- **D.8** Consider the exponential response of an STC low-pass circuit to a 10-V step input. In terms of the time constant τ , find the time taken for the output to reach 5 V, 9 V, 9.9 V, and 9.99 V.
- **D.9** The high-frequency response of an oscilloscope is specified to be like that of an STC LP circuit with a 100-MHz corner frequency. If this oscilloscope is used to display an ideal step waveform, what rise time (10% to 90%) would you expect to observe?
- **E.1** Find the transfer function $T(s) = V_o(s)/V_i(s)$ of the circuit in Fig. PE.1. Is this an STC network? If so, of what type? For $C_1 = C_2 = 0.5 \,\mu\text{F}$ and $R = 100 \,\text{k}\Omega$, find the location of the pole(s) and zero(s), and sketch Bode plots for the magnitude response and the phase response.
- **D*E.2** (a) Find the voltage transfer function $T(s) = V_o(s)/V_i(s)$, for the STC network shown in Fig. PE.2.
- (b) In this circuit, capacitor C is used to couple the signal source V_s having a resistance R_s to a load R_L . For $R_s = 10 \text{ k}\Omega$, design the circuit, specifying the values of R_L and C to only one significant digit to meet the following requirements:
 - (i) The load resistance should be as small as possible.
 - (ii) The output signal should be at least 70% of the input at high frequencies.
 - (iii) The output should be at least 10% of the input at 10 Hz.
- **E.7** An amplifier has a voltage transfer function $T(s) = 10^6 s/(s+10)(s+10^3)$. Convert this to the form convenient for constructing Bode plots [that is, place the denominator factors in the form (1+s/a)]. Provide a Bode plot for the magnitude response, and use it to find approximate values for the amplifier gain at 1, 10, 10^2 , 10^3 , 10^4 , and 10^5 rad/s.
- **E.9** A transfer function has the following zeros and poles: one zero at s = 0 and one zero at $s = \infty$; one pole at s = -100 and one pole at $s = -10^6$. The magnitude of the transfer function at $\omega = 10^4$ rad/s is 100. Find the transfer function T(s) and sketch a Bode plot for its magnitude.
- **E.10** Sketch Bode plots for the magnitude and phase of the transfer function

$$T(s) = \frac{10^4 (1 + s/10^5)}{(1 + s/10^3)(1 + s/10^4)}$$

From your sketches, determine approximate values for the magnitude and phase at $\omega = 10^6$ rad/s.

FIGURE PE.1

FIGURE PE.2

- **D 9.1** The amplifier in Fig. P9.1 is biased to operate at $g_m = 1 \text{ mA/V}$. Neglecting r_o , find the midband gain. Find the value of C_S that places f_L at 20 Hz.
- **9.3** The NMOS transistor in the discrete CS amplifier circuit of Fig. P9.3 is biased to have $g_m = 5 \text{ mA/V}$. Find $A_{AP} f_{P1}, f_{P2}, f_{P3}$, and f_L .
- **D 9.4** Consider the low-frequency response of the CS amplifier of Fig. 9.2(a). Let $R_{\rm sig} = 0.5~{\rm M}\Omega$, $R_{\rm G} = 2~{\rm M}\Omega$, $g_{\rm m} = 3~{\rm mA/V}$, $R_{\rm D} = 20~{\rm k}\Omega$, and $R_{\rm L} = 10~{\rm k}\Omega$. Find $A_{\rm Mr}$ Also, design the coupling and bypass capacitors to locate the three low-frequency poles at 50 Hz, 10 Hz, and 3 Hz. Use a minimum total capacitance, with capacitors specified only to a single significant digit. What value of $f_{\rm L}$ results?

Fig. 9.2(a)

Fig. P9.3