.  $V_{SB0} = 1.434V$  $V_{tn1} = V_{tn0} + \gamma * (sqrt(2 * \phi_f + V_{SB0}) - sqrt(2 * \phi_f)) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.434)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.434)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.434)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.434)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.434)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.434)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.434)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.434)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.434)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.434)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.434)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.434)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.434)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.434)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.434)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (0.25) + (0.4) * (0.25) + (0.4) * (0.25) + (0.4) * (0.25) + (0.4) * (0.25) + (0.4) * (0.25) + (0.4) * (0.25) + (0.4) * (0.25) + (0.4) * (0.25) + (0.4) * (0.25) + (0.4) * (0.25) + (0.4) * (0.25) + (0.4) * (0.25) + (0.4) * (0.25) + (0.4) * (0.25) + (0.4) * (0.25) + (0.4) * (0.25) + (0.4) * (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0.25) + (0$ 0.5106V  $V_{SB1} = V_{DD} - (V_{ov} + V_{tn1}) = (2) - ((0.3162) + (0.5106)) = 1.173V$  $V_{tn2} = V_{tn0} + \gamma * (sqrt(2 * \phi_f + V_{SB1}) - sqrt(2 * \phi_f)) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.173)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.173)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.173)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.173)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.173)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.173)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.173)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.173)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.173)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.173)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.173)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.173)) + (0.4) * (sqrt(2 * (0.3))) + (0.4) * (sqrt(2 * (0.3) + (1.173)) + (0.4) * (sqrt(2 * (0.3) + (1.173)) + (0.4) * (sqrt(2 * (0.3) + (1.173))) + (0$ 0.4728V  $V_{SB2} = V_{DD} - (V_{ov} + V_{tn2}) = (2) - ((0.3162) + (0.4728)) = 1.211V$  $V_{tn3} = V_{tn0} + \gamma * (sqrt(2 * \phi_f + V_{SB2}) - sqrt(2 * \phi_f)) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.211)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.211)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.211)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.211)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.211)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.211)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.211)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.211)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.211)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.211)) - sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.211)) + (sqrt(2 * (0.3))) = (0.25) + (0.4) * (sqrt(2 * (0.3) + (1.211)) + (sqrt(2 * (0.3) + (1.211)) + (sqrt(2 * (0.3) + (1.211)) + (sqrt(2 * (0.3) + (1.211))) = (0.25) * (sqrt(2 * (0.3) + (1.211)) + (sqrt(2 * (0.3) + (1.211)) + (sqrt(2 * (0.3) + (1.211)) + (sqrt(2 * (0.3) + (1.211))) = (0.25) * (sqrt(2 * (0.3) + (1.211)) + (sqrt(2 * (0.3) + (1.211)) + (sqrt(2 * (0.3) + (1.211)) + (sqrt(2 * (0.3) + (1.211))) = (0.25) * (sqrt(2 * (0.3) + (1.211)) + (sqrt(2 * (0.3) + (1.211))) + (sqrt(2 * (0.3))) + (sqrt(2 * (0.3))) + (sqrt(2 * (0.3))) + (sqrt(2 * (0.3)))) + (sqrt(2 * (0.3))) + (sqrt(2 * (0.3))) + (sqrt(2 * (0.3))) + (sqrt$ 0.4785V

 $V_{SB3} = V_{DD} - (V_{ov} + V_{tn3}) = (2) - ((0.3162) + (0.4785)) = 1.205V$ 

Since  $V_{SB}$  is now changing very little, we can say our answer for  $v_o$  when the body effect is taken into account is

 $v_{o,b} = V_{SB3} = (1.205) = 1.205 V$